首页范文数学建模的分析方法十篇数学建模的分析方法十篇

数学建模的分析方法十篇

发布时间:2024-04-26 01:51:39

数学建模的分析方法篇1

【关键词】建模思想中学数学教学方法

【中图分类号】G633.6【文献标识码】a【文章编号】2095-3089(2015)08-0110-01

中学阶段的学生对于数学的学习存在的一个普遍的现象就是,对于数学的实际应用以及深层化理解能力不足,这就需要充分的应用到建模教学方法,学生的这种建模能力形成可以显著的提高学习效率,是其他各项知识理论学习的参考。要把建模思想贯彻到学生的学习意识中,就要做好基础性工作,正确把握应用分寸,使其应用的条件和空间十分充足,这样就可以有效的改善中学数学的教学模式,提高教学的效率。

1.中学数学建模思想的综述

在当前的中学数学教学中,数学建模是一种特定的思考方法,它是针对于一个特定的对象基于一个特定的目标,并依据于特有的内在规律,作出一些必须的简化假设,再适当的运用一些基本的数学工具,结合常见的数学公式、表格等,使其更加的实际化。从理论上来讲,它属于在数学语言和方法基础上,利用抽象和简化建立可以近似刻划并解决实际问题的一种有力的数学手段。

2.中学数学教学中采用建模思想的作用

2.1可以提高学生处理问题的整体性和创造性

中学数学中的建模思想就是从实际问题出发,充分的利用数学工具,在解决问题时还需要采用综合性的数学知识点,把所涉及到的数学知识理论进行融合,这一融合过程就需要学生具备很强的综合素质以及整体性的解决问题的能力。中学数学问题实质就属于一种创新解决的过程,如果继续按照固定的思维模式进行解决,最后所起到的作用很小的,而数学建模是一种创造性活动,可以对数学的创新发展起到推动作用。

2.2帮助学生正确的评价自己

从实质上来说,中学数学建模看重的是一个体验数学知识的过程,一般不会过多的关注学生的成绩,数学知识是一个系统的理论体系,对于成绩效果如何没有太大的关系,学习成绩好或者不好都是可以进行创新运用的,就像很多的应用性和创新性较高的数学问题,成绩不突出的学生可能比学习优秀的同学更具有适应性,这也就说明了数学建模的教学方法应用,可以正确的评价出学生的真实学习水平。

3.如何提高数学建模在中学数学教学中的应用效果

随着我国教育体制改革的不断深入,数学建模教学思想逐渐在中学数学教学中形成了一种应用趋势,并且已经在部分区域取得了显著的应用效果。运用建模思想,积极开展建模活动,以此来促进学生分析和解决实际数学问题能力提高的重要手段,这是其融入到中学数学教学中的最终目的,如何有效的提高应用效果,可以从以下几个方面分析:

3.1在数学教材中的重要部分引入数学建模

中学阶段,对于学生的教育是理论和实际相结合的方式,对于很多的实际问题解决都需要应用到数学建模思想,如果只是单单的考虑理论解决,势必会有很大的难度。中学数学教材中的很多内容大都是从实际问题入手,再引出数学知识点,而后建立数学模型,这对于重要章节的教学更具有实效性和针对性。例如对于一些较为抽象且贴近实际的数学案例解决,就可以充分的采用这种教学思想,将其转化为相关的模型进行解决,典型的数学问题就是通过指数函数来解决具有对应关系的数学问题。

3.2改编数学问题,转枯燥为生活化、趣味化

数学知识的学习是有一定枯燥性的,这在中学数学教学中有充分体现。很多的中学数学问题的取材是直接的来源于现实生活的,生活中的很多问题都是可以利用建模来解决的,经过数字化后的应用问题对于学生来说是有着学习的枯燥性的,解决起来较为抽象化,那么如果把这些枯燥性的问题进行适当的改编,使之更贴近于学生实际,更具有生活气息,这样可以提高学生的学习积极性,可以更好的为建模学习做铺垫。例如对于两点间的距离比以及存在的动点相关问题的解决,就可以将其套入到实际的生活现象中,这样可以对问题的解决起到很好的推动作用。

3.3合理性的把教材内容进行延伸,为数学建模作基础

中学数学教学中,基本上一个显著的特点就是它的应用性较强,虽然难易程度不一,但是它为建模提供了一个良好的素材和条件,通过建模可以切实的让学生体会到数学理论知识,更好的理解学习,形成深刻的印象,进而可以积累很多固定的解决套路,像函数模式、几何模式等,这可以培养学生的建模能力。

4.总结

我国教育体制改革的不断深入,在中学教学体系中,更多的具有时代性特点的教学学习方法得到了广泛的普及和应用,建模思想作为一种解决数学实际问题的一种有效手段,它在中学数学的教学学习中具有重要的实际意义和效果,可以帮助学生更好的学习数学知识,有深刻的理解,最终促进学习效果的提高。

参考文献:

数学建模的分析方法篇2

关键词:数学模型;建模;应用

一、数学模型

生活中有许多的模型,并且是多种类型的。比如说玩具、照片、飞机等实物模型,水箱中的舰艇、风洞中的飞机等物理模型。这些模型是我们进行数学建模时所必需的。

数学模型是一种模拟,是用数学符号、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常需要人们对现实问题深入细微的观察和分析,也需要人们灵活巧妙地利用各种数学知识。

二、数学建模

数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程。数学建模是运用数学的语言和方法,通过抽象、简化建立能近似刻画并“解决”实际问题的一种强有力的数学手段。要描述一个实际现象可以有很多种方式,比如录音,录像等等。但为了使描述更具科学性,逻辑性,客观性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。

应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。接下来介绍一下数学建模的基本方法,数学建模的基本方法一般有机理分析,测试分析,二者结合等,机理分析就是根据对客观事物特性的认识,找出反映内部机理的数量规律。机理分析有以下几种具体的方法:1.比例分析法――建立变量之间函数关系的最基本最常用的方法。2.代数方法――求解离散问题的主要方法。3.逻辑方法――是数学理论研究的重要方法,对社会学和经济学等领域的实际问题有广泛应用。测试分析就是将对象看作“黑箱”,通过对测量数据的统计分析,找出与数据拟合最好的模型。测试分析有以下具体的方法:1.回归分析法――用于对函数f(x)的一组观测值(xi,fi)i=1,2,…,n,确定函数的表达式。2.时序分析法――处理的是动态的相关数据。所谓二者结合就是用机理分析建立模型结构,用测试分析确定模型参数。

三、模型准备

下面就以生活中的实例来阐述模型准备过程。问题是椅子能在不平的地面上放稳吗?数学建模的过程通常有问题分析,模型假设,模型建立,模型求解,模型分析,模型检验。

1.问题分析:通常椅子三只脚着地是不稳的,四只脚着地是稳定的。所以椅子能否在不平的地面上放稳,只需要知道椅子的四只脚能否一起着地(即椅脚与地面的距离和为零)。

2.模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出恰当的假设。在这里我们假设椅子的四条腿一样长,椅脚与地面点接触,四脚连线呈正方形;地面高度连续变化,可视为数学上的连续曲面;地面相对平坦,使椅子在任意位置至少三只脚同时着地。

3.模型建立

在假设基础上,利用适当的数学工具刻划各变量之间的数学关系,建立相应的数学结构。在这里就是用数学语言把椅子位置和四只脚着地的关系表示出来。

在这里我们先利用正方形(椅脚连线)的对称性来确定椅子的位置。用θ(对角线与x轴的夹角)表示椅子位置。椅脚与地面的距离是θ的函数。设a,C两脚与地面距离之和f(θ),B,D两脚与地面距离之和g(θ)。由地面高度连续变化可以知道f(θ)与g(θ)是连续变化的函数。再由椅子在任意位置至少三只脚同时着地可以知道对任意,f(θ),g(θ)至少一个为0。而由问题分析可知椅子放稳只需要f(θ),g(θ)都等于0即可。

所以现在一个生活中的实例问题已经装化成一个简单的数学问题:

已知:f(θ),g(θ)是连续函数,对任意θ,f(θ)・g(θ)=0且g(0)=0,f(0)>0.证明:存在α,使f(α)=g(α)=0.

4.模型求解

利用获取的数据资料,对模型的所有参数做出计算。

将椅子旋转90度,对角线aC和BD互换。

由g(0)=0,f(0)>0,知f(∏/2)=0,g(∏/2)>0.

令h(θ)=f(θ)g(θ),则h(0)>0和h(∏/2)

由f,g的连续性知h为连续函数,据连续函数的基本性质,必存在α,使h(α)=0,即f(α)=g(α).因为f(θ)・g(θ)=0,所以f(α)=g(α)=0.

5.模型分析:对所得的结果进行数学上的分析。对上述的θ,f(θ)和g(θ)的确定是关键。

6.模型检验:把求解和分析结果翻译回到实际问题,与实际现象、数据进行比较,检验模型的合理性与适用性。

四、数学建模应用

近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。人们常常把数学建模和计算机技术在知识经济时代的作用比喻为如虎添翼。

参考文献

数学建模的分析方法篇3

【关键词】数学建模;创新能力;主成分分析法

一、上海工程技术大学对学生创新能力的培养

数学建模是通过对实际问题进行合理假设,用数学语言、数学方法抽象出与实际问题近似的数学模型,通过对数学模型求解,解决实际生产、生活问题。数学建模对使用的方法、利用的工具都不加以限制,由于其创造性、趣味性、可参与性吸引了很多大学生参加,从建立模型到得出结果,学生分析问题的能力、创新能力、动手实践能力都得到了提高,数学的思维也在无形中加深。院校对数学教育非常重视,数理与统计学院践行了“数学建模为载体的数学应用能力‘六点一线’培养模式”,从而提高学生的数学应用能力和创新能力。以《高等数学》等课程的教学平台为起步,利用第二课堂进行普及,通过校级数学建模竞赛选拔人才,以集中培训为平台提高学生数学建模能力,参加国内外数学建模竞赛展示学生数学建模水平。以大学生创新实验和科研作为拓展平台,培养学生数学应用与创新能力。通过对学生数学建模能力的培养提高他们的数学应用能力和创新能力。

二、数学建模对大学生创新能力影响的理论分析

创新能力是指在创新意识的基础上提升分析问题、解决问题的能力。从各个角度去看问题,全面地看问题抓住其关键,能够用自己的观点对问题进行解释,运用各种方法解决问题,从中选取最优解决方法。对于创新能力测评的方法有很多,如:主成分分析法、层次分析法、变异系数加权法、因子分子法等。层次分析法是根据各因素间的关系,通过各层特征向量构造上层与下层的权重矩阵;变异系数加权法是计算各因素的变异系数且根据其相对大小确定指标权重;主成分分析法是将多个相关变量转化为少数几个综合指标,将这些综合指标作为主成分,每个主成分都能反映问题的部分信息。本文采用主成分分析法对创新能力指标进行量化分析。

三、模型变量选取

通过对参加数学建模的师生进行深度访谈以及查阅资料分析后得出,影响创新能力的因素主要为智力因素和非智力因素,其中以智力因素为主。智力因素指认知活动的操作系统,智力因素中对创新能力产生的主要影响是注意能力、逻辑思维能力、形象思维能力;非智力因素主要是个性心理因素和思想因素。在此基础上选定原因变量为:观察能力、注意能力、想象能力、记忆能力、逻辑思维能力、形象思维能力、灵感、直觉、顿悟思维能力、个性心理因素和思想因素,以变量的提升程度作为指标,结果变量则选择为创新能力的提升程度。数学建模的实际问题中往往存在一些小细节,观察能力决定了这些小细节是否能被找到;注意力集中才能专心于数学建模,不被外界打扰,这在数学建模竞赛中尤为重要;合理的想象才能创造有价值的新思想;记忆能力指数学建模时在理解中提高记忆力;逻辑思维能力指利用概念、判断、推理等思维形式通过一定的方式得出事物的本质和规律,这无论在分析题目还是建模、编程中都非常重要;利用形象思维能力能把理论的题目结合自己的感观通过语言、图像等形式进行描述;灵感、直觉、顿悟思维能力代表了创造性的突发思维和突如其来的领悟;而个性心理因素指人的求知欲、好奇心、兴趣爱好等;思想道德能力则是指人的世界观、人生观、价值观。

四、模型的建立与求解

为了得到学生创新能力提升的情况,对参加过数学建模的学生进行调查问卷,问卷题目为参加数学建模活动和竞赛后各个能力的提升程度,选项为提升很大、略有提升、没什么变化和退步,将选项转化为数据,分别为1、0.66、0.33、0。回收有效调查问卷共285份,对调查问卷利用SpSS22.0进行分析,利用主成分法,得到主成分的系数矩阵,系数代表了原因变量的线性方程中不同成分的权重,数值越大,对这个指标的影响越大。通过表1可以看出,第一个主成分反映的是思想能力、形象思维能力和逻辑思维能力,这个主成分的方差占总方差的比例最大,所以在数学建模影响创新能力的因素中思想能力、形象思维能力和逻辑思维能力是影响最大的,严谨的逻辑思维、良好的形象思维以及正面向上的观念对于创新能力是不可或缺的。第二个主成分反映的是个性心理能力,分析其方差占总方差的比例得出,个性心理能力对创新能力影响较大,兴趣爱好、好奇心等心理因素的培养对创新能力的提高能起到一定的作用。第三个主成分体现了想象力,由于第三个主成分所占比例较小,所以得出想象力对创新能力有一定影响,但是影响较小,合情合理的天马行空能带来不一样的创新。通过分析问卷中创新能力提升程度的数据,15.3%的学生觉得通过数学建模创新能力得到了较大的提升,而65.9%的学生觉得通过数学建模创新能力略有提升,18.8%的学生则认为数学建模后创新能力没有变化甚至略有退步。可见,只有少数学生认为通过数学建模能够大幅度提升自己的创新能力,而大部分的学生都是认为略有提高。数学建模对院校学生创新能力的确起到了一定的促进作用。

五、结语

在调查问卷中发现,大学数学主干课程和第二课堂对于数学建模和创新能力的培养还不够深入,而校级选拔平台要求较低以及创新实验和科研未能普及都导致了数学建模对创新能力的促进较小。集中培训和建模竞赛的参与人数较多及其应用能力更强导致了更能提升学生的创新能力。因此,可以提出一些改进措施,大学数学主干课程和第二课堂对于创新能力的培养应该更深入一些,这样可以在潜移默化中给学生带来积极的影响。而校级选拔平台则可以增添一定的趣味性或挑战性以此吸引学生进行挑战。创新实验和科研平台则可以增加其普及率来吸引学生,培养更多的创新型人才。

【参考文献】

[1]张清华,杨春德,沈世云.以数学建模竞赛为契机,加强对学生创新能力的培养[J].重庆邮电大学学报(自然科学版),2008,20(1):121~123

[2]刘冬梅.大学生数学建模竞赛与教学策略研究[D].山东师范大学,2008

[3]许先云,杨永清.突出数学建模思想,培养学生创新能力[J].大学数学,2007,4:137~140

数学建模的分析方法篇4

关键词:初中数学建模常见方法基本步骤具体方法案例分析

一、渗透初中数学建模思想是现代教育的必需

生活中处处有数学,数学与生活息息相关。生活中有许多的事物需要我们用已知的或未知的数学知识去解决,这就需要有一定的数学建模能力。数学建模教育,在发达国家的教育中引起巨大反响,称其为:适应世界性高科技发展与人才需求的教育。在我国,国家教委高教司提出全国普通高校开展数学建模竞赛,旨在“培养学生解决实际的能力和创造精神,全面提高学生的综合素质”。然而,在传统的中学教学和教材体系中,人们往往忽视了对学生建模能力的培养。一些传统的、陈旧的观念认为:只要先学好了数学理论知识,应用数学这方面就是简单的、容易的,那是步入社会以后的事情。这些观念导致数学成了纯理论意义上的数学,在这种教学环境下,学生的学习只能是消极的、被动的,学生认为学习数学是只是单纯地为了应付考试。这样,许多学生的想象力、创造力不但得不到充分的发挥、发展,反而经常受到压抑、否定,甚至被扼杀,导致了许多高分低能的现象。而“学以致用”是教育最重要的原则之一,学习数学的目的就是为改造世界、改造生活服务。因此这就要求我们在数学教学第一线的工作者能及时地了解动态、改变观念、适应形势、推动教改,大力开展数学建模活动,培养学生初步具有建立数学模型,解决实际问题的能力。

二、初中数学建模的常见方法

所谓的数学模型是指针对或参照某种事物的特征或数量相依关系,采用形式化的数学语言,概括地或近似地表示出来的一种数学结构。初中数学中常见的建模方法有:对现实生活中普遍存在的等量关系(不等关系),建立方程模型(不等式模型);对现实生活中普遍存在的变量关系,建立函数模型;涉及图形的,建立几何模型;涉及对数据的收集、整理、分析的,建立统计模型……这些模型是常见的,并且对它们的研究具有典型的意义,这也就注定了这些内容的重要性。在中学阶段,数学建模的教学符合数学新课程改革理念,也符合时代的需要。通过建模教学,学生可以加深对数学知识和方法的理解和掌握,便于调整自己的知识结构,深化知识层次。学生通过观察、收集、比较、分析、综合、归纳、转化、构建、解答等一系列认识活动来完成建模过程,认识和掌握数学与相关学科及现实生活的联系,能感受到数学的广泛应用。同时,培养学生应用数学的意识和自主、合作、探索、创新的精神,使学生能成为学习的主体。因此在数学课堂教学中,教师应逐步培养学生数学建模的思想、方法,形成学生良好的思维习惯和应用数学的能力。

三、数学建模的基本步骤

1.模型准备:了解问题的实际背景,明确其实际意义,掌握对象的各种信息,用数学语言来描述问题。

2.模型假设:根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

3.模型建立:在假设的基础上,利用适当的数学工具来刻划各变量之间的数学关系,建立相应的数学结构(尽量用简单的数学工具)。

4.模型求解:利用获取的数据资料,对模型的所有参数作出计算(估计)。

5.模型分析:对所得的结果进行数学上的分析。

6.模型检验:将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

7.模型应用:应用方式因问题的性质和建模的目的而异。

四、中学数学建模分析的具体方法

中学数学建模分析的具体方法常见的有以下三种。

1.关系分析法:通过寻找关键量之间的数量关系的方法来建立问题的数学模型方法。

2.列表分析法:通过列表的方式探索问题的数学模型的方法。

3.图像分析法:通过对图像中的数量关系分析来建立问题的数学模型的方法。

五、中学数学建模案例分析

建立数学模型,首先要认真审题。实际问题的题目一般都比较长,涉及的名词、概念较多,因此要耐心细致地读题,深刻分解实际问题的背景,明确建模的目的;弄清问题中的主要已知事项,尽量掌握建模对象的各种信息;挖掘实际问题的内在规律,明确所求结论和所求结论的限制条件。其次要根据实际问题的特征和建模的目的,对问题进行必要简化。抓住主要因素,抛弃次要因素,根据数量关系,联系数学知识和方法,用精确的语言作出假设。最后将已知条件与所求问题联系起来,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子、图形或表格等形式表达出来,从而建立数学模型。按上述方法建立起来的数学模型,我们如果要验证它是不是符合实际,理论上、方法上是否达到了优化,就要在对模型求解、分析以后,用实际现象、数据等检验模型的合理性。

例1:小王上周五在股市以收盘价(收市时的价格)每股25元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)

根据上表回答问题:

①星期二收盘时,该股票每股多少元?

②周内该股票收盘时的最高价、最低价分别是多少?

③已知买入股票与卖出股票均需支付成交金额的千分之五的交易费。若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?

解:①星期二收盘价为:25+2-0.5=26.5(元/股)

②收盘最高价为:25+2-0.5+1.5=28(元/股)

收盘最低价为:25+2-0.5+1.5-1.8=26.2(元/股)

③小王的收益为:27×1000(1-5‰)-25×1000(1+5‰)

=27000-135-25000-125

=1740(元)

答:小王的本次收益为1740元。

综上所述,中学数学建模,对教师、对学生都是一个逐步学习和适应的过程。教师在设计数学建模活动时,特别要注意学生的实际能力和水平,起点要低,教学形式应有利于更多的学生参与。教师在开始的教学中,在讲解知识的同时,要有意识地介绍知识的应用背景。在应用的重点环节结合比较多的训练,如实际语言和数学语言,列方程和不等式解应用题,等等。逐步扩展到让学生用已有的数学知识解释一些实际结果,描述一些实际现象,模仿地解决一些比较确定的应用问题,到独立地解决教师提供的数学应用问题和建模问题,最后发展成能独立地发现、提出一些实际问题,并能用数学建模的方法解决它。由于知识产生和发展过程本身就蕴含着丰富的数学建模思想,因此教师既要重视实际问题背景的分析、参数的简化、假设的约定,又要重视分析数学模型建立的原理、过程,数学知识、方法的转化、应用,不能仅仅讲授数学建模结果,而忽略数学建模的建立过程。数学应用与数学建模的目的并不是仅仅为了给学生扩充大量的数学课外知识,也不是仅仅为了解决一些具体问题,而是要培养学生的应用意识、数学能力和数学素质。因此我们不应该沿用“老师讲题、学生模仿练习”的套路,而应该重过程、重参与,更多地表现活动的特性。

参考文献:

[1]卜月华.中学数学建模教与学[m].南京:东南大学出版社,2002,3.

[2]吴文权.中学数学建模引论[J].阿坝师范高等专科学校学报,2001,32,(1):97-100.

数学建模的分析方法篇5

关键词:数学建模;高校素质教育;创新能力

随着社会的发展,数学技术已经成为高新技术的重要组成部分,社会对数学的需求主要表现在社会各部门需要大量的能善于运用数学知识及数学的思维方法来解决实际问题的人,他们通过建立数学模型将实际问题与数学工具有效地沟通,最终解决问题,取得经济效益和社会效益。

什么是数学建模呢?数学建模就是将现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题。大学生数学建模竞赛最早于1985年在美国出现。1989年我国学生开始参加美国的数学建模竞赛,1992年我国组织举办了10个城市的大学生数学模型联赛,1994年起开始主办全国大学生数学建模竞赛,每年一次。十几年来,全国大学生数学建模竞赛规模飞速发展,参赛校数从1992年的79所增加到2007年的968所院校,参赛队数从1992年的314队增加到2007年的11729个队。本文通过分析数学建模的意义、方法和步骤,结合高校素质教育的主要内容,探讨数学建模在高校的素质教育中所起的作用。

一数学建模的意义、方法和步骤

(一)数学建模的意义

首先,数学建模在一般的工程技术领域中发挥着重要的作用。毕业论文不管是过去还是现在,在机械、电机、土木和水利等工程技术领域中,数学建模都发挥着举足轻重的作用;随着计算机技术的发展,CaD技术大量的替代传统工程设计中的现场实验,更方便和扩展了数学建模在这些领域中的应用。第二,“高技术本质上是一种数学技术”,数学建模作为一种有用的工具,大量的应用在通讯、航天、微电子和自动化等高新技术领域。第三,数学建模大量应用到计量经济学、数学生态学和数学地质学等新兴的学科中。第四,数学建模具体地应用在国民经济和社会活动的分析与设计、预报与决策、控制与优化、规划与管理等方面。

(二)数学建模的方法

数学建模的方法主要有机理分析法和测试分析法;机理分析主要是通过已经认识的客观事物特性,找出内部机理数量规律,由数量规律建立数学模型;而测试分析则需要用到概率和数理统计知识来进行建模,也就是说。测试分析是用来解决“黑箱”问题的。

(三)数学建模的步骤

数学建模一般包括以下几个步骤:模型准备,模型假设,模型建立,模型求解,模型分析,硕士论文模型检验和模型应用。具体来说就是先了解实际问题,并用数学语言来描述问题;再根据问题的特征和建模的目的,进行必要的简化,提出恰当的假设;在假设的基础上,用数学工具来刻划各变量之间的数学关系,建立相应的数学模型;然后利用获取的数据资料,对模型的所有参数做出计算(估计);并对所得的结果进行数学上的分析;最后将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性:如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释;如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

二高校素质教育的要求讨论高校素质教育,首先要明确什么是素质教育。素质教育最根本的要求是让学生在德、智、体、美、劳等方面全面发展。在高校,素质教育已经变得非常具体和面向社会性,如1998年8月29日第九届全国人民代表大会常务委员会第四次会议通过的《中华人民共和国高等教育法》第五条规定:“高等教育的任务是培养具有创新精神和实践能力的高级专门人才,发展科学技术文化,促进社会主义现代化建设。”第十六条(二)规定:“本科教育应当使学生比较系统地掌握本学科、专业必需的基础理论、基本知识,掌握本专业必要的基本技能、方法和相关知识,具有从事本专业实际工作和研究工作的初步能力。”我国在《中共中央国务院关于深化教改推进素质教育的决定(猢5)》中明确了素质教育中“智育工作要转变教育观念,改革人才培养模式,积极实行启发式和讨论式教学,激发学生独立思考和创新的意识,切实提高教学质量。”对高等教育特别提到“高等教育要重视培养大学生的创新能力、实践能力和创业精神,普遍提高大学生的人文素养和科学素质。”

三数学建模在高校素质教育中所起的作用

全国大学生数学建模竞赛组委会秘书长姜启源教授认为“数学教育本质上是一种素质教育。数学的教学不能完全和外部世界隔离开来。”中国科学院院士李大潜指出,数学教育质量的优劣决定了一批人在知识经济中的竞争能力,而他们的能力缺失直接影响到国家的整体竞争力。由此,数学教育不能仅仅是按部就班的静态传授,它更应该注重对学科精神的领会,只有这样,学生在生动活泼的现实面前才不会束手无策,才能创新与发现。数学建模竞赛就是为适应这一社会要求采取的探索性措施,将数学建模引入高等教育体系中已是大势所趋。数学建模课程在我校已全面开设,结合我校师生参加数学建模竞赛的体会,我认为数学建模对高校素质教育有以下几点作用:

转贴于(一)数学建模可以让学生感受、理解知识产生和发展的过程

在大多数高校中,数学建模课程的教学模式和教学理念都是:从问题出发组织教学,学生自己做,开放式的教学。而数学建模的题目一般都是由工程技术、经济管理、社会生活等领域中的实际问题简化加工而成,有很强的实用性;数学建模的过程就是通过对实际问题进行分析,利用已知的相关知识和数学工具,发现其中的关系或规律,将它们用数学语言描述出来,从而把实际问题化成一个数学问题,得到一个数学模型的过程。由上可知,数学建模实际上就是学生通过参与建模,感受知识的产生和发展的过程。

(二)数学建模可以培养学生的科学精神和创新思维的习惯

创新是数学建模的生命线。数学建模的方法主要是机理分析法和测试分析法,无论是机理分析还是测试分析都是需要本着符合科学的精神去创新,去建立新的实用的模型。在数学建模中,对给出的实际问题,一般是不会有现成的模型,这就要求我们在原有模型的基础上进行创新,如2007年a题中对中国人口的预测问题,我们知道数学上有很多人口模型,但是面临新的实际问题,现成的模型是不能很好的解决的,这就要求我们进行创新,建立新的模型。学生在建模的过程中,科学精神和创新思维得到了培养。

(三)数学建模可以培养学生收集处理信息的能力和获取新知识的能力

数学建模竞赛中的题目对于学生来说非常具有挑战性,如“公交车调度”、“SaiLS的传播”、“奥运会临时超市网点设计”、“长江水质的评价和预测”、“出版社的资源配置”、“艾滋病疗法的评价及疗效的预测”等。从这些题目可以看出,有些问题是学生以前从来没有接触过的,要解决它们,就需要他们在很短时间内获取与赛题有关的知识,他们通过从互联网和图书馆查阅文献、收集资料、选取信息及大量的数据处理,锻炼了他们收集处理信息的能力和获取新知识的能力。

(四)数学建模可以提高学生分析和解决问题的能力

数学建模中,我们面对新的问题,需要在很短的时间内加以解决,首先必须准确快速地分析问题,在分析问题的基础上建立模型,医学论文解决问题。因此,数学建模可以提高学生分析和解决问题的能力。

(五)数学建模可以培养学生的语言文字表达能力以及团队精神

根据数学建模竞赛的要求,要对自己的解决问题的方法和结果写成论文,因此通过数学建模可以很好提高学生撰写科技论文的文字表达水平;竞赛要求三个同学在短短的三天内共同完成建模任务,他们在竞赛中就必须分工合作、取长补短、求同存异,从而很好的培养了学生的团队精神和组织协调的能力。

(六)数学建模可以提高高校教师的素质

一方面,通过对数学建模课程的教学,我们很多教师将数学建模的思想和方法融入数学主干课程教学的研究和试验。比如数学建模竞赛活动中经常用到计算机和数学软件,因此在日常的数学建模教学中我们普遍采取案例教学和课堂讨论,将案例教学和课堂讨论融入到数学主干课程教学中,丰富了数学教学的形式和方法。另一方面,因为竞赛中题目的实用性和挑战性,往往需要我们不同专业的教师联合起来,互通有无,以便在平常的教学中为学生更好地讲解案例,教师们通过纵向的交流提升了自己的知识水平和知识应用能力。

参考文献:

[1]姜启源,等.数学模型(第三版)[m].北京:高等教育出版社,2003.

[2]贾晓峰,等.大学生数学模型竞赛与高等学校数学教学改革[J].工科数学,.21300,16(2):79—82.

数学建模的分析方法篇6

关键词建模学生数学素质

中图分类号:G424文献标识码:a

modelingtopromoteStudenttoimprovetheQualityofmathematics

maHengguang

(LiaochengtechnicianCollege,Liaocheng,Shandong252400)

abstractmathematicalmodelingisanactualphenomenonconstructedbymentalactivitycanseizeanimportantandusefulfeatures,it'srelatedtothelevelofuniversitystudents'mathematics,mathematicsability,mathematicssenseandmathematicalquality,isthecoreoftheoverallqualityofcollegemathematicscontent.thispaperdiscussesthemeaningofmathematicalmodeling,mathematicalmodelingisimportanttoimprovethequalityofstudents'mathematicaloptimizationmodelingandpresentssomesuggestionsforteaching.

Keywordsmodeling;student;mathematicalquality

1数学建模的内涵

自1992年起开始主办全国大学生数学建模竞赛以来,全国大学生数学建模竞赛规模飞速发展,参赛院校从1992年的全国79所增加2011年的全国1251所,参赛队也从1992年的314队增加到2011年的19490队。并且随着计算机技术的发展,CaD技术大量替代传统工程设计中的现场实验,matLaB等数学软件能够提供精确的计算结果和实现良好的量化分析。这些,都使得数学建模展现出强大的活力,发挥出更大的作用。数学建模就是将现实世界中的实际问题加以提炼抽象为数学模型,然后求出模型的解,验证模型的合理性,并用该模型的结论来解释现实问题。其运用方法主要有机理分析法和测试分析法,机理分析主要是通过已经认识的客观事物特性,找出内部数量规律,由数量规律建立数学模型。而测试分析则需用到概率和数理统计知识来进行建模,也就是说,测试分析是用来解决“黑箱”问题的。数学建模一般包括以下几个步骤:模型准备,模型假设,模型建立,模型求解,模型分析,模型检验和模型应用。具体说来,首先,用数学语言了解实际问题。其次,根据建模的目的和实际问题的特性,提出恰当的假设,并运用数学工具刻画各变量之间的关系,同时也要注意对建模进行必要的简化。最后,将获取的数据资料,对模型进行计算,并将分析后的数据与实际情况进行比较,继而验证出模型的准确性、合理性。

2建模对学生数学素质的促进作用

2.1培养学生数学意识

数学意识不仅能使学生理解和学习现成的数学知识和技能,而且还能够让学生逐步学会主动地认识数学,初步形成用数学的观点和方法看待事物,处理问题,具有从现实世界中寻找数量关系和数学模型的态度和方法,是将认识数学过程中的态度和情感体验联系在一起的前提。数学建模能使学生从现实世界中看似与数学没有丝毫关系的问题最终抽象成数学问题,培养学生以数学的思维、从数学的角度去思考现实问题,潜移默化地加强了数学意识。

2.2培养学生数学语言翻译能力

建立数学模型,要运用到假设、收集和应用证据等进行抽象简化。确切地将其用数学语言表达成数学问题的形式,然后将数学语言编译成计算机程序,通过计算机进行数据处理、数据分析、论证得出曲线图表或数学语言表达的结论。最后还要用常人能理解的一般描述性语言表达出来,提出解决某一问题的方案或是建议。数学建模可以充分锻炼学生的自然语言、数学语言和计算机语言之间的翻译表达能力。

2.3提高学生的创新能力

创新能力是人的各种能力的综合和最高形式表现。创新能力不仅仅是智力活动,它不仅表现为对知识的摄取、改组和应用,还表现了一种发现问题、积极探索问题的心理取向,是一种善于把握机会的敏锐性和积极改变自己并改变环境的应变能力。数学建模的实质就是构造模型。但模型的构造并不容易,需要有足够强的创造能力。通过构造模型,在学生应用数学知识的基础之上,激发学生的创造性思维。从而在不断地运用数学知识和发散思维之中,提高学生的创新能力。

2.4提高学生转换能力

数学建模实质是把实际问题转换成数学问题,通过数学建模,使学生有独到的见解和与众不同的思考方法。恩格斯曾经说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”因此,我们在数学教学中要注重转化,善于发现问题,沟通各类知识之间的内在联系。进一步培养学生的思维转换能力,(下转第148页)(上接第125页)这对培养学生思维品质的灵活性、创造性及开发智力、能力培养、提高解题速度大有裨益。

3优化高校建模教学方法措施

3.1在教学中渗透建模教学思想

在高等数学教学中,渗透数学建模的思想,让学生初步了解建立数学模型的思想和方法,通过逐渐的渗透,能潜移默化地培养学生数学意识和数学思维习惯。例如,在学习函数内容时,可以介绍金融业务中的单利模型,用微分方程建立冷却模型和浓度模型。对于繁复的公式推导以及难度大的数学计算,可用数学软件解决复杂的数学计算,实现课堂教学和数学实验的有机结合。如学习定积分时,要求学生掌握定积分概念的产生背景、定积分的思想、基本性质和微积分基本定理,并熟练使用牛顿·莱布尼兹公式、换元法和分部积分法,对于难度大的定积分计算,要善于使用数学软件求解。

3.2加大数学实验课的力度

通过历届数学建模竞赛情况来看,有许多学生在比赛时,能够列出公式,能构建出模型,但却不知道如何解答模型。例如,列出了问题的微分方程,但不知道怎样求解,建立了问题的模型,但不知怎样去开发算法,解出模型。因此,应当加大学生的解题能力训练,特别是要培养学生利用现代的数学软件进行解题的能力。在全校开展数学实验课和数学建模实验课,将学生分为各个小组,以小组为单位开展对数学实验和数学建模实验问题的探讨,有利于培养学生的动手解题能力。

3.3建立稳定的教育实习基地

教育实习基地建设历来是各师范院校十分重视的问题。如何建设好稳定的教育实习基地?第一,在工作中,要打破传统教育实习管理体制,建立健全的管理体制。制度建设可以尝试由地方教育行政部门参与和尝试选留毕业生和实习相结合形式共同参与制度建设。第二,营造互惠互利的联合机制。做到互相交流教育、科研信息,共同研究基础教育改革,共同建设教育实习基地。第三,提高实习生综合素质,确保教育实习基地的建设和巩固。

总之,数学学习不仅要在数学基础知识、基本技能和思维能力、运算能力、空间想象能力等方面得到训练和提高,而且要在应用数学、分析和解决实际问题的能力方面得到训练和提高。在课堂教学中,要使学生学会提出问题,建立数学模型,将把问题抽象为数学问题。只有这样,才能提高分析问题和解决问题的能力,才能提高学生的创新能力。因此,如果我们能逐步地将数学建模活动和数学教学有机地结合起来,就能更好地提高学生的数学素质。

参考文献

[1]梁方楚,蔡军伟,程锋.利用数学建模拓展大学生素质[J].科技咨询导报,2006(14).

[2]姚新钦.在高等数学教学中融入数学建模思想[J].广东农工商职业技术学院学报,2009(4).

数学建模的分析方法篇7

【关键词】数学建模;因子分析;选拔

【中图分类号】G642

【基金项目】武汉市市属高校产学研及教学研究项目“基于数学建模的应用型人才培养模式研究”(项目编号2014216)

一、引言

全国大学生数学建模竞赛已在各个高校中展开,并成为影响最大、参赛人数最多的大学生课外科技活动.[1]在以往的数学建模队员选拔中,多采用根据数学基础课程和数学建模培训课程分数由高到低,兼顾院系差别,以及男女生比例等条件进行选拔组队参赛.平时的数学成绩对数学建模竞赛成绩的影响不是最重要的.[2]虽然加入了其他遴选条件,但在后续组队参加建模比赛过程中,依然暴露出许多问题,突出表现是模型建立、求解、编程、论文写作、查阅文献等能力不均衡;造成部分参赛队伍完成比赛十分艰难,竞赛成绩自然也不理想.如何选拔优秀的学生参加比赛,更加科学合理地组建比赛团队在数学建模竞赛组织工作中显得尤为重要.

二、研究方法

因子分析(Factoranalysis)是由英国心理学家Spearman在1904年提出来的[3],其数学模型为:设有p个变量xi(i=1,2,…,p)可表示为:

其矩阵形式为:X=aF+ε,式中F称为因子,a为因子载荷矩阵,ε称为特殊因子,表示原有变量不能被因子解释的部分.因子分析是通过研究原始变量之间的内部依赖关系,用少数几个因子来反映原来众多变量的主要信息,希望能够发现更加通俗易懂的解释.如难以得出合理解释时,需要进一步做因子旋转.所以因子分析非常适合研究影响数学建模队员选拔的因素.

在数学建模能力培养过程中,通过课堂讲授与课下练习促进学生能力的提高是必不可少的手段.但每个学校培训方式、课程选取或能力培养侧重点不尽相同.某高校开展数模基础、统计模型、预测与综合评价模型、数学软件matlab、运筹学与Lingo软件、小论文共6门课程培训,将20名数学建模预选队员姓名按序号1,2,3,…进行编号,在培训期间的各门课程成绩整理成数据表(略).

通过SpSS220软件导入上述数据进行因子分析,可以得出:Kmo检验为0.642,Bartlett检验统计量的观测值为38921,相应的概率p值为0001.说明各门课程成绩变量之间独立性假设不成立,可以用因子分析做降维处理寻找潜在因子.

当提取四个因子时方差累计贡献率达到了91.393%,因子分析效果较为理想.为使因子含义更加清晰,采用极大方差法进行因子旋转,旋转后的因子载荷矩阵如表1所示.可以发现统计模型、预测与综合评价模型在第一因子F1上有着较高的载荷,可表示为建立模型能力;数模基础课程在第二因子F2上有着较高的载荷,可命名为数学建模潜力;数学软件matlab、运筹学与Lingo软件在第三因子F3上有较高载荷,说明是编程能力;小论文训练课程在第四个因子F4上有较高载荷,可命名为论文写作能力.

可分为能力均衡队员、特色鲜明队员、一般队员、能力较差队员四类.其中编号1,2,3,4,5,8六位队员各项因子得分至少是三项以上是正分数,说明四种能力至少具备三种,能力较为均衡,可作为领队队员培养,例如编号为2的队员在第一、二、三因子上得分很高,说明有很强的建立模型能力、数学建模潜力以及编程能力.而编号为6,7,9,10,13,14六位队员四项因子得分中有两项为正,两项为负数,说明某两个能力高于平均水平,而又存在两个短板.类似于偏科现象,这类队员要合理搭配,发挥其最大作用.例如编号7的队员有较强的建立模型能力和建模潜力,但是编程能力和写作能力却非常糟糕.编号为11,16,17,18,19号五位队员为能力一般队员可作为每个比赛队伍中的第三位队员.虽然仅有一项因子得分高于平均水平,有三项短板,但组队得当依然可以发挥最大能效.例如16号队员有着很强的写作能力,可以和其他领队队员以及特色鲜明队员的能力形成互补.编号为12,15,20三位队员的四项因子得分均为负数,各项能力都低于平均水平,但这些队员要慎重对待,需要进行专门的谈话以及摸底工作.

四、总结

1.本模型通过对队员培训成绩分析得出建立模型能力、数学建模潜力、编程能力以及写作能力四种因子,这也是在数学建模比赛中非常重要的能力,与以往的实践经验十分吻合.

2.在组队过程中,每支队伍3人一组,仍需要分析法和定性的挑选方式共同确定最终组队情况.

3.因为样本容量较小以及仅以一次培训成绩作分析,在后续的工作中可结合比赛最终成绩和多次培训成绩,模型会更加完善.

【参考文献】

[1]王浩华,罗婷.数学建模素质评估的定量分析[J].海南大学学报(自然科学版),2012,30(1):9.

[2]朱宁,陈克西,李竹梅.主成分分析在数学建模中的应用[J].工科数学,1999,15(4):109.

数学建模的分析方法篇8

[关键词]大坝安全神经网络统计模型

中图分类号:tU19文献标识码:a文章编号:1671-7597(2009)1120116-02

建国以来,我国共修建8.4万余座水坝,这些工程在国民经济中发挥了巨大的作用。然而,相当一部分大坝存在着某些不安全因素,不同程度地影响工程效益的发挥,甚至威胁着下游千百万人民的生命财产安全。为此,各级政府对大坝安全监测都十分重视。使用数值模型对大坝进行安全监控是近代大坝安全监测工作中应用的一项新技术[1]。

大坝安全监控模型是根据大坝安全监测资料建立起来的、定量描述大坝效应量(如变形、渗流、应力等)与环境变量(如水位、温度、降雨等)之间统计关系或确定性关系的数学表达式,应用这些模型可以监控大坝等水工建筑物的今后运行。

一、传统模型

(一)研究现状

1955年意大利的法那林(Faneli)和葡萄牙的罗卡(Rocha)等开始应用统计回归方法来定量分析大坝的变形观测资料。1977年法那林等又提出了混凝土大坝变形的确定性模型和混合模型[4]。日本的中村庆一等采用回归分析法分析大坝实测资料,并筛选出显著因子,以建立最优的回归方程。Kalkani等采用多项式回归模型来分析Kremasta拱坝渗压计测的数据。随着计算机技术的发展,大坝监测资料的正分析研究也取得了很大的进步,统计模型、确定性模型及其混合模型在生产实践中得到了广泛的应用。目前,葡萄牙、法国、意大利、西班牙和奥地利等国家在大坝安全监测以及相关的各项研究方面不同程度处于国际领先水平[3]。

我国在大坝安全监测的资料分析方面的工作起步相对较晚,最初只以定性分析为主,即通过绘制过程线和最大、最小等简单特征值的统计来分析大坝的运行性态。上世纪70年代陈久宇等开始应用统计回归分析大坝安全监测资料;80年代中期,开始了对确定性模型及混合模型的深入研究。吴中如等从徐变理论出发推导了坝体顶部时效位移的表达式[8],用周期函数模拟温度、水压等周期荷载,并用非线性二乘法进行参数估计,还提出了裂缝开合度统计模型的建立和分析方法、坝顶水平位移的时间序列分析法以及连拱坝位移确定性模型的原理和方法,并在实际工程中得到了成功应用。河海大学于1985年首先将确定性模型的理论用于佛子岭连拱坝结构性态分析,取得较好的效果。徐洪钟等针对统计回归计算中出现的水压因子难以入选和入选以后计算结果不合理的困难,应用偏最小二乘回归建立坝顶水平位移的统计模型,消除了多重共线性的问题,取得较合理的结果[6]。

(二)统计模型

统计学模型是凭枢纽本身积累的运行经验,按过去实测的原因量与效应量的相关关系,来预测在现今相应关系下的效应量。统计模型是大坝安全监测资料分析中最常用的模型,是建立混合模型的基础。大坝安全监测领域常用统计模型采用的分析方法有:多元线性回归、逐步回归以及近年来兴起的偏最小二乘回归[7],这方面国内各单位已积累了比较丰富的经验。建立统计学模型关键是如何正确选择回归因子。

混凝土大坝的变形δ主要受水压H、温度t以及时效θ的影响,大坝的统计模型可以表示为:

(三)确定性模型

确定性模型以演绎法为建立模型的法则,结合大坝和地基的实际工作性态,按照设计要求用有限元方法,计算建筑物重要部位的效应量,然后与实测值进行优化拟合,以求得调整参数,从而建立确定性模型。确定性模型是施工期、蓄水期以及运行期进行数据解释唯一可行的理论模型。然而由于建立确定性模型要对坝体和基岩的结构、力学性能、变形规律进行正确模拟,其难度比建立统计模型要大,工作量也多的多。

混凝土大坝任一观测点的位移确定性模型的一般表达式为:

(四)混合模型

混合模型是确定性模型和统计模型的一种混合形式。对于一些缺少足够的坝内温度资料的大坝,在建立模型时,温度因子同统计模型的温度因子,水压因子与确定性模型相同,用有限元计算求得,时效因子与统计模型相同,这样建立的模型即为混合模型。

混合模型的表达式为:

二、新模型

(一)研究现状

20世纪80年代以来,国内外对数学监控模型的研究逐渐向纵深方向发展,模糊数学、灰色理论、神经网络、小波分析、混沌动力学等各种理论和方法也纷纷被引入到大坝安全监测资料分析中来,并取得了一定的成果。

1982年,我国学者邓聚龙在国际会议上首先提出灰色系统(GreySyst

em,GS)理论。随后,许多学者将其应用于实践。吴中如等从灰色系统的基本原理和方法着手,将水压、温度等因素白化,建立了坝体应力灰色预测模型。徐洪钟等将模糊数学与神经网络相结合,把构成组合模型的各个子模型作为网络学习矩阵的输入,建立了土石坝的沉降组合模型,采用自适应模糊神经网络进行组合预报。杨杰等应用灰色系统理论建立了土石坝变形的灰色非线性模型Gm(1,1;a),并对其适用性进行了探讨。何鲜峰、顾冲时等利用分形插值算法建立效应量确定性分量预测模型,然后对实测数据和确定性分量预测结果间的误差序列通过相空间重构建立混沌分量预报模型,再以二者叠加组成最终混合预测模型。该模型解决了常规统计模型由于模型因子选择不当和环境量观测误差引起的模型失真问题。

(二)灰模型

灰理论是邓聚龙教授1982年在国际上首先提出的,近年来主要用于对力学系统的分析描述,建立数学模型及预测等。我们知道在大坝的位移中存在两部分位移:弹性位移和随时间及荷载而变的非线性位移(俗称时效位移)。其中,弹性位移利用有限元等计算方法较易获得。但是,影响大坝失效变形的因素极为复杂,既有已知因素又有未知因素,因此,大坝的位移是灰色的,大坝是一个极其复杂的灰色系统。相应的,这种系统的逆过程称之为灰色的逆过程。通过这种逆过程所获得的模型称为灰色模型。

灰关联模型建模的基本原理是按照被影响因素与影响因素之间的关联度,逐步选取显著变量来建立灰色模型,通过拟合效果的检验即可建立较优Gm(1,n)模型。

(三)神经网络模型

由于大坝在气候和荷载作用下的动态响应是极其复杂的,受诸多因素的影响。内在因素主要有地质条件及构造的高度非线性、筑坝材料及介质的各向异性,外在因素主要有水荷载、降雨量、温度等因素以及人类活动的影响。这些内、外因素相互耦合使得效应量与因子之间的关系表现出很强的非线性特征。我们可以利用神经网络的自组织、自适应、自学习的非线性映射能力,建立大坝安全监控的神经网络模型。

(四)模糊聚类分析模型

尽管原型观测资料真实地反映了大坝各观测物理量的实际情况,但是它们之间是一种模糊关系。因此可以用聚类分析法对大坝观测数据进行分析。

把大坝看成一个模糊综合体,首先以数据迭代法为基础,求出各种因子对应于不同分级的“聚类中心”,结合预报日的各因子观测值进行二次聚类分析,以实现对位移的逐日预报。这种方法的优点是只需一次性大量的数据迭代运算,求出“模糊聚类中心”,即可在计算机上进行位移的逐日预报。此法运算量很少,而且精度较高。

三、其他模型

近年来,大坝原型观测资料分析工作逐渐向纵深方向发展,除了以上叙述的模型之外,时间序列、波谱分析等多种方法也被引入大坝安全监测资料和大坝结构性态的正反分析。吴中如、顾冲时等人通过引入空间三维坐标,提出了混凝土坝空间位移场的时空分布模型,将单测点模型拓宽至空间三维;赖道平等应用Hurst重标度和分形学理论分析时间序列数据,研究了混凝土重力拱坝变形的分形特性,评价裂缝对大坝结构性态的影响,并且由此对大坝的安全状况作了评价。还有学者提出大坝安全监控的位移分布模型、数字滤波模型等,大大丰富了大坝安全监控数值模型。

四、展望

综上所述,在国内外大坝及边坡安全监控分析模型中,统计模型、确定性模型和混合模型得到普遍的应用,模糊数学、灰色系统、神经网络等方法也得到初步应用,对大坝的性态分析方法有了长足的进展。但大坝是一个复杂的非线性系统,如何研究开拓和利用新理论和新方法,有效克服传统建模方法的不足,解决建模技术的关键问题将是今后大坝安全监测资料分析工作的发展方向。随着传统模型的不断改进和新方法、新模型的涌现,资料分析处理工作会不断得到改进,这将有力的促进大坝安全监控的发展,更好的为消除大坝安全隐患和水库安全运行服务。

参考文献:

[1]王德厚,大坝安全监测与监控[m].北京:中国水利水电出版社,2004.

[2]吴中如,水工建筑物安全监控理论及其应用[m].北京:高等教育出版社,2003.

[3]黄红女、周琼、华锡生,大坝安全监控理论与技术研究现状综述[J].大坝与安全,2005(2):54~57.

[4]陈维江、马震岳、董毓新,建立大坝安全监控数学模型的一种新方法[J].水利学报,2002,(8):91~95.

[5]包腾飞、吴中如、顾冲时,基于统计模型与混沌理论的大坝安全监测混合预测模型[J].河海大学学报,2003,31(5):534~538.

[6]徐洪钟、吴中如,偏最小二乘回归在大坝安全监控中应用[J].大坝观测与土工测试,2001(6).

[7]周光文、袁晓峰,大坝安全监测统计模型的比较与选择[J].南昌大学学报(理科版),2007,31(6):590~593,609.

[8]吴中如,混凝土坝观测物理量的数学模型及其应用[J].华东水利学院学报,1984(3):20~25.

[9]邓念武、邱福清、徐晖,Bp模型在土石坝资料分析中的应用[J].武汉大学学报(工学版),2001,34(4):17~20.

数学建模的分析方法篇9

研究生论文2300字(一):“双一流”建设背景下研究生课程设置的优化策略论文

【摘要】课程设置是研究生培养的基础环节,关乎高校人才培养质量。在当前“双一流”建设背景下,研究生课程设置要适时调整,以符合国家和社会经济的发展需要。本文通过分析我国研究生课程设置中存在的问题,提出相应的优化策略,以期进一步完善研究生课程设置结构,促进研究生教育质量的提升。

【关键词】“双一流”建设;课程设置;优化策略

“双一流”建设是党中央、国务院作出的为了促进高等教育战略发展的重大决定,对于提高高等教育发展水平具有非常重要的意义。怎样在“双一流”建设中树立研究生培养目标,稳步提升人才培养质量,已经成为高等教育发展面临的主要问题。如今,人才市场对研究生人才能力的需求发生了较大变化,因此,研究生课程只有不断进行有效创新,才能适应时代的持续变化和社会经济发展。

课程设置是研究生培养的基础环节,对巩固知识、打好理论基础、培养创新思维和实践能力非常重要,也对研究生教育的质量和水平产生直接影响。由此可见,深入分析我国研究生课程设置中存在的问题,优化并完善课程设置,将对提高人才培养质量、建立世界一流大学、培养高水平的创新人才具有重大意义。

一、研究生课程设置中存在的问题

(一)课程设置缺乏规范性合理性

目前,许多高校在设置研究生课程时具有较大的随意性,课程间缺乏层次和逻辑性。研究生课程设置在广度和深度上,应该高于本科教育,为后续博士课程教育打下基础。但实际上,很多高校在其课程的设置上大多是对本科生阶段课程内容的重复,并未达到这一需求。

(二)课程设置重理论轻方法论

研究生不仅要有必备的专业理论知识,还需要养成科研思维,能学习并熟练使用各种研究方法。然而,目前许多高校只重视对研究生的基础理论教育,忽视了科学研究方法论教育,对人文社会科学来说,方法论相关教育十分重要。在课程设置上忽视方法论教育,将会影响人才培养的水平,也将造成毕业论文质量的下降。

(三)必修课与选修课的设置比例不合理

由于硕士研究生实行学分制管理,高校在必修课程、公共课程上设定了很多学分,而专业选修课学分很少。为培养研究生的创新能力和思考能力,除专业基础科目外,也需要开设一定数量的选修课,为研究生提供更广泛的学习领域。

二、研究生课程设置的优化策略

(一)進一步完善课程内容,适当提高实践类课程比重

研究生培养应当坚持理论与实践紧密结合的原则,《教育部关于改进和加强研究生课程建设的意见》指出,研究生课程设置要提高实践课程比重,优化课程设置。高校应根据自身情况适当开设实践类课程,对于应用型学科,应鼓励学生进行实地考察和调研活动。针对理论型学科,可以通过实践活动、案例分析、课堂讨论等方式向学生提出社会前沿理论和热点问题,进而提高学生的创新思维、实践能力。只有当高校积极组织研究生参与到科研实践工作中,才能够促使他们努力成为科研学术前沿探索的开拓者。在当前学分制管理下,可以适当提高实践类课程的学分,使学生重视实践能力的培养。

(二)逐步优化课程结构,丰富教学内容

在新时代,研究生课程设置要适时调整,以符合国家和社会经济的发展需要。在“双一流”建设背景下,高校可以通过科学引进CDio课程体系,结合自身特色课程资源和人才培养发展要求,合理设计出最佳的研究生课程计划,优化设置课程结构内容。高校教师要有效树立起先进的CDio理念,强化创新实践科研能力校企合作项目课程与现有课程的互补工作,最终构建出具有综合性特征的研究生创新型人才课程体系。同时,应适当提高选修课的比重。这个比重不仅体现在学分上,还体现在选修课的开设种类和数量上,要给学生们更多的选择空间。

(三)提升学生满意度,完善课程评价机制

高校应重视并构建合理的课程评价体系,通过学生对课程的评价不断完善课程设计方案,提高课程质量。一方面,高校应定期收集学生的评价和反馈信息,在此基础上进行内部评估,评估内容包括教师的教学态度、教学内容、教学方法等各方面的信息。另一方面,可以引入第三者评价机制,委托第三方机构定期评核课程的科学性、适用性和尖端性。创新应用互联网渠道方式,加强与研究生的互动交流,及时获取到研究生的课程学习反馈意见和想法,结合研究生学习的不足和需求,及时优化改进课程标准内容和发展计划。

(四)加强师资队伍建设,规范课程教学设计

以实践能力和科研成果为指导,学校应建立相应的奖惩制度对研究生课程设置进行规范化设计。导师应根据所带研究生的实际情况,因材施教,合理规划课程培养计划,根据每位学生的学习基础和自身情况及时调整课程内容和难度。同时,利用各种先进的手段创新开发设计课程项目,有效创建出“教、学、做”三位一体的情境教学模式,凸显出研究生在教学中的主体位置,发挥他们的主观能动性,使其将所学课程专业知识转化为项目开发设计工作的能力,培养其良好的创新实践能力。此外,还应该建立合理的监督体系,引导教师重视教学环节,重视研究生课程设置,督促教师提高自身教学能力,促进研究生教育质量的提升。

课程设置关乎高校人才培养质量,在提高研究生的学术能力、科研能力、创新能力等方面发挥着重要作用。课程设置是一项复杂的系统工程,需要学生、教师、高校等多方面的共同努力。研究生培养除重视专业基础理论学习外,也应重视方法论的学习,培养学生的实践操作能力;作为指导教师也应该与时俱进,适时改变传统的教学方式,注重师生之间的互动交流和问题反馈;高校应该重视和构建课程评价体系,努力提升学生的课程满意度。

研究生毕业论文范文模板(二):交通数据分析与应用研究生课程教学的思考与探索论文

[摘要]数据分析技术的发展和交通数据产业链的形成对交通数据分析师的培养提出了新需求。基于同济大学交通工程专业硕士研究生课程交通数据分析与应用的教学实践,从课程培养目标、内容设置和实验平台建设等方面对教学实践中的思考和探索进行总结,为交通数据的课程教学和人才培养提供参考。

[关键词]交通数据分析;交通工程;大数据;研究生课程

[作者简介]段征宇(1978—),男,博士,副教授,研究方向:交通运输规划与管理、交通数据分析;余荣杰(1989—),男,博士,副教授,研究方向:交通安全、驾驶行为、交通数据分析;李玮峰(1990—),男,博士,助理研究员,研究方向:交通运输规划与管理、交通数据分析。

[中图分类号]G643[文献标识码]a[文章编号]1674-9324(2020)25-0200-03[收稿日期]2019-10-11

一、学科发展和人才培养需求

我国高等学校交通工程专业旨在培养从事交通规划、设计和运行管理等方面的人才。近年来,在第四次工业革命的背景下,信息技术、能源技术等的快速发展,引起了交通工程领域的巨大变化。信息技术与控制技术的结合推动了车辆的自动化(自动驾驶)、共享化和电动化[1];互联网与共享经济的结合,催生了“出行即服务”(mobilityasaService,maaS)的新型交通服务模式;新能源技术的发展,推进了电动汽车的应用[2]。在上述背景下,基于多源、海量、异构的连续数据环境,应用新兴数据分析技术支撑更安全、高效的交通系统构建,成为交通工程专业人才培养的新要求。

交通工程学科经历了近70年的发展。其中,微观交通流理论与方法形成于20世纪50年代,主要研究道路路段、交叉口的交通流特征和规律,以及车辆跟驰、换道、排队等行为规律。到了20世纪60年代,随着城市化的发展和大规模交通基础设施建设,形成了以“四阶段法”为代表的网络交通流理论与方法。20世纪70年代,随着交通供需矛盾的日益突出,人们逐渐意识到需要从交通需求管理等交通政策角度来寻找解决交通问题的途径,因此,需要研究个体的交通选择行为,由此形成了交通行为分析方法。从20世纪90年代开始,随着智能交通系统(intelligenttransportationSystem,itS)技术的不断发展,通过感应线圈、微波雷达、视频等自动采集设备,以及移动通信数据、公交iC卡数据等位置获取技术,可以对交通系统的运行状态、出行者和交通工具等进行实时、连续和全面(大样本甚至全样本)的观测,这为交通工程研究者提供了一种全新的数据环境。更为完备的数据环境和新的科学研究范式对交通工程学科产生了革命性的影响[3]。

传统交通工程专业主要培养交通规划师、交通设计师和交通模型师三类技术人才。随着交通数据分析和信息服务产业的发展,交通数据分析人才的需求越来越大,交通数据分析师的培养迫在眉睫。交通数据分析师是一种复合型人才,不仅要精通数据分析方法,还需要深入理解交通业务,能运用数据分析方法发现和解决交通问题[3]。

同济大学交通工程专业从2003年开始,通过深圳城市交通仿真系统一期和二期项目、国家自然科学基金重点项目等一系列课题的研究和实践,初步形成了交通大数据分析领域的系统性成果[4,5]。从2010年开始,在交通工程专业的课程体系中增加了交通数据分析课程,形成了覆盖本科生、硕士生和博士生的交通数据分析课程体系。其中,本科课程包括交通调查与分析、交通统计分析、交通数据处理与统计分析课程设计;硕士研究生课程包括交通数据分析与应用;博士生課程包括城市与交通数据及信息分析方法。

二、课程目的和能力培养

面向交通数据分析师的培养需求,一方面,在本科相关课程的基础上,硕士阶段的课程要求学生掌握高阶数据分析方法,为研究工作的开展提供基础;另一方面,需要培养学生数据分析方法的应用能力,切实解决实际交通问题。因此,硕士研究生课程交通数据分析与应用的目的是重点培养学生的以下五大能力。

1.利用常规数理统计模型处理交通数据的能力。在本科阶段的课程中,已经讲授了描述性统计、线性回归模型、计数模型、离散选择模型等常规数理统计模型以及相关统计分析软件的使用;在硕士研究生阶段,重点培养学生综合运用这些数理统计模型处理实际交通数据的能力。

2.理解和掌握高阶数理统计模型的能力。在本科阶段的课程基础上,围绕数理统计分析方法(时间序列分析模型、空间相关性分析模型和多层数据分析模型等)和机器学习分析方法(决策树模型、神经网络模型、深度学习模型等)的基础理论及在分析交通数据中的适用性,使学生能够理解和掌握这些高阶数理统计模型的基本原理和建模过程。

3.多源、异构、大规模交通数据的处理能力。在交通工程的研究和应用过程中,面对的交通数据通常是来自不同的数据源或传感器,具有不同的数据结构或数据格式,并且具有较大的数据规模,因此,需要培养学生理解多源、异构交通数据的能力,能够识别和修复数据质量问题,并处理为表征交通状态和交通行为的特征信息,使学生了解常用的数据库软件、并行计算平台,并能通过编程工具处理较大规模的交通数据。

4.数据挖掘模型、深度学习模型的应用能力。在讲授高阶数理统计模型的基础上,通过道路交通运行状态分析、公交运行状态分析、公交客流需求分析、交通需求分析、交通安全管理和驾驶行为分析等专题,培养学生应用数据挖掘模型、深度学习模型等高阶数理统计模型的能力。

5.基于数据分析结果,分析和解决交通问题的能力。对于交通工程专业的学生,除了需要掌握交通数据处理、建模和应用,还需要能够理解数据分析结果所反映的交通问题,建立交通数据与传统交通流模型、交通行为模型和交通规划模型之间的关系,运用交通设计、管理和规划方法,提出解决实际交通问题的思路和方案。

三、課程内容设置

硕士研究生课程交通数据分析与应用采用理论与实践相结合的教学模式,强调课堂讲授和数据分析实践并重,通过实践深入理解和掌握数据分析方法。

在课程内容上,衔接本科阶段的通识课程概率论与数理统计和专业基础课程交通调查与分析、交通统计分析。课程教学内容分为数据分析方法、数据应用专题两大板块。

1.数据分析方法板块。讲授数理统计分析方法,包括多元线性回归模型、计数数据模型、离散选择模型、时间序列分析模型、多层数理统计模型;机器学习分析方法,包括决策树模型、神经网络模型、深度学习模型等。

2.数据应用专题板块。结合实际交通数据和交通应用,讲授交通数据质量控制方法、道路交通运行状态分析、公交运行状态分析、公交客流需求分析、基于多源数据的交通需求分析、交通安全管理数据分析和驾驶行为分析等应用专题。

课程作业采用实际交通数据集,包括感应线圈数据、浮动车车速数据、公交iC卡数据、公交GpS数据和车辆牌照识别数据等。

课程作业分为应用型作业和综合型大作业。应用型作业主要是运用所学的某一类数据分析方法或模型,利用实际交通数据进行分析和建模。目前的应用型作业包括基础数理统计模型、数据挖掘模型、交通数据质量控制和道路交通运行状态分析等。由于班级人数近70人,未来考虑采用分组方式设置综合型大作业,培养学生综合运用数据分析方法解决实际交通问题的能力。

在考核形式上,作业成绩和期末考试成绩各占50%的权重,强调通过平时作业实践掌握数据分析方法、理解和解决实际交通问题的能力。

四、实验平台建设

为更好地支撑数据分析课程的教学与实践,同济大学交通运输工程学院的交通数据科学研究中心正在建设交通大数据教学实验平台。平台从功能认知、基础数据和模型算法三方面支撑交通数据分析与应用课程。

1.功能认知。这部分内容穿插在课堂教学的数据应用专题板块,通过城市级的交通大数据分析功能和可视化,给学生更为直观和具体的认知,了解目前城市交通大数据应用现状,激发学生的学习兴趣。比如,交通拥堵指数、等时线分析、公交客流需求分析、公交可达性分析、公交线路优化决策支持等。

2.基础数据。通过教学实验平台,为学生作业提供基础数据集。数据集包括两大类,一是原始数据,也就是来自于传感器或itS系统的数据,比如,线圈检测器数据、出租车GpS数据、公交iC卡数据等;二是指标数据,即从原始数据中提炼的交通特征信息或分析指标数据,比如,交通指数数据、道路车速数据、公交oD数据等。

3.模型算法。教学实验平台对常用的交通数据分析算法和模型进行了封装,在此基础上提供了二次开发的功能。学生可以根据研究的需要,编写python程序嵌入到平台的分析模块,对原有算法或模型进行改进。比如,交通拥堵识别算法、公交乘客换乘识别算法等。

数学建模的分析方法篇10

[关键词]数学建模数学模型改革

[中图分类号]G642.0[文献标识码]a[文章编号]2095-3437(2014)06-0059-03

随着社会经济和科学技术的飞速发展,特别是计算机技术普及,使得数学知识广泛应用于各个领域的实际问题之中。数学模型主要是使用数学知识来解决实际问题,因此,数学是人们掌握和使用数学模型这个工具的必要条件和重要的基础。没有广博的数学力学知识,严格的数学力学思维训练,是很难使用数学力学模型来解决实际问题的。因此,数学模型是连接实际问题和数学理论的中间桥梁。

数学模型是一种具有创新性的科学方法,它通过抽象和简化,使用数学语言对现实问题进行简化,以便人们更加深刻地认识所研究的对象。数学模型不是对于现实系统的简单模拟,它是人们用以认识显示系统和解决实际问题的工具,数学模型是对现实对象信息进行提炼、分析、归纳、翻译的结果,它使用数学语言精确地表达了对象的内在特性,然后采用恰当的数学方法求解,通过数学上的演绎推理和分析求解,进而对现实问题进行定量分析和研究,最终达到解决实际问题之目的。应用数学知识解决实际问题的第一步必须要面对实际问题中看起来杂乱无章的现象,从中抽象出恰当的数学关系,用数学符号和语言把这个数学关系描述为数学公式,这个过程就是数学建模。数学建模活动的开展不但增强了大学生的创新意识、协作意识、竞争意识和奉献意识,更培养了他们的创造能力、分析问题和解决问题的能力。

在我国,创办于1992年的全国大学生数学建模竞赛,每年一届,目前已成为全国高校规模最大的基础性学科竞赛,也是世界上规模最大的数学建模竞赛。2013年,来自全国33个省/市/自治区(包括香港和澳门特区)及新加坡、印度和马来西亚的1326所院校、23339个队(其中本科组19892队、专科组3447队)、70000多名大学生报名参加本项竞赛。在这样的大环境下,传统的数学教学已经阻碍了高等教育的发展,因此数学建模教学课程的创设也就成为高等学校改革的突破口。通过何种手段实施数学建模思想,采取何种数学建模教育来切实提高学生的数学素质,也就成为高校教师教学中的一个重大课题,培养学生应用数学建模的意识和能力已经成为教学的一个重要方面。

一、数学模型的分类

数学模型的分类繁多,但是按人们对事物发展过程的了解程度可以分为:

白箱模型,指那些内部规律比较清楚的模型。如:力学、热学、电学以及相关的工程技术问题。

灰箱模型,指那些内部规律尚不十分清楚,在建立和改善模型方面都还不同程度地有许多工作要做的问题。如:气象学、生态学、经济学等领域的模型。

黑箱模型,指一些其内部规律还很少为人们所知的现象。如:生命科学、社会科学等方面的问题。但由于因素众多、关系复杂,也可简化为灰箱模型来研究。

二、数学建模的过程

一般说来,建立一个能够反映现实问题的数学模型必须经历几个过程(图1):

第一,建立模型的准备,在建模前首先通过搜集相关资料来了解问题的实际背景知识。根据题目的要求,明确其实际意义,有目的地收集相关的信息和数据,尽量弄清研究对象的特点,用数学思路贯穿问题的全过程,初步确定用何种数学工具建立哪一类数学模型;

第二,模型假设,这是建模的关键一步。根据研究对象的特点和研究目的,抓住问题的主要方面以及本质,忽略次要因素。对研究问题做出必要的、合理的假设,从中将实际问题抽象并简化出一个简单化的数学问题;

第三,模型构成,分析处理已有的数据和资料等,在已做假设的基础上,综合运用适当的数学方法,选用合理的数学语言、符号、图形并分析其内在的逻辑关系来描述研究对象。所采用的数学工具要尽量简单,其模型也一定可行,能够方便地用数学工具求解;

第四,模型求解,所建立的模型必须是可行的,根据不同的数学模型要用到相应的数学方法来求解其结果,即能够使用数学工具(Fortran,matlab,C++等),对模型进行求解(解析解或近似解);

第五,模型分析,对模型求解的结果进行数学上的分析(误差分析,统计分析,灵敏度分析和稳定性分析等),分析模型中各个参数之间的相互关系,同时还需要根据所得结果给出数学式的预测和最优决策、控制等,指出结果的实际意义和模型的适用范围等;

第六,模型验证,将模型分析的结果运用懂时间问题的解决中并和实际情况比较,用时间的现象和数据来验证模型的合理性、实用性、可靠性和准确性等。如果求解结果为数值解,还要同时考虑所得到的误差应该在实际问题允许的误差范围之内。若比较相互吻合,说明模型是合理正确的。反之,则说明模型是失败的,问题可能出在假设上,此时应根据检验的情况对假设进行不断的修改并完善数学模型,重新求解进行分析,知道分析结果和实际情况符合,并且可以满足精度要求,则认为模型可行,便可以进行模型的应用和推广。另外,一个正确的模型不但可以解释已知现象,而且还可以预测一些未知情况;

第七,模型应用,将验证正确的数学模型进一步推广到一些实际领域内,用以解决实际问题,在应用中不断改进和完善,从而对实际工作进行指导,最终产生经济效益。

图1

可见,完整的数学建模是一个互动的过程。在建模过程中,就要把本质的东西及其关系反映进去,要真实地、系统地、完整地、形象地反映客观现象,若结果不理想,还得修改模型,重复上述过程,以期达到理想的结果。要想获得一个比较正确的数学模型,就必须熟悉并掌握一些建模的方法。

三、数学建模教学的改革

数学建模教学在高等学校实现素质教育及人才培养方面具有不可替代的作用,它是对加强学生知识,技能、能力、创新和综合素质培养这一中心工作不可缺少的重要组成部分。因此,国外的一些院校对数学建模教学的环节非常重视。然而,我国的数学建模却没有得到足够的重视,以我校的数学建模教学为例,主要存在两个方面的问题:第一,教学方式单一,往往是教师一个人在讲台上先把板书写好,然后按照固定的模式一步一步操作下去,台下学生快速地记笔记,课后按部就班地完成作业。这样就导致有的学生虽然可以完成作业,但是不能够真正地理解数学建模的原理,不会将实际问题转换为数学问题,从而难于发现问题和解决问题。第二,教学内容陈旧,始终处于停滞状态,局限于书本上的例题,这些例题往往和时展相脱节,教学内容已经不能适应相应的社会发展要求。第三,数学建模课程缺乏时代性,学校没有形成对应的管理机制去监督数学建模教学的改革,现有的教学缺乏针对性,没有达到与时俱进。甚至,有的高校教学内容沿用了几年甚至十几年一成不变的教学大纲,以至于学生后来工作后无法将课堂上学到的知识灵活地运用到实际工作中从而满足自己的工作需要,实现个人价值和社会价值的统一。

针对以上数学建模教学中存在的问题,可以采取以下措施进行改革创新:

(一)传授模式的改变

数学建模是一个老师和学生互动的过程,为了改变传统的教学模式,可以改变教师一人讲授的传统方式,也可以采用多媒体教学。学生既是被动接受知识的载体,又是整个过程的主要参与者。期间老师可以将该讲授内容以录像、动画和视频的形式表现出来,也可以通过讲授并且启发提问的方式,便于学生思考、提问和讨论、从而调动了学生的主动性。建模过程是一个复杂的过程,往往没有现成的解决方案,此时老师和学生必须进行实际背景调查,每个学生都应该参与其中,充分发挥各自的主观能动性,以便培养学生在课堂上独立思考问题的能力。另外,在课堂上还要培养学生发散思维的能力,没有一个数学模型可以完全解决实际问题。反之,同样的一个问题也可以有几种不同的解决方案,基于假设的不同就会有这样那样的数学模型,教师和学生应该紧密结合,充分发挥学生的想象力和创造力,力争有一个满意的解答。

(二)传授内容的改革

数学模型教学内容的选取上,优先关注那些教学插件的典型性和案例背景的实用性、前沿性和数学方法的综合性的例题。内容上,应该尽力精选一些实际应用的例题进行建模教学示范,所选的数学模型不但要密切联系生活,更要和本专业课程紧密结合。通过展示这些例题的建模过程,不但使学生进一步加深对于数学建模原理的理解,还应该使学生明白如何将本专业所遇到的实际问题转换为理论问题,帮助学生理论联系实际,提高学生解决本专业实际问题的能力。

(三)引入数学软件,开设数学实验

随着计算机技术的空前发展,对于数学模型的求解完全可以借助于一些数学软件来快速实现。这就要求在大学课堂中除了要求学生掌握建模原理之外,更应该要求学生了解和掌握利用数学工具(C语言,matlab,maple,mathematica,Gauss,Xmath等)来计算和解决比较复杂的科学问题。因此,必须开设相对应的课程以普及和介绍数学软件的各种运算和图形处理功能,同时还根据专业情况利用各个软件现有的工具箱来简化建模过程和扩充符合计算功能和仿真功能。在此基础之上,把数学工具软件应用到现有的数学建模教学中,可以提高数学建模的效率和质量,丰富了数学建模的方法和手段。

四、结语

目前,欧美国家的一些学校和教师早已经把数学建模实验课运用到实际中,切实发挥学生的动手能力和思考问题能力,培养了一大批能为社会作贡献的科学家。作为发展中的国家,我们更应该重视数学建模教学质量的提高,切实实现面向未来、面向世界的教育模式。然而,数学建模教学的改革是一个循序渐进的过程,在这个过程中就要扬长避短,抛弃陈旧观念,为高等学校的改革创造一个良好的环境。

[参考文献]

[1]李晓莉.数学建模的教学与实践[J].铁道师院学报,2002,(2).

[2]陈国华,黄勇,江惠民.数学建模与素质教育[J].数学的实践与认识,2003,(33):110-112.

[3]冯永明,张启凡,刘凤文.中学数学建模的教学构想与实践[J].数学通讯,2000,(7):56-57.

[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.

[5]乐励华,戴立辉,刘龙章.数学建模教学模式的研究与实践[J].工科数学,2002,18(6):9-12.

[6]叶其孝.数学建模数学活动与大学生教育改革[J].数学的实践与认识,1997,27(1):92-96.