首页范文计算机在数学建模中的作用十篇计算机在数学建模中的作用十篇

计算机在数学建模中的作用十篇

发布时间:2024-04-26 01:44:33

计算机在数学建模中的作用篇1

关键词:数学建模;计算机技术;应用;计算机软件

改革开放以来,我国社会步入高速进步的轨道,各个领域都得到持续性的发展,并取得阶段性的成果,其中数学这门科学在整个社会进步过程中也起到非常关键的作用。数学虽然是一门基础的学科,但是物理、生物、化学等自然科学领域在各个层面上穿插了对数学的应用,社会不断深入发展,数学也在发展过程中的作用也越来越重要。不止于自然科学领域,数学也在研究事务性扩展上做出贡献。在现实生活中,当遇到非常复杂、包含多个逻辑的问题时,可将数学应用在问题的解决上:找到研究问题的规律后,使用数字、符号等数学符号对问题进行描述,翻译成数学语言,然后使用计算机技术对翻译出的数学语言进行建模、运行,最后就可得到想要的问题解决方案。本文简单介绍数学建模和计算机技术两者间的联系,然后深入一个层次,对计算机技术在数学建模中的应用进行研究,希望对推广和研究使用计算机技术进行数学建模提供一定的理论基础。

1数学建模和计算机技术两者间的联系

1.1数学建模

数学建模不同于数学研究,它偏重于解决生活中的实际问题,有着独特的特点。数学建模将我们所遇到的实际问题进行分析,对后续的建模过程做准备;然后把错综复杂的情况进行简化,用数学语言进行抽象的表达;在根据问题的条件设定假说对研究过程进行制约;然后对所需数据进行调查整理,观察、剖析现实中该问题的普遍规律和各项特征,正式构造出符合问题的数学模型,将混乱、复杂的实际问题转化为清晰、明了,便于解决的数学问题;再进行数学模型的求解,得出问题的解决方案;接下来对根据求解结果对模型进行分析和检验;上述两个步骤合格、过关才能将数学模型投入应用。简化整个数学建模的流程如图1所示,总共包含七个步骤:建模准备、建模假设、模型构造、模型求解、模型分析、模型检测及模型应用。其中最重要的就是模型分析和模型检测,它们决定模型的的合理性和对解决实际问题的能力。

1.2计算机技术

计算机是具备数据存储,数据处理,实现对逻辑运算的现代化的智能电子设备,计算机技术建立在计算机的基础之上,指计算机领域中所运用到的技术方法和技术手段,或者说是硬件技术、软件技术和应用技术的结合。它的综合特性非常明显,涵盖多方面的技术:运算方法的基本原理、运算设计、中央处理器设计、流水线设计、存储体系、指令系统等。计算机技术的发明极大推动人类科技进步的水平,是在未来科技发展道路中必不可少的一项工具。

1.3计算机技术和数学建模的联系

发展至今,数学建模已达到非常高的水平,几乎所有的建模都需大量的计算,换个角度说,计算机技术几乎不可避免在现代的数学建模中,它在数学建模计算过程中占据无与伦比的地位,两者在这一过程中都相互促进和影响。计算机技术起源于数学建模过程,在1980年代,在计算导弹飞行过程中的轨迹,由于计算量过于庞大,人工操作无法满足这一过程中对计算准确度和计算速度的要求,开始将计算机技术在这一背景下应用。人工计算处理过程和实际需要计算过程间巨大的差距激发着计算机科研人员的动力,在研究计算机技术上竭尽全力,使各式各样的计算机软件应运而生。计算机技术也逐渐起源,提高世界数学建模的整体水平,两者息息相关,紧密相联。

2计算机技术在数学建模应用中的一些优势

2.1计算机可存储和处理大量的数据

人们对1942年世界上第一台计算机———atanasoff-Berry计算机进行实验,这个实验是成功的,虽然它只能对线性的方程组进行求解,但这台计算机的一小步,是计算机技术发展的一大步,以致它的设计思路现在依然被沿用。第一台计算机的发明至今不过70几年,但发展速度是以前从不敢想象的,现代计算机的计算量与存储量都是从前的千万倍,即使现代的一台普通的家用计算机都可存储下几百吉字节。这样的存储能力可满足一般情况下的数学建模,当存储能力不够时还可通过对计算机添加硬盘获得更大的存储能力。现代计算机在进行气象学分析、流体力学分析等过程时,其强大的计算能力和超大的存储能力可使其在运行这些过程时游刃有余、非常轻松;

2.2计算机能以可视化展示数学模型

计算机在对数学模型进行模拟后,可通过连接信息输出设备,在屏幕上对数学模型的图像甚至声音等结果进行展示,让数学模型研究人员更好地获得数学建模的数据,更直观地观察数学模型在运行计算后的结果,提高结果信息的传递效率。这是计算机技术在数学建模中应用非常关键的一个优势,在复杂的问题简化的同时让不易理解的结果更直观地展示,方便研究人员的同时降低使用者的技术要求;

2.3计算机软件使用便捷

在设计计算机软件的运行程序时,研究人员在软件的智能化上花费许多的精力,程序通常可自动对模型进行分析和检测,保证检测结果准确性的同时还可把模型中逻辑不通顺的地方进行标记,方便进行修正,在修正后还可直接将修正后的运行过程直接进行展示。计算机在数学建模方面软件的智能性让越来越多的人愿意使用,促进它的发展,能帮助分析与检测模型可在很大程度上降低研究的时间成本,并提高结果的准确性;

2.4计算机技术降低数学建模过程中的资源消耗和时间成本

在对实际问题进行数学建模后,实际问题的复杂性让数学模型在运行时需不断地调整,调整过程需进行不断地实验来确定调整的正确与否。在计算机技术应用于数学建模过程以前,需耗费大量的人力、物力来完成这一过程,过于复杂的模型不仅不能及时得到答案,还极大程度上消磨研究人员的意志力。计算机技术的强大计算能力引进数学建模,让数学建模的模拟过程变得便捷,快速,降低数学建模的成本、保证数学建模的效率。

3计算机技术在数学建模中的具体应用

3.1数学处理

数学建模在使用计算机技术来解决数学问题时,会用到很多软件诸如:matLaB、mathematica、maple等。这些软件都有不同的应用环境和用法,为不同数学建模的结果导出提供高效率、高精度的运算。例如matLaB软件,它能同时满足数值计算、矩阵计算、画图、建模等需求,十分常见于自然科学领域的研究过程,属于最通用的数学建模计算机软件;mathematica软件相较于matLaB的运行逻辑更为先进、优秀,它的运行由前端系统和核心系统两个系统控制,它偏向于运算符号和根据模型绘制图形,可直观地观察出数学模型的形态,是在数学建模中常用的数学软件。例如函数可用mathematica软件绘制出如图2的函数图像,在软件中输入f[x]:integrate[Cos[pit^2/2],{t,o,x}]就可直接运行,并在显示器上看到函数图像;

3.2统计分析

需要进行数学建模的实际问题中很大一部分是数学的统计学问题,通常对大量数据进行统计时会用到SpSS。SpSS有查询数据分析各种信息的功能,还能保存在处理工作过程中的相关数据,应用范围非常广泛:因子研究、回归研究、类别和定义研究、非参数检验、数据研究分析、类别和定义的研究等。例如,在产品销售量与价格、广告成本、生产成本等因素间的关系进行研究时,可使用SpSS8.0进行回归相关分析,建立销售量和影响因素间的数学回归模型。首先调查收集模型涉及的数据,对数据进行分析,绘制散点图,然后根据散点图进行曲线估计,估计出线性曲线、二次项曲线、立方曲线三种曲线回归数学模型,选择与数据拟合度最高的曲线模型来建立数学模型在进行求解,建立与实际问题最接近的回归数学模型。通过SpSS模拟出的残差直方图如果如图3所示,则说明正态分布的标准化残差的回归模型与调查数据的拟合度最高,所建立模型较为合理;

3.3图形绘制

数学建模所处理的对象往往是一些有着千丝万缕联系、数量庞大的数据,在建立数学模型和展示最后运行结果时都会遇到较大的困难。通常情况下,通过绘图软件就可对数据进行绘制,但如需根据数据凭空想象出一个符合的模式,这时绘图软件就不能帮助数据的处理。而pS、GeoGebra等数学建模类的软件就可满足这一条件,它们可根据数据设计适合的图形对其进行描述。这些图形绘制方面的工具可以帮助创造、完善、丰富图形,同时以更加具体、容易理解的方式对建模的内容进行展示。在数学建模中对计算机技术的使用,极大程度上提高数学模型的质量和工作效率,使其有了更广阔的应用范围,目前在这方面计算机技术是不可或缺的工具,随着数学建模的深入与不断进步。例如GeoGebra5.0中,新增一项功能———3D技术,可直接根据数学的解析式做出抛物面、椭圆和马鞍面等立体3D图像如图4所示,它是解析式和通过GeoGebra做出的图像。

4结语

数学建模在今后一定会深入渗透到各个领域,发挥它不可取代的作用。计算机技术和数学建模两者间在发展过程中是互补、互相促进的,计算机技术在数学建模中的应用让其研究开发过程更加方便、快捷,帮助数学模型在各大领域的进步和普及,这一过程也反向促进计算机技术的不断完善、发展,因此两者间的关系相辅相成。本文基于数学建模的角度,研究计算机技术的产生、发展与数学建模的关系,深入分析计算机技术在数学建模领域的不同应用,认识到计算机技术在数学建模中的重要作用。希望在未来的时间看到越来越多计算机技术的扩展,然后用到数学建模领域,帮助解决各个方面的实际问题。

参考文献

[1]施思远.计算机技术在数学建模中的应用[J].电子技术,2021,50(08):242-243.

[2]施思远.计算机技术在数学建模领域的应用[J].科技经济市场,2021(07):25-26.

[3]张少凤.计算机技术在数学建模中的有效应用[J].信息与电脑(理论版),2020,32(22):17-18.

[4]杨静雅.计算机技术在数学建模中的应用[J].中国科技信息,2020(09):43-44.

[5]穆帅.计算机技术在数学建模领域中的应用研究[J].计算机产品与流通,2018(09):19-20.

[6]刘晓力.计算机技术在数学建模中的应用优势分析[J].现代职业教育,2020(13):194-195.

[7]郭沛正.计算机技术在数学建模中的应用探讨[J].现代商贸工业,2019,40(09):186.

计算机在数学建模中的作用篇2

文章中笔者结合多年的工作经验对计算机模拟技术在建筑工程中的应用进行简要的介绍。

关键字:计算机技术;建筑工程;建筑节能;模拟;管理。

abstract:withthecontinuousdevelopmentofscienceandtechnology,computertechnologyhasmaderapiddevelopment,theapplicationofcomputersimulationtechnologyhasbecomeincreasinglywidespread.Computertechnologyintheconstructionsectorhasalsoplayedanunprecedentedrole.Computertechnologyinbuildingenergyefficiencydesign,constructioncostmanagement,constructionprojectmanagement,constructionmanagement,etc.haveplayedanimportantrole.

articlewriterwithmanyyearsofexperienceintheconstructionofcomputersimulationtechnologyengineeringbriefintroduction.

Keywords:computertechnology;construction;buildingenergyefficiency;simulation;management.

中图分类号:tp3文献标识码:a文章编号:

前言:随着社会的不断进步,经济的快速发展,计算机技术已经逐渐渗透到了各行各业中,而建筑业作为我国的支柱产业,计算机模拟技术在建筑领域的设计、管理过程中自然也发挥了极大的作用。下面笔者结合多年的工作经验对计算机模拟技术在建筑工程中的应用做了简要的概述。

计算机模拟技术

计算机模拟技术是把现实中的模型与虚拟的模型进行建立的一个过程,然后再建立好的模型的基础上进行实验。通过实验来对系统进行更深入的了解,并对系统所运行的策略进行评估。在实际工作当中,计算机系统会给出部分假设,然后应用逻辑关系以及数学模型对这些假设进行合理的描述。通过上述步骤来实现模型的模拟。

计算机模拟技术在建筑节能设计中的应用

随着科学技术的不断发展,为了满足可持续发展的需要以及环境保护的要求,建筑节能设计在建筑领域中的地位也在逐步提高。为了保证建筑节能设计符合节能管理部门相关规定的要求,达到相关指标的要求。这就要求在建筑节能设计中的参数更加精确,也为了再设计过程中能够更加便捷。计算机的模拟软件在建筑节能设计中发挥了重要的作用。设计过程中,模拟软件通过建立模型对计算机系统中的参数进行计算分析,计算之后用CaD软件对建筑物进行模拟或者还原,通过计算机的模拟功能来准确判断建筑节能设计能否达到相关规定、指标的要求以及对节能的要求。

但是,由于建筑物的材料以及结构外形不尽相同,所以使用计算机计算出来的结果也不存在通用性。除此之外,在节能设计中,如果各项指标都符合建筑节能指标的要求,那么建筑成本就会大大提高,这并不符合经济的要求。所以计算机模拟系统在模拟过程中不仅要到到对建筑的节能要求,还要对此设计进行可行性研究分析,并作出经济分析。从建筑质量和工作效率、经济效益两方面出发,双管齐下,设计出最为合理的节能方式。

计算机技术在建筑工程造价管理中的应用

随着计算机技术的不断进步,在建筑工程造价管理中通过使用计算机系统进行管理,使得目前的造价管理有了很大的发展。运用计算机技术实现建筑工程造价的自动化操作和数字化管理,极大地减轻了工程造价人员的劳动强度,提升了工作效率,同时也使得对建筑造价全过程更能有效地进行监督,管理也更加规范。

目前,预算员都是通过计算机系统录入表现形式各不相同的预决算工程量。这样做不仅保证了工作效率,还能确保预算书的准确度。除此之外,计算机系统可以将项目从投资估算到到概算、预算、审核、阶段结算和竣工决算整个项目周期进行管理。与此同时,目前的计算机系统已经实现了办公的自动化、智能化。将internet/intranet这个平台来提高管理效率。广联达等计价软件通过其钢筋抽样软件、土建算量软件、清单计价软件等一系列的计价软件,来实现工程造价管理的现代化。

计价依据的编制是建筑工程造价管理的重要内容,围绕这一内容,如何利用计算机进行搜集、整理、计算、测算、项目划分直至计算机激光排版输出,应是最基础的应用;利用专牌机根据建筑工程造价计价依据进行建筑工程预、结算的编制和审核,是目前建筑工程造价管理中应用计算机最为直接、最为普遍、亦是技术开发最为成熟的应用。计算机在建筑工程造价管理中应用起着举足轻重的作用。

计算机模拟技术在绿色建筑设计中的应用

下面笔者从辐射分析、照明分析、采光分析等方面对计算机模拟系统在绿色建筑设计过程中的应用进行分析。

辐射分析。首先应该根据采光条件以及年能耗两个方面,在从前后两个方向进行抗辐射处理,综合设计出一个最适合建筑结构的遮阳系统。将模型模拟完成以后,再用计算机系统对模型进行可行性分析。

照明分析。将人工照明以及自然照明数据进行计算处理,然后将采光系数、光照范围等数据以三维图的形式表现出来。在照明控制系统的建立中,灯光的亮度可以根据温度来进行调节。模型模拟完成以后,再用计算机系统对模型进行可行性分析,并根据分析结果对系统进行完善。

自然通风小区规划。为了满足通风要求,计算机系统在对小区的通风进行模拟时,会根据角度进行设计,使得夏天风能吹进小区,冬天不能吹进来。为了保证设计的合理性,运用计算机模拟系统对设计进行模拟。

为了保证建筑绿色设计的整体性,还应将各个模型进行整合,之后再使用计算机模拟系统进行检测、分析,来保证整个设计的合理性。下面笔者结合多年的工作经验对计算机模拟系统在绿色建筑节能设计中的重要性。

第一,在运用计算机模拟系统对绿色建筑设计进行模拟时,在每一个阶段都应该选择合适的辅助模拟工具进行模拟;第二,计算机系统在对设计模型进行模拟的过程是一个螺旋前进的过程。以能耗模拟为例,

能耗模拟以及流体模拟能够将设计中存在的问题直观的表达出来,但是却无法解决这些问题,并且模拟出来的问题与实际情况并不是完全相同的而是具有一定的差异性。并且模拟的结果缺乏实际的测量和矫正只是单纯的量化结果。但总体来讲,计算机模拟系统为绿色建筑设计工程具有重要的意义,将设计模型运用计算机系统进行模拟可以清晰地看到设计的不足之处,方便设计人员及时的进行改正完善。

建筑设计过程和绿色建筑评价标准,对目前绿色建筑设计软件存在的问题进行了分析,对如何架构绿色建筑设计软件体系框架进行了分析,提出Bim技术是较好解决绿色建筑设计软件数据一致性、唯一性、数据资源共享的有效手段。按照绿色建筑评价标准体系,分析了建筑不同生命周期内信息模型的功能及其应包括的数据内容。

计算机技术在建筑工程项目管理中的应用

实现建筑工程公司范围的数据共享

目前在建筑工程的项目管理过程中,计算机管理系统通过数据库管理来实现数据在整个建筑公司内部实现数据共享。凭借计算机数据库管理系统强大的计算功能以及查找功能,我们可以在极短的时间内查询到我们所需的数据,并且可以实现复杂的组合条件查询、模糊查询等。

保证统计资料的准确性。

使用计算机系统对数据进行处理相对于人工处理,具有高精度性和高效性。可以有效地避免因为人为的计算错误以及判断失误对数据的准确造成影响,并且可以提高工作效率,在短时间内完成。计算机模拟技术可以在几分钟内将整个项目的数据进行处理并反馈给项目管理人员,这样可以有利于管理者做出正确的决策。

实现数据通信。

计算机建筑工程项目管理系统和网络技术可以将项目数据发送给管理人员,并且管理人员之间可以进行数据的交流。除此之外,通过网络和通讯手段可以将这些数据发送给业主方以及供货商,实现数据通信。各方还可以利用计算机技术对数据进行远程操控,便于数据交流。

建筑工程项目计算管理系统并不是一种实时系统,项目实施过程中发生的变化,是在事后进行输入的而不是计算机进行自动输入。这样就导致数据的输入的顺序与实际数据发生的顺序就可能发生颠倒。因此对建筑工程项目实现动态、定量和系统化的管理与控制必须借助于计算机系统来完成。

4、模型库管理。模型库管理模块的主要功能就是对数学模型进行维护,所采用的数学模型包括模糊综合评判、层次分析法、模糊聚类分析等。

5、系统实现

系统实现的主要指导思想是采用的操作系统和编程语言来进行工作。设计单位全部用计算机进行建筑、结构设计、绘图,并能进行工程预算;施工企业也利用计算机进行财务管理、生产管理。

因此,充分利用设计、施工单位的基本数据,实现数据共享,是十分必要和现实的。为了实现数据共享,应充分利用internet/intranet技术,建立或接入因特网或企业内部网,建立共享的数据库,通过webserver及SQLSeRVeR数据,并设置适当的用户权限。

结束语:随着科学技术的快速发展,计算机技术也有了突飞猛进的发展。计算机技术的使用使建筑工程也想信心化、智能化发展。计算机模拟技术在节能建筑以及绿色建筑的设计过程中发挥了极为重要的作用。文章中笔者结合多年的工作经验对计算机技术在工程造价管理的应用做了简要的介绍。并着重介绍了计算机模拟系统在对建筑节能设计以及绿色建筑设计构建的过程进行了分析介绍,并指明了计算机模拟系统在建筑工程中发挥的重要作用。

参考文献

[1]马智亮、陈娟建筑施工信息化发展趋势与对策[j].施工技术2006

[2]1996~2010年建筑技术政策—建筑业推广应用计算机技术政策.建设部科学技术委员会和建筑业司,1996.

[3]王品先等。微机辅助会计核算管理系统的实现[j].建筑管理现代化,1994,1.

[4]马智亮、陈娟。建筑施工信息化发展趋势与对策[j].施工技术,1998,4:4~5.

[5].周志德.《计算机应用技术》特色专业建设[J].机械职业教育.2006(01)

计算机在数学建模中的作用篇3

关键词:数值计算方法;数学建模;必要性;途径

中图分类号:G642.41文献标志码:a文章编号:1674-9324(2013)24-0047-02

随着计算机的飞速发展,几乎所有学科都走向定量化和精确化,从而产生了一系列计算性的学科分支,如《计算物理》、《计算化学》、《计算生物学》、《计算地质学》、《计算气象学》和《计算材料学》等,而《计算数学》中的数值计算方法则是解决“计算”问题的桥梁和工具。因此掌握数值计算方法的基本理论及其应用对理工科大学生从事专业研究具有重要意义。那么如何加强学生对计算方法思想的领悟?如何增强学生运用计算方法思想解决实际问题的能力?在计算方法教学中融入数学建模思想是值得我们认真思考的问题,也是解决学与用关系的一个非常有意义的尝试。笔者参加了山东省精品课程数值计算方法的建设,又结合近几年的教学体会,提出以下几点认识。

一、数学建模思想融入数值计算方法教学的必要性

1.传统数值计算方法教学的不足之处。值计算方法,也称数值分析或计算方法,是专门研究各种数学问题的数值解法(近似解法),包括方法的构造和求解过程的理论分析。课程中有大量的、冗长的计算公式,所涵盖的知识面宽,各部分内容自成体系,因而给人的感觉是条块分割严重,逻辑性、连贯性不强。在传统的数值计算方法教学中,主要是讲解定义、公式推导和大量的计算方法等。很多学生在学习的过程中甚至考试结束之后仍然不知道自己所学的算法能在什么地方应用,导致学生学习目的性模糊,学习兴趣减少,因此加强培养学生的数学建模能力具有十分重要的意义。

2.数学建模思想在数值计算方法教学中的作用。所谓数学建模[1],就是将某一领域或部门的某一实际问题,通过做一些必要的简化和假设,明确变量和参数,并依据某种“规律”,运用适当的数学理论,建立变量和参数间的一个明确的数学关系式,这个数学关系式即为数学模型,建立这个数学模型的过程即为数学建模。建立实际问题数学模型的过程如下[2]:实际问题建立数学模型求解模型检验模型结果修改模型再求解模型(可循环多次)实际问题的合理结果。在这个过程中,只有一小部分模型能解析求解,大部分数学模型只能数值求解。这就要用到数值计算方法课程中所涉及的算法,如插值方法、最小二乘法、曲线拟合法、方程迭代求解法、共轭梯度法等,这就启发我们将数学建模的思想融人计算方法的教学中,提供数值方法实际应用的源泉,体现数值方法的价值和意义,使数学教学不再是无源之水,无本之木,不再显得那么空洞,从而把以往教学中常见的“要我学”真正地变成“我要学”。

二、数学建模思想融人数值计算方法教学的途径

将数学建模的思想融人数值计算方法教学中是很有必要的,但具体如何融入呢?结合教育的实际,笔者提出以下几点建议。

1.原则。课堂教学的主要内容和地位而言,数值算法是课堂教学的主要内容,数学建模仅作为一种教学方法而存在,是学生认知的一种途径,它为数值计算方法教学服务,是教学工作的一种延伸和补充,处于从属地位。数值计算方法为主,数学建模为辅,二者不能平分秋色,更不能本末倒置。因此,数学建模思想渗透到数值计算方法教学中的量不能超过一个度,否则,数值计算方法课就会变成数学建模课。

2.在解决应用问题的讲解中渗透数学建模的思想与方法。值计算方法中的数值方法都有很强的实际应用背景,每一种方法都直接或间接与工程应用有关。教学中通过对实际应用背景的描述,可以激发学生的学习欲望和探究心理,从而对学习内容及过程产生强烈的兴趣和需要。这就要求授课教师了解其他相关学科课程,让学生知道所学的知识在不同领域的应用。例如:在信息技术中的图像重建、图像放大过程中为避免图像失真、扭曲而增加的插值补点,建筑工程的外观设计,天文观测数据、地理信息数据的处理,社会经济现象的统计分析等方面,插值技术的应用是不可或缺的;在实验数据处理问题中,曲线拟合得到广泛应用;在汽车、飞机等的外型设计过程中,样条技术的引入使其外型设计越来越光滑、美观。

3.数学实验中渗透数学建模的思想与方法。机环节是数值计算方法这门课程重要的组成部分,也是检验学生理解授课内容好坏的“试金石”。授课教师可以结合实际和所学数值算法设计一些综合性的问题,让学生去解答。学生通过查阅资料,认真研究,建立模型,设计算法,编程上机,调试运行,得出结果。这个过程既提高了学生编程上机能力,对所学算法有了更深刻的理解,而且对提高学生应用所学的计算方法知识解决实际问题的能力也有很大帮助。

4.在案例教学中渗透数学建模的思想与方法。案例教学[3],就是在课堂教学中,以具体案例作为教学内容,通过具体问题的建模范例,介绍数学建模的思想方法。所选教学案例要尽可能结合学生所学专业,并且涉及相应数值算法而又能体现数学建模思想。这样既使学生掌握了数学建模的方法,又使学生深刻体会到数学是解决实际问题的锐利武器。下面具体举一个例子给予说明。例:三次样条插值案例.在工程技术和数学应用中经常遇到这样一类数据处理问题:在平面上给定了一组有序的离散点列,要求用一条光滑曲线把这些点按次序连接起来。解:传统的设计方法是工程技术人员常常用一条富有弹性的均匀细木条,让它们依次经过离散数据点,然后用“压铁”在若干点处压住,在其他地方让它自由弯曲,然后沿细木条画出一条光滑曲线,形象的称为样条曲线

在力学上,通常均匀细木条可以看作弹性细梁,压铁看作是作用在梁上的集中载荷,“样条曲线”就模拟为弹性细梁在外加集中载荷作用下的弯曲变形曲线。设细梁刚度系数是a,弯矩为m,样条曲线的曲率为k(x)。由力学知识:ak(x)=m(x),m(x)是线性函数,k(x)=■当时(即小挠度的情况),上述微分方程简化为ay"(x)=m(x),y(4)(x)=0因此,“样条曲线”在每个子区间可近似认为是三次多项式。通过此数学建模案例可以让学生体会三次样条的基本特征:分段三次光滑,整体二次光滑。

总之,在数值计算方法教学中融入数学建模思想,不但搭建起数值计算方法知识与应用的桥梁,而且使得数值计算方法知识得以加强、应用领域得以拓广,在推进素质教育和培养创新能力上将会发挥重要的作用。

参考文献:

[1]丁素珍,王涛,佟绍成.高等数学课程教学中融入数学建模思想的研究与实践[J].辽宁工业大学学报,2008,10(1):133-135.

[2]曾国斌.试论数学建模与高等数学教学[J].湖南理工学院学报(自然科学版),2008,21(3):92-94.

[3]何莉.在高等数学教学中培养学生数学建模能力[J].科教文汇,2008,68.

计算机在数学建模中的作用篇4

关键词:计算机仿真;三维模型;排水施工;应用

中图分类号:G623文献标识码:a

前言

排水工程是我国经济和社会发展过程中的一个重要的项目,不仅关系到我国的经济发展,还关系到百姓的生活,是一项利国利民的工程项目。排水工程施工过程十分复杂,为了保证施工质量,应该要与时代接轨,引入更多先进的技术和手段。传统的排水施工过程中,进行方案的设计,主要是依靠人工的设计方式,出错率较高,效率比较低,随着计算机技术的发展以及普及,计算机仿真技术的应用越来越广泛,计算机仿真技术与排水工程领域之间的结合,推进排水工程建设的进度,也提高了施工的效率以及质量。随着计算机仿真技术的不断完善,在排水工程中的应用也会越来越普遍。

一、计算机仿真技术的特点以及优势分析

随着互联网以及计算机技术的不断发展,各种先进的科学技术在我们的生产生活过程中的应用变得越来越广泛,计算机仿真技术就是其中的一个重要方面。计算机仿真技术是借助于计算机技术及硬件设备,实现一种人可以通过一定感知方式所感受到的虚拟环境,它集成了计算机图形技术、仿真技术、人工智能技术、传感技术、显示技术、网络并行处理等技术的最新发展成果,由计算机图形构成三维数字模型,提供给人们通过计算机对复杂数据进行可视化操作与交互的一种全新方式。这种技术在应用过程中最大的一个特点就是能够实现用户与虚拟环境之间的一种交互,人类传统的认知方式主要是通过亲身接触大自然来实现的,计算机仿真技术的应用,扩大了人们对自然环境的认知的范围。

计算机仿真技术具有十分明显的优势特征,第一,利用计算机仿真技术可以快速地对多种施工方案进行比较和分析,计算机仿真技术在排水工程施工中的应用,一个最重要的方面就是能够快速地对各种方案进行比较分析,从而选出最合适的一个设计方案进行施工。在仿真阶段,基于仿真的结果,可以进行相应的探讨,从而决定出哪些因素对施工过程有较大的影响,哪些施工阶段的影响最大,从而采取政策的预防措施。第二,计算机仿真技术的成本较低。与传统的真实的原型实验不同的是,计算机仿真技术是利用软件的开发以及应用实现的一种模拟实验方式,其中需要支出的费用主要是计算机硬件以及软件的费用,相对于真实的模型实验而言,成本比较低。第三,计算机仿真技术的可靠性比较高,计算机仿真技术的效率主要取决于系统模型以及软件的正确性,在系统模型以及软件编制是正确无误的前提下,排水工程施工过程中的计算机仿真技术的应用,会对各种约束条件进行分析和考虑,与传统的人工操作过程中的可靠性进行比较而言,可靠性和稳定性更高。第四,计算机仿真技术的实用性更强。计算机仿真技术在很多方面都可以应用,只要是可以通过数学进行描述的模型,都可以利用计算机仿真技术进行仿真,比如在排水工程施工过程中的应用,可以对各个过程进行预测,对成本进行预测等,提高排水工程施工管理过程中的效率。

二、计算机仿真模拟技术在排水工程施工过程中的应用

(一)计算机仿真模拟技术的实现步骤

计算机仿真模拟技术是以数学理论为基础的,就计算机本身而言,是不能对施工过程中的问题进行分析和处理,需要建立一个能够反映出事物的本质特征的模型,在排水工程施工过程中的应用,主要分为四个步骤。

1、建立相应的模型

在建模的过程中,应该要对排水工程的实际问题进行分析,将施工过程中应该要注意的各种问题、限制条件、约束内容等进行考虑,然后利用数学、力学等理论将谁理工本工程施工过程中的数字模型描绘出来,利用计算机软件技术,将各种预定的数据输入到系统中去,对于各种数据应该要保证建模的精确性。此外,还可以通过人工干预的手段在建立的模型中进行数据的修改,保证各种数据的完整性。各种数据应该要涉及到施工阶段的总体场地布置情况、施工进度、材料用量等情况。

2、输入模型

输入模型指的是将建立起来的模型输入到计算机系统中进行处理的一种方式,计算机仿真模拟的模型就是最终体现出来的模型内容,这个步骤是计算机模拟仿真过程中的一个十分重要的步骤和环节,模型就是把建立的模型通过计算机进行系统的处理,这种形式所体现的模型内容也就是计算机仿真模拟模型,同时也是进行计算机进行仿真模拟计算的关键环节。

3、计算机仿真模拟

将模型放置到计算机模块中,从而可以实现对排水工程方案的模拟分析,是排水工程施工过程中的一个十分重要的步骤,这个环节是将排水施工过程中的各种数据进行分析的一个过程,通过对各种数据进行模拟,得到相应的模拟结果,从而为施工过程中的各种问题的预测奠定基础,确保施工过程中的精确度。

(二)计算机仿真系统的设计

计算机仿真系统首先需要建立排水工程的虚拟环境,这是进行仿真的第一步,比如地形、施工场地、电站建筑物、挡水地下建筑物等,都需要进行模拟,同时还要对各种排水工程的设备进行模拟,当前的排水工程模拟过程中,三维仿真技术的应用,对于排水工程施工过程中的各种运行状况进行动态监控,有助于进行智能化以及可视化管理。

计算机仿真系统的设计过程中,需要建立相应的三维模型。建立三维模型,主要是以排水工程为研究的对象,利用对应的模拟软件以及实时驱动软件,将各种数据进行转换,形成逼真的三维模型。三维几何模型是整个工程虚拟场景中的一个基础,模型的建立包括三维地形的建模以及建筑物的建模,比如在排水工程施工过程中会遇到很多挡水地下建筑物、管道等,模型建立的过程中应该要对各种建模任务进行划分,建立一个比较完整的仿真系统,还需要对各种植物、桥梁、公路、码头等场景进行描述,利用仿真实验,对各种参数进行设计和优化。计算机仿真技术的虚拟建模软件会根据二维平面文件,建筑物的立面图、剖面图建立三维模型,然后建立与模型相关的数据库,将数据与数据的各种属性进行有机结合,促进三维模型的完善。

结语

随着计算机和互联网的普及,各种信息技术在我们的生产生活中应用越来越广泛,计算机模拟仿真技术就是一种比较常见的计算机技术,对排水工程施工具有十分重要的意义。在模拟过程中,通过模型的建立、仿真以及仿真结果的分析,有助于对排水工程的施工进行高效管理,从而实现节约成本、提高施工效率的目的。

参考文献

[1]程鹏军,李海燕.计算机仿真模拟技术在水利工程中的应用[J].东北排水水电,2010(09)

[2]齐兆春,马刚琳.计算机三维仿真技术在水利工程中的应用[J].吉林排水,2007(01)

计算机在数学建模中的作用篇5

摘要:综述数学建模方法

前言:数学建模,就是根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题。数学模型是一种模拟,是用数学符号,数学式子,程序,图形等对实际课题本质属性的抽象而又简洁的刻画,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模。在21世纪新时代下,信息技术的快速发展使得数学建模成了解决实际问题的一个重要的有效手段。

正文:自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展、数学理论与方法的不断扩充,使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。而数学建模作为数学方面的分支,在其中起到了关键性的作用。

谈到数学建模的过程,可以分为以下几个部分:

一.模型准备

了解问题的实际背景,明确其实际意义,掌握对象的各种信息。以数学思想来包容问题的精髓,数学思路贯穿问题的全过程,进而用数学语言来描述问题。要求符合数学理论,符合数学习惯,清晰准确。

二.模型假设

根据实际对象的特征和建模的目的,对问题进行必要的简化,并用精确的语言提出一些恰当的假设。

三.模型建立

在假设的基础上,利用适当的数学工具来刻划各变量常量之间的数学关系,建立相应的数学结构。

四.模型计算

利用获取的数据资料,对模型的所有参数做出计算(或近似计算)。其中需要应用到一些计算工具,如matlab。

五.模型分析

对所要建立模型的思路进行阐述,对所得的结果进行数学上的分析。

六.模型检验

将模型分析结果与实际情形进行比较,以此来验证模型的准确性、合理性和适用性。如果模型与实际较吻合,则要对计算结果给出其实际含义,并进行解释。如果模型与实际吻合较差,则应该修改假设,再次重复建模过程。

数学建模中比较重要的是,我们需要根据实际问题,适当调整,采取正确的数学建模方法,以较为准确地对实际问题发展的方向进行有据地预测,达到我们解决实际问题的目的,

在近些年,数学建模涉及到的实际问题有关于各个领域,包括病毒传播问题、人口增长预测问题、卫星的导航跟踪、环境质量的评价和预测等等,这些就能说明数学建模涉及领域之广泛,针对这些问题我们需要采取对应的数学建模方法,采用不同的数学模型,再综合起来分析,得出结论,这需要我们要有一定的数学基础和掌握一些应用数学方法,以适应各种实际问题类型的研究,也应该在一些数学方法的基础上,进行不断地拓展和延伸,这也是在新时代下对于数学工作者的基本要求,我们对数学建模的所能达到的要求就是实现对实际问题的定性分析达到定量的程度,更能直观地展现其中的内在关系,体现数学建模的巨大作用。

而在对数学建模中的数据处理中,我们往往采用十类算法:

一.蒙特卡罗算法

也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。如粒子输运问题。

二.数据拟合、参数估计、插值等数据处理算法

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用matlab作为工具,而在其中有一些要用到参数估计的方法,包括矩估计、极大似然法、一致最小方差无偏估计、最小风险估计、同变估计、最小二乘法、贝叶斯估计、极大验后法、最小风险法和极小化极大熵法。最基本的方法是最小二乘法和极大似然法。数据拟合在数学建模中常常有应用,与图形处理有关的问题很多与拟合有关系。

三.线性规划、整数规划、多元规划、二次规划等规划类问题

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现。它尤其适用于传统搜索方法难于解决的复杂和非线性问题,在运筹学和模糊数学中也有应用。

四.图论算法

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备,其中,图论具有广泛的应用价值,图论可将各种复杂的工程系统和管理问题用“图”来描述,然后用数学方法求得最优结果,图论是解决许多工程问题中算法设计的一种有效地数学模型,便于计算分析和计算机存储。

五.动态规划、回溯搜索、分治算法、分支定界等计算机算法

动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域,并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了显著的效果。回溯算法是深度优先策略的典型应用,回溯算法就是沿着一条路向下走,如果此路不同了,则回溯到上一个分岔路,在选一条路走,一直这样递归下去,直到遍历万所有的路径。八皇后问题是回溯算法的一个经典问题,还有一个经典的应用场景就是迷宫问题。回溯算法是深度优先,那么分支限界法就是广度优先的一个经典的例子。回溯法一般来说是遍历整个解空间,获取问题的所有解,而分支限界法则是获取一个解。分治算法的基本思想是将一个规模为n的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。

这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中。

六.最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法

模拟退火算法的依据是固体物质退火过程和组合优化问题之间的相似性。物质在加热的时候,粒子间的布朗运动增强,到达一定强度后,固体物质转化为液态,这个时候再-进行退火,粒子热运动减弱,并逐渐趋于有序,最后达到稳定。

“物竞天择,适者生存”,是进化论的基本思想。遗传算法就是模拟自然界想做的事。遗传算法可以很好地用于优化问题,若把它看作对自然过程高度理想化的模拟,更能-显出它本身的优雅——虽然生存竞争是残酷的。 遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索 。

神经网络从名字就知道是对人脑的模拟。它的神经元结构,它的构成与作用方式都是在模仿人脑,但是也仅仅是粗糙的模仿,远没有达到完美的地步。和冯·诺依曼机不同-,神经网络计算非数字,非精确,高度并行,并且有自学习功能。

这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

七 .网格算法和穷举法

对于小数据量穷举法就是最优秀的算法,网格算法就是连续问题的枚举。网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

八.一些连续离散化方法

很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

九.数值分析算法

在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

十.图像处理法

赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用matlab进行处理。

这十类算法对于数据处理有很大的帮助,甚至从其中可以发现在它们中的很多算法都是数学某些分支的延伸,可能我们不一定能掌握里面的所有算法,但是我们可以尽可能学习,相信这对我们今后的数学学习有很大的帮助,然后,就是数学模型的类别。

常见的数学模型有离散动态模型、连续动态模型、库存模型、线性回归模型、线性规划模型、综合评价模型、传染病模型等数学模型、常微分方程模型、常微分方程的数值稳定性、人口模型、差分方程模型,这些模型都有针对性地从实际问题中抽象出来,得到这些模型的建立,我们在其中加入适当合理的简化,但要保证能反映原型的特征,在数学模型中,我们能进行理性的分析,也能进行计算和演绎推导,我们最终都会通过实践检验数学建模的正确性,加以完善和提升,在对现实对象进行建模时,人们常常对预测未来某个时刻变量的值感兴趣,变量可能是人口、房地产的价值或者有一种传染病的人数。数学模型常常能帮助人们更好的了解一种行为或者规划未来,可以把数学模型看做一种研究特定的实际系统或者人们感兴趣的行为而设计的数学结构。

例如人口增长模型:

中国是世界上人口最多的发展中国家,人口多,底子薄,人均耕地少,人均占有资源相对不足,是我国的基本国情,人口问题一直是制约中国经济发展的首要因素。人口数量、质量和年龄分布直接影响一个地区的经济发展、资源配置、社会保障、社会稳定和城市活力。在我国现代化进程中,必须实现人口与经济、社会、资源、环境协调发展和可持续发展,进一步控制人口数量,提高人口质量,改善人口结构。对此,单纯的人口数量控制(如已实施多年的计划生育)不能体现人口规划的科学性。政府部门需要更详细、更系统的人口分析技术,为人口发展策略的制定提供指导和依据。长期以来,对人口年龄结构的研究仅限于粗线条的定性分析,只能预测年龄结构分布的大致范围,无法用于分析年龄结构的具体形态。随着对人口规划精准度要求的提高,通过数学方法来定量计算各种人口指数的方法日益受到重视,这就是人口控制和预测。

人口增长模型是由生育、死亡、疾病、灾害、环境、社会、经济等诸多因素影响和制约的共同结果,如此众多的因素不可能通过几个指标就能表达清楚,他们对人口增长的潜在而复杂的影响更是无法精确计算。这反映出人口系统具有明显的灰色性,适宜采用灰色模型去发掘和认识原始时间序列综合灰色量所包含的内在规律。灰色预测模型属于全因素的非线性拟合外推类法,其特点是单数列预测,在形式上只用被预测对象的自身序列建立模型,根据其自身数列本身的特性进行建模、预测,与其相关的因素并没有直接参与,而是将众多直接的明显的和间接的隐藏着的、已知的、未知的因素包含在其中,看成是灰色信息即灰色量,对灰色量进行预测,不必拼凑数据不准、关系不清、变化不明的参数,而是从自身的序列中寻找信息建立模型,发现和认识内在规律进行预测。

基于以上思想我们建立了灰色预测模型:

灰色建模的思路是:从序列角度剖析微分方程,是了解其构成的主要条件,然后对近似满足这些条件的序列建立近似的微分方程模型。而对序列而言(一般指有限序列)只能获得有限差异信息,因此,用序列建立微分方程模型,实质上是用有限差异信息建立一个无限差异信息模型。

在灰色预测模型中,与起相关的因素并没有直接参与,但如果考虑到直接影响人口增长的因素,例如出生率、死亡率、迁入迁出人口数等,根据具体的数据进行计算,则可以根据年龄移算理论,从某一时点的某年龄组人数推算一年或多年后年龄相应增长一岁或增长多岁的人口数。在这个人口数的基础上减去相应年龄的死亡人数,就可以得到未来某年龄组的实际人口数。对于0岁的新生人口,则需要通过生育率作重新计算。当社会经济条件变化不大时,各年龄组死亡率比较稳定,相应活到下一年龄组的比例即存活率也基本上稳定不变。因而可以根据现有的分性别年龄组存活率推算未来各相应年龄组的人数。

通过这样的实例就能很细致地说明数学建模的方法应用,数学模型方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。它是将研究的某种事物系统,采用数学形式化语言把该系统的特征和数量关系,抽象出一种数学结构的方法,这种数学结构就叫数学模型。一般地,一个实际问题系统的数学模型是抽象的数学表达式,如代数方程、微分方程、差分方程、积分方程、逻辑关系式,甚至是一个计算机的程序等等。由这种表达式算得某些变量的变化规律,与实际问题系统中相应特征的变化规律相符。一个实际系统的数学模型,就是对其中某些特征的变化规律作出最精炼的概括。

数学模型为人们解决现实问题提供了十分有效和足够精确的工具,在现实生活中,我们经常用模型的思想来认识和改造世界,模型是针对原型而言的,是人们为了一定的目的对原型进行的一个抽象。

随着科学技术的快速发展,数学在自然科学、社会科学、工程技术与现代化管理等方面获得越来越广泛而深入的应用,尤其是在经济发展方面,数学建模也有很重要的作用。数学模型这个词汇越来越多地出现在现代人的生产、工作和社会活动中,从而使人们逐渐认识到建立数学模型的重要性。数学模型就是要用数学的语言、方法去近似地刻画实际,是由数字、字母或其他数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。也可以这样描述:对于一个现实对象,为了一个特定目的,根据其内在规律,做出必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学建模的作用在21实际毋庸置疑,我们通过不断学习数学建可以掌握解决实际问题的强大武器。

参考文献:数学建模方法与案例,张万龙,等编著,国防工业出版社(2014).

计算机在数学建模中的作用篇6

论文摘要:论述数学建模对培养学生的创造性、竞争意识和社会应变能力的作用,研究了数学建模对高职数学教学的重要作用,提出了数学教育不仅要使学生学会并掌握一些数学工具,更应着眼于提高学生的数学素质能力,而数学建模竞赛正是培养这种能力的有效载体.

高等职业教育作为教育类型得到了空前发展.高职教育在于培养适应生产、建设、管理、服务第一线需要的高素质技能型人才不仅成为人们的一种共识,而且逐步渗透到高职院校的办学实践中.数学课程作为一门公共基础课程如何服务于这个目标成为高职基础课程改革中的热点.将数学建模思想融入高职数学教学应是一个重要取向之一.

一、数学建模竞赛对大学生能力培养的重要性

大学生数学建模竞赛起源于美国,我国从1989年开始开展大学生数模竞赛,1994年这项竞赛被教育部列为全国大学生四大竞赛之一,每年都有几百所大学积极参加.数学建模竞赛与以往主要考察知识和技巧的数学竞赛不同,是一个完全开放式的竞赛.数学建模竞赛的主要目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励学生踊跃参加课外科技等活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革”.数学建模竞赛的题目没有固定的范围和模式,往往是由实际问题稍加修改和简化而成,不要求参赛者预先掌握深入的专门知识.题目有较大的灵活性供参赛者发挥其创造性,参赛者从所给的两个题目中任选一个,可以翻阅一切可利用的资料,可以使用计算机及其各种软件.竞赛持续3天3夜,参赛者可以在此期间充分地发挥自己的各种能力.数学建模竞赛也是一个合作式的竞赛,学生以小组形式参加比赛,每组3人,共同讨论,分工协作,最后完成一份答卷论文.数学建模涉及的知识几乎涵盖了整个自然科学领域甚至涉及到社会科学领域.而且愈来愈多的人认识到学科交叉的结合点正是数学建模.数学建模竞赛是能够把数学和数学以外学科联系的方法.通过竞赛把学生学过的知识与周围的现实世界联系起来,培养了学生的下列能力:

(一)有利于大学生创新性思维的培养

高等教育的重要目的是培养国家建设需要的中高层次人才,而许多教育工作者认识到目前的高等学校教学中还存在着许多缺陷,其中一个重要的问题是培养的学生缺乏创造性的思维,缺乏一种原创性的想象力.这是我国高等教育的一个致命弱点,严重制约了我国科技竞争力.我国高等学校的教学还是以灌输知识为主,这种教育体制严重扼杀了学生的能动性和创造性.数学建模竞赛并不要求求解结果的唯一性和完美性,而是重点要求学生怎样根据实际问题建立数学关系,并给出合乎实际要求的结果和方案,重点考察的是学生的创造性思维能力.

(二)有利于学生动手实践能力的培养

目前的数学教学中,大多是教师给出题目,学生给出计算结果.问题的实际背景是什么?结果怎样应用?这些问题都不是现行的数学教学能够解决的.

数学模型是一个完整的求解过程,要求学生根据实际问题,抽象和提炼出数学模型,选择合适的求解算法,并通过计算机程序求出结果.在这个过程中,模型类型和算法选择都需要学生自己作决定,建立模型可能要花50%的精力,计算机的求解可能要花30%的精力.动手实践能力有助于学生毕业后快速完成角色的转变.

(三)有利于学生知识结构的完善

一个实际数学模型的构建涉及许多方面的问题,问题本身可能涉及工程问题、环境问题、生殖健康问题、生物竞争问题、军事问题、社会问题等等,就所用工具来讲,需要计算机信息处理、internet网、计算机信息检索等.因此数学建模竞赛有利于促进学生知识交叉、文理结合,有利于促进复合型人才的培养.另外数学建模竞赛还要求学生具有很强的计算机应用能力和英文写作能力.

(四)有利于学生团队精神的培养

学生毕业后,无论从事创业工作还是研究工作,都需要合作精神和团队精神.数学建模竞赛要求学生以团队形式参加,3个人为一组,共同工作3天.在竞赛的过程中3位同学充分的分工与合作,最后完成问题的解决.集体工作,共同创新,荣誉共享,这些都有利于培养学生的团队精神,培养学生将来协同创业的意识.任何一个参加过数学建模竞赛的学生都对团队精神带来的成功和喜悦感到由衷的鼓舞.

二、将数学建模思想融入高职数学教学中

通过数学建模,给我们的教学模式提出了更多的思考,使我们不得不回过头重新审视一下我们的教学模式是否符合现代教学策略的构建?现代的教学策略追求的目标是提倡学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力.只有遵循现代的教学策略才能培养出适应新世纪、新形势下的高素质复合型人才.知识的获取是一个特殊的认识过程,本质上是一个创造性过程.知识的学习不仅是目的,而且是手段,是认识科学本质、训练思维能力、掌握学习方法的手段,在教学中应该强调的是发现知识的过程,而不是简单地获得结果,强调的是创造性解决问题的方法和养成不断探索的精神.在学习、接受知识时要像前人创造知识那样去思考,去再发现问题,在解决问题的各种学习实践活动中尽量提出有新意的见解和方法,在积累知识的同时注意培养和发展创新能力.数学建模恰恰能满足这种获取知识的需求,是培养学生综合能力的一个极好的载体,更是建立现代教学模式的一种行之有效的方法.因此,在数学教学中应该融入数学建模思想.如何将数学建模思想融入数学课程中,我认为要合理嵌入,即以科学技术中数学应用为中心,精选典型案例,在数学教学中适时引入,难易适中.以为要抓好以下几个关键点:

转贴于

(一)在教学中渗透数学建模思想

渗透数学建模思想的最大特点是联系实际.高职人才培养的是应用技术型人才,对其数学教学以应用为目的,体现“联系实际、深化概念、注重应用”的思想,不应过多强调灌输其逻辑的严密性,思维的严谨性.学数学主要是为了用来解决工作中出现的具体问题.

而高职教材中的问题都是现实中存在又必须解决的问题,正是数学建模案例的最佳选择.因此,作为数学选材并不难,只要我们深入钻研教材,挖掘教材所蕴涵应用数学的材料,从中加以推广,结合不同专业选编合适的实际问题,创设实际问题的情境,让学生能体会到数学在解决问题时的实际应用价值,激发学生的求知欲,同时在实际问题解决的过程中能很好的掌握知识,培养学生灵活运用和解决问题、分析问题的能力.数学教学中所涉及到的一些重要概念要重视它们的引入,要设计它们的引入,其中以合适的案例来引入概念、演示方法是将数学建模思想融入数学教学的重要形式.这样在传授数学知识的同时,使学生学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,使学生了解到他们现在所学的那些看来枯燥无味但又似乎天经地义的概念、定理和公式,并不是无本之木、无源之水,也不是人们头脑中所固有的,而是有现实的来源与背景,有其物理原型和表现的.在教学实践中,我们依据现有成熟的专业教材,选出具有典型数学概念的应用案例,然后按照数学建模过程规律修改和加工之后作为课堂上的引例或者数学知识的实际应用例题.这样使学生既能亲切感受到数学应用的广泛,也能培养学生用数学解决问题的能力.总之,在高职数学教学中渗透数学建模思想,等于教给学生一种好的思想方法,更是给学生一把开启成功大门的钥匙,为学生架起了一座从数学知识到实际问题的桥梁,使学生能灵活地根据实际问题构建合理的数学模型,得心应手地解决问题.但这也对数学教师的要求就更高,教师要尽可能地了解高职专业课的内容,搜集现实问题与热点问题等等.

(二)在课程教学及考核中适度引入数学建模问题

实践表明,真正学会数学的方法是用数学,为此不仅要让学生知道数学有用,还要鼓励他们自己用数学去解决实际问题.同时越来越多的人认识到,数学建模是培养创新能力的一个极好载体,而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力;学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神.在教学实践中,在数学课程的考核中增加数学建模问题,并施以“额外加分”的鼓励办法,在平常的作业中除了留一些巩固课堂数学知识的题目外,还要增加需要用数学解决的实际应用题.这些应用题可以独立或自由组合成小组去完成,完成的好则在原有平时成绩的基础上获得“额外加分”.这种作法,鼓励了学生应用数学,提高了逻辑思维能力,培养了认真细致、一丝不苟、精益求精的风格,提高了运用数学知识处理现实世界中各种复杂问题的意识、信念和能力,调动了学生的探索精神和创造力,团结协作精神,从而获得除数学知识本身以外的素质与能力.

(三)、适时开设《数学建模和实验》课

数学建模竞赛之所以在世界范围内广泛发展,是与计算机的发展密不可分的,许多数学模型中有大量的计算问题,没有计算机的情况下这些问题的实时求解是不可能的。随着计算机技术的不断发展,数学的思想和方法与计算机的结合使数学从某种意义上说已经成为了一门技术.为使学生熟悉这门技术,应当增设《数学建模和实验》课,主要以专题讲座的形式向同学们介绍一些成功的数学建模实例以及如何使用数学软件来求解数学问题等等.与数学建模有密切关系的数学模拟,主要是运用数字式计算机的计算机模拟.它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析.在应用数学建模的方法解决实际问题时,往往需要较大的计算量,这就要用到计算机来处理.计算机模拟以其成本低、时间短、重复性高、灵活性强等特点,被人们称为是建立数学模型的重要手段之一,由此也可以看出数学建模对提高学生计算机的应用能力的作用是不言而喻的.

当今世界经济的竞争是高科技的竞争,是人才综合素质与能力的竞争.数学建模竞赛对培养学生的创造性、竞争意识和适应社会应变能力,具有不可低估的作用.所以说进行数学建模的教学与实践,既适应了知识经济时代对高等学校人才培养的要求,同时也为创新人才的培养开辟了一条新的途径.

参考文献

[1]姜启源.数学模型[m].北京:高等教育出版社,1986.

计算机在数学建模中的作用篇7

论文摘要:论述数学建模对培养学生的创造性、竞争意识和社会应变能力的作用,研究了数学建模对高职数学教学的重要作用,提出了数学教育不仅要使学生学会并掌握一些数学工具,更应着眼于提高学生的数学素质能力,而数学建模竞赛正是培养这种能力的有效载体.

高等职业教育作为教育类型得到了空前发展.高职教育在于培养适应生产、建设、管理、服务第一线需要的高素质技能型人才不仅成为人们的一种共识,而且逐步渗透到高职院校的办学实践中.数学课程作为一门公共基础课程如何服务于这个目标成为高职基础课程改革中的热点.将数学建模思想融入高职数学教学应是一个重要取向之一.

一、数学建模竞赛对大学生能力培养的重要性

大学生数学建模竞赛起源于美国,我国从1989年开始开展大学生数模竞赛,1994年这项竞赛被教育部列为全国大学生四大竞赛之一,每年都有几百所大学积极参加.数学建模竞赛与以往主要考察知识和技巧的数学竞赛不同,是一个完全开放式的竞赛.数学建模竞赛的主要目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励学生踊跃参加课外科技等活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革”.数学建模竞赛的题目没有固定的范围和模式,往往是由实际问题稍加修改和简化而成,不要求参赛者预先掌握深入的专门知识.题目有较大的灵活性供参赛者发挥其创造性,参赛者从所给的两个题目中任选一个,可以翻阅一切可利用的资料,可以使用计算机及其各种软件.竞赛持续3天3夜,参赛者可以在此期间充分地发挥自己的各种能力.数学建模竞赛也是一个合作式的竞赛,学生以小组形式参加比赛,每组3人,共同讨论,分工协作,最后完成一份答卷论文.数学建模涉及的知识几乎涵盖了整个自然科学领域甚至涉及到社会科学领域.而且愈来愈多的人认识到学科交叉的结合点正是数学建模.数学建模竞赛是能够把数学和数学以外学科联系的方法.通过竞赛把学生学过的知识与周围的现实世界联系起来,培养了学生的下列能力:

(一)有利于大学生创新性思维的培养

高等教育的重要目的是培养国家建设需要的中高层次人才,而许多教育工作者认识到目前的高等学校教学中还存在着许多缺陷,其中一个重要的问题是培养的学生缺乏创造性的思维,缺乏一种原创性的想象力.这是我国高等教育的一个致命弱点,严重制约了我国科技竞争力.我国高等学校的教学还是以灌输知识为主,这种教育体制严重扼杀了学生的能动性和创造性.数学建模竞赛并不要求求解结果的唯一性和完美性,而是重点要求学生怎样根据实际问题建立数学关系,并给出合乎实际要求的结果和方案,重点考察的是学生的创造性思维能力.

(二)有利于学生动手实践能力的培养

目前的数学教学中,大多是教师给出题目,学生给出计算结果.问题的实际背景是什么?结果怎样应用?这些问题都不是现行的数学教学能够解决的.

数学模型是一个完整的求解过程,要求学生根据实际问题,抽象和提炼出数学模型,选择合适的求解算法,并通过计算机程序求出结果.在这个过程中,模型类型和算法选择都需要学生自己作决定,建立模型可能要花50%的精力,计算机的求解可能要花30%的精力.动手实践能力有助于学生毕业后快速完成角色的转变.

(三)有利于学生知识结构的完善

一个实际数学模型的构建涉及许多方面的问题,问题本身可能涉及工程问题、环境问题、生殖健康问题、生物竞争问题、军事问题、社会问题等等,就所用工具来讲,需要计算机信息处理、internet网、计算机信息检索等.因此数学建模竞赛有利于促进学生知识交叉、文理结合,有利于促进复合型人才的培养.另外数学建模竞赛还要求学生具有很强的计算机应用能力和英文写作能力.

(四)有利于学生团队精神的培养

学生毕业后,无论从事创业工作还是研究工作,都需要合作精神和团队精神.数学建模竞赛要求学生以团队形式参加,3个人为一组,共同工作3天.在竞赛的过程中3位同学充分的分工与合作,最后完成问题的解决.集体工作,共同创新,荣誉共享,这些都有利于培养学生的团队精神,培养学生将来协同创业的意识.任何一个参加过数学建模竞赛的学生都对团队精神带来的成功和喜悦感到由衷的鼓舞.

二、将数学建模思想融入高职数学教学中

通过数学建模,给我们的教学模式提出了更多的思考,使我们不得不回过头重新审视一下我们的教学模式是否符合现代教学策略的构建?现代的教学策略追求的目标是提倡学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力.只有遵循现代的教学策略才能培养出适应新世纪、新形势下的高素质复合型人才.知识的获取是一个特殊的认识过程,本质上是一个创造性过程.知识的学习不仅是目的,而且是手段,是认识科学本质、训练思维能力、掌握学习方法的手段,在教学中应该强调的是发现知识的过程,而不是简单地获得结果,强调的是创造性解决问题的方法和养成不断探索的精神.在学习、接受知识时要像前人创造知识那样去思考,去再发现问题,在解决问题的各种学习实践活动中尽量提出有新意的见解和方法,在积累知识的同时注意培养和发展创新能力.数学建模恰恰能满足这种获取知识的需求,是培养学生综合能力的一个极好的载体,更是建立现代教学模式的一种行之有效的方法.因此,在数学教学中应该融入数学建模思想.如何将数学建模思想融入数学课程中,我认为要合理嵌入,即以科学技术中数学应用为中心,精选典型案例,在数学教学中适时引入,难易适中.以为要抓好以下几个关键点:

(一)在教学中渗透数学建模思想

渗透数学建模思想的最大特点是联系实际.高职人才培养的是应用技术型人才,对其数学教学以应用为目的,体现“联系实际、深

化概念、注重应用”的思想,不应过多强调灌输其逻辑的严密性,思维的严谨性.学数学主要是为了用来解决工作中出现的具体问题.

而高职教材中的问题都是现实中存在又必须解决的问题,正是数学建模案例的最佳选择.因此,作为数学选材并不难,只要我们深入钻研教材,挖掘教材所蕴涵应用数学的材料,从中加以推广,结合不同专业选编合适的实际问题,创设实际问题的情境,让学生能体会到数学在解决问题时的实际应用价值,激发学生的求知欲,同时在实际问题解决的过程中能很好的掌握知识,培养学生灵活运用和解决问题、分析问题的能力.数学教学中所涉及到的一些重要概念要重视它们的引入,要设计它们的引入,其中以合适的案例来引入概念、演示方法是将数学建模思想融入数学教学的重要形式.这样在传授数学知识的同时,使学生学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,使学生了解到他们现在所学的那些看来枯燥无味但又似乎天经地义的概念、定理和公式,并不是无本之木、无源之水,也不是人们头脑中所固有的,而是有现实的来源与背景,有其物理原型和表现的.在教学实践中,我们依据现有成熟的专业教材,选出具有典型数学概念的应用案例,然后按照数学建模过程规律修改和加工之后作为课堂上的引例或者数学知识的实际应用例题.这样使学生既能亲切感受到数学应用的广泛,也能培养学生用数学解决问题的能力.总之,在高职数学教学中渗透数学建模思想,等于教给学生一种好的思想方法,更是给学生一把开启成功大门的钥匙,为学生架起了一座从数学知识到实际问题的桥梁,使学生能灵活地根据实际问题构建合理的数学模型,得心应手地解决问题.但这也对数学教师的要求就更高,教师要尽可能地了解高职专业课的内容,搜集现实问题与热点问题等等.

(二)在课程教学及考核中适度引入数学建模问题

实践表明,真正学会数学的方法是用数学,为此不仅要让学生知道数学有用,还要鼓励他们自己用数学去解决实际问题.同时越来越多的人认识到,数学建模是培养创新能力的一个极好载体,而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力;学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神.在教学实践中,在数学课程的考核中增加数学建模问题,并施以“额外加分”的鼓励办法,在平常的作业中除了留一些巩固课堂数学知识的题目外,还要增加需要用数学解决的实际应用题.这些应用题可以独立或自由组合成小组去完成,完成的好则在原有平时成绩的基础上获得“额外加分”.这种作法,鼓励了学生应用数学,提高了逻辑思维能力,培养了认真细致、一丝不苟、精益求精的风格,提高了运用数学知识处理现实世界中各种复杂问题的意识、信念和能力,调动了学生的探索精神和创造力,团结协作精神,从而获得除数学知识本身以外的素质与能力.

(三)、适时开设《数学建模和实验》课

数学建模竞赛之所以在世界范围内广泛发展,是与计算机的发展密不可分的,许多数学模型中有大量的计算问题,没有计算机的情况下这些问题的实时求解是不可能的。随着计算机技术的不断发展,数学的思想和方法与计算机的结合使数学从某种意义上说已经成为了一门技术.为使学生熟悉这门技术,应当增设《数学建模和实验》课,主要以专题讲座的形式向同学们介绍一些成功的数学建模实例以及如何使用数学软件来求解数学问题等等.与数学建模有密切关系的数学模拟,主要是运用数字式计算机的计算机模拟.它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析.在应用数学建模的方法解决实际问题时,往往需要较大的计算量,这就要用到计算机来处理.计算机模拟以其成本低、时间短、重复性高、灵活性强等特点,被人们称为是建立数学模型的重要手段之一,由此也可以看出数学建模对提高学生计算机的应用能力的作用是不言而喻的.

当今世界经济的竞争是高科技的竞争,是人才综合素质与能力的竞争.数学建模竞赛对培养学生的创造性、竞争意识和适应社会应变能力,具有不可低估的作用.所以说进行数学建模的教学与实践,既适应了知识经济时代对高等学校人才培养的要求,同时也为创新人才的培养开辟了一条新的途径.

参考文献

[1]姜启源.数学模型[m].北京:高等教育出版社,1986.

计算机在数学建模中的作用篇8

【关键词】计算机专业;应用数学;模块化设计;教学实践

关于高职数学和计算机数学基础的课程改革、课程设计、教学模式设想等探索已经进行了许多年,相关的文章很丰富[1][2],其中大部分从数学课程的重要性、现状剖析和存在的问题、课程改革的意义、改革设想[3]等方面阐述了作者的见解.这些问题已基本形成共识,但宏观论述的较多,拜读文章之后,读者对作者理念的实践效果及如何借鉴实施的认识仍然比较模糊.本文尝试将课程组多年的教学实践和对课程改革的不断探索进行总结,在厘清理念的同时,对实践做法和效果进行较为详尽的介绍,愿抛砖引玉,与基础课教师和专业课教师共同学习探讨.

计算机技术的特点之一就是日新月异,人们不由自主地被裹进数字化、智能化、网络化、多媒体化的技术进步浪潮里,高职计算机专业人才培养受到层出不穷的新技术的影响.如何使学生掌握未来职业所需的专业知识与技能,使之具备适应职场技术快速变化的能力?数学课程在培养学生的学习能力和应用能力上有怎样的作用?又该怎样做?这是计算机专业导向下应用数学课程建设关心和思考的问题.

一、学情教情调查

为了解学生的数学基础状况及学习情况,我们设计了两份问卷调查表,分别在学生大学入学时和第一学期结束时进行调查,调查内容包括个人中学数学学习兴趣和水平的自我评价,对数学的认识,对大学数学学习的期待,大学数学学习途径和学习情况自我评价,对大学数学教学内容、教学方法和考核方式等的评价,以及对老师教学的意见和建议.抽样调查了2009级、2010级、2011级和12级软件专业、网络专业、信息管理专业若干班级.调查结果如下:

1.入学初调查

76%的同学对数学学习有兴趣并在中学数学学习中感到充实愉快,但成绩一般.90%的同学都认为学数学有必要,86%的学生相信能继续学好数学或能改变现状,75%的学生期待大学数学能提高数学应用能力,80%的同学喜欢思考,有一定独立学习的能力和习惯,62%乐于和同学共同探讨.

2.第一学期末调查

60%左右的学生仍然有兴趣,65%认为数学课程训练了思维,教学内容比较合适,影响数学学习的主要因素是自身基础和学习方法,对老师的教学15%表示很满意,70%表示满意,7%表示不满意.对自己的学习状况,3%表示很满意,42%表示满意,50%表示不满意.对老师教学的意见和建议是:改变一言堂占16%,少讲多练占26%,增加课堂互动占34%,改革教学内容占24%.学生学习数学的途径基本在课堂内,边听边看书,以完成作业为度.大部分学生很少或从不借阅数学参考书,说明在数学学习上学生缺乏探索钻研,自我要求不高,仅凭课内的90分钟时间,课外复习方式就是完成作业.软件和网络专业近20%学生抄作业或懒得做作业.

3.调查统计后的若干结论

软件专业学生在数学兴趣、理解消化知识的能力、挑战自我上表现更为突出,软件专业32%的学生有参加数学建模学习比赛的意愿.信管专业学生习惯听从老师的安排,自律性、学习积极性更高.网络专业学生的学习状态相对更平淡,但是对学习内容和教师教学的期待比其他两个专业学生高,所谓有心向学,无力“杀敌”.在数学学习兴趣、学习能力上呈现的整体性差异,间接反映出数学课程与各专业课程的相关性.计算机各专业人才培养方向和职业岗位目标不同,需要的数学知识与技能训练不同,分配在数学上的总学时不同,因此应用数学课程在教学中需进行适当的模块划分,加强针对性以适应不同专业的需要.

二、计算机专业导向下应用数学课程的教学理念与设计

应用数学是高职计算机类专业的基础能力课程模块中的必修课程.从短期看,为学生的专业课程学习服务,要适应计算机专业培养人才的任务导向、项目驱动等工学结合的教学模式.从长期看,为学生继续学习提供具有数学特色的思考方式和技能训练,包括抽象化、最优化、逻辑分析、数据整理推断、运用符号、量化能力、建模能力、人工计算能力、数学软件运用能力等.但数学课程的教学时数受到制约,不可能面面俱到地为学生准备所有的知识和进行系统全面的数学能力训练,让不同的专业侧重选择不同的学习内容,实施模块化教学成为必然选择,为此,我们从教学内容、教学方法、教学组织形式、考核评价等方面提出一种模块化教学设计的理念.

1.优化课程知识结构

课程设计遵循“学有所用、够用为度”的原则,以整合计算机专业背景知识、程序设计思想方法、应用问题为主线,将课程教学内容设计成三大模块和若干子模块,各模块知识有独立性和适用性,便于计算机各专业根据需要和课时限制针对性选择.恰当案例是教学核心,通过模块学习和案例分析来训练学生的思维能力和应用能力,使学生获得新的知识和新的经验,并在新知识经验的基础上建立个人的理解力,扩展智力框架.[4]

2.教学方法

课程形式上有理论讲授课、数学实验课、数学建模实践指导课,各部分课时约占1/3.各部分的逻辑关系是:理论知识模块实操模块综合应用模块.教学方法以综合应用模块中的项目为导向,根据项目需要选择理论知识模块的学习深度,兼顾内容衔接和层次递进,应用实验课程强化巩固,使数学理论知识学习、数学实验操作和数学建模形成一个项目式整体.

有数学家说过:“数学素质中最重要的是数学建模意识和基本的数学头脑.”实践表明,数学实验和数学建模实践是扩展学生学习途径、提高学生参与学习的广泛性、提升学生查阅资料能力和团队合作精神的有效形式.

3.教学组织方式

以问题解决为核心组织教学,教学的问题可分为概念问题、方法问题、思想问题、计算问题、推论问题、应用问题、实际操作以及模拟实现等问题.通过项目化分组实施“模块案例+matLaB软件实现”教学做一体化,逐步解决上述问题,实现教学目标.

4.构建课程新的评价体系

评价的主要目的是为了全面了解学生的数学学习过程,考查学生的“输出”能力,同时督促学生学习和改进教师教学.但以往的评价手段“期末一考定终身”过于单一,不能全面反映学生的真实情况.

对数学学习的评价要关注学生学习的结果,更要关注学习的过程,所以采用过程考核与目标考核、笔试与机试相结合,通过强化项目化分组的过程监控,将作业、小组讨论、实验报告、论文写作、资料查阅等任务的完成情况纳入考核系统,加权计算数学成绩,更能反映学生学习成果的真实情况,同时也能提高学生平时学习的积极性.

三、计算机专业导向下应用数学课程模块化教学实践经验

1.进一步明确了模块化教学的思路

通过研究,教师更清楚地把握了要教什么,教到什么程度,什么教学形式更有效果.学生普遍比较喜欢matLaB上机学习的形式和体验,新鲜有趣,在老师布置的任务驱动下能全神贯注,通过阅读实验指导,向老师提问和相互交流,大多数学生都能完成任务,特别是听理论课有些吃力的学生,发现自己也能读懂教材,可以动手操作,自然而然就有收获参与的良好心理体验,学生“尝试应用数学”的愿望得到最基本满足.因此加大实践实践教学环节的学时比重成为共识.

2.项目导向,教学做一体化,锻炼和提高了学生的能力

从教学实践来看,在实验室教学,讲解操作演示模仿练习项目训练的方式比较有效果.把一个建模任务以数学论文的形式完成,学生首先感到很困难,但坚持下去,通过查阅资料,小组合作完成的过程带给学生与以往不一样的体验.有的学生在数学学习的总结中写道:“这次写的小论文给我收获蛮大,一来提高了我的思维,那是一次真正思想上自由的思考,虽然一开始摸不着头脑,找不到头绪,只能到处去查资料、看书、查看相关专题,在短时间要理解运用知识,这是平时我们学习很难得到的,真正锻炼到了思维.二来又锻炼了我的计算机应用能力、检索文献的能力、学习新知识的能力和论文写作能力等.这次写论文对我来说是一次很好的经历,这段日子的体会和收获,相信对我今后的学习会有一定影响,让我不断努力进步.”教学做的方式同时促进了学生计算机专业课程的学习和知识的运用.有学生反馈:“这次实训使我对计算机编程有了新认识,虽然我是学计算机的,平时写过很多程序,不过那是事先设计好的题目,要么是课本上的,要么是老师限定好所有条件的,虽然做出来了,却不知道在现实中有什么用,然而这次写程序却给了我很大挑战,感觉写得很辛苦,但是蛮有成就感,因为是自己第一次联系现实用计算机解决问题.”

计算机专业课程(如数据结构、C语言程序设计)教师对应用数学课程中讲授算法逻辑结构、递归算法、最短路算法等的做法大加肯定,在他们传授相关知识时学生理解接受得比较快,数学课程为计算机专业课程教学起到一定的先导作用.

数学教学的层次性更加鲜明.通过课堂普及性教学建模选修提高性教学全国大学生数学建模竞赛集训三级渐次提高的教学链,使具有创新精神和独立钻研能力的优秀学生突颖而出.从2009年开始参加的每届全国大学生数学建模竞赛,均取得全国一等奖、二等奖的佳绩,尤其是2010年,五个参赛队中两个获得全国一等奖并获“高教社”杯,已有三篇学生数学竞赛论文在《数学工程学报》上发表.

3.考核评价方式改变,降低了学习压力,改变学习状况

通过强化项目化分组的过程监控,以数学建模论文写作作为考查学生掌握和运用知识的能力的主要依据,使得学生改变平时混课,学习没有压力也没有动力,考前抱佛脚的情况.把考试压力分解到日常的学习中,学生感到只要平时认真上课,就不会畏惧考试,消除了有句话说的“大学有一棵树叫‘高数’,许多人都挂在上面”的大面积考试不及格现象.

结束语

虽然本课程在教学上取得一些令人鼓舞的改变,摸索出一点适合高职计算机类的数学教学理念、设计和实践经验,学生对数学教学的认可度也得到提高,但要达到“数学学习对每名学生有用”的境界,仍然艰巨.当今数学的范畴不再是几何、代数、微积分.数学扎根于数据,展现于抽象形式中,对诸如表格、图形、趋势分析、财务报告、逻辑辩论、概率推断等等生活、新闻报刊、例行公事中的数学概念的理解展现了数学基本能力,这些能力的掌握程度必然影响到学生未来的职业能力.愿与同行们共同探讨基础课程贴近生活实际和专业需要的教学改革问题,不断改进数学教学工作.

【参考文献】

[1]张秀英,王艳萍,李海燕.计算机数学基础课程改革的探讨[J].郑州铁路职业技术学院学报,2007,3:47.

计算机在数学建模中的作用篇9

abstract:inallusiontothedeficienciesexistingincurrentstructuralstrengthanalysisofminiaturefarmingmachinesuchaslowcalculationaccuracy,difficultyinstructuremodelingandlowefficiencyandsoon,rapidstrengthanalysismethodforminiaturefarmingmachinestructurebasedonparametricsolidmodelingandautomaticfiniteelementmodelingandanalyzingispresented.thenthe3Dentityrapidmodelingmoduleandautomaticofmainminiaturefarmingmachinestructureisbuild.andtheautomaticanalysisexecutingaswellasresultextractionisrealized.thus,thefeasibilityandtheeffectivenessofthemethodisverifiedbyaactuallycase.

关键词:微耕机;主要零部件;结构;有限元分析;快速

Keywords:miniaturefarmingmachine;maincomponents;structure;finiteelementanalysis;rapid

中图分类号:S222文献标识码:a文章编号:1006-4311(2015)25-0069-03

0引言

微耕机具有体积小、重量轻,便于用户使用和存放等优点,在水旱田整地、田园管理及设施农业等多种农业作业中得到了广泛应用。但国内对微耕机的研究起步较晚,设计技术和检测依然相对落后。微耕机结构分析是开展微耕机结构设计和结构检测的必经环节之一。

目前,国内微耕机的结构设计主要采用传统的类比设计方法,在静力学与运动学理论指导下,依据经验公式、图表、手册等资料,凭借设计者的经验选择设计参数,再经过反复修改与分析直至结构满足强度、刚度要求。这种设计方法费工费时,在分析结构强度和刚度时往往进行结构简化,不仅导致设计的产品结构笨重,成本高,而且容易忽略难以考虑的,重要的,甚至必要的因素,甚至形成“人为”的应力集中点,不符合实际动态情况。计算机技术和有限元分析技术的发展给微耕机结构强度分析与检测开辟了新途径,国内外学者在结构强度分析方面都取得了可喜的成果,但依然存在许多不足,主要表现在:①目前微耕机结构强度分析与检验绝大多数环节由人工或半自动完成[1-2],检验过程繁琐、耗时长、成本高;②计算机辅助工程技术的发展为实现结构快速分析提供了途径,作为主流结构分析软件之一,anSYS在多个领域都得到了广泛应用,但直接在anSYS仿真环境中建立微耕机结构实体模型具有建模难度高、过程复杂、耗时长问题[3-4];③现有研究中,在建立微耕机结构有限元模型方面主要采用手工操作的方式进行,不仅对操作者技术水平要求高,而且存在建模效率低、操作强度大等缺点,特别是在批量分析或优化设计求解时,这种操作方式的缺陷尤为突出[5-6]。

综合上述分析,研究微耕机结构强度快速分析方法,构建微耕机主要零部件的快速、自动化三维建模策略,探讨微耕机主要零部件模型的高效、高质量网格划分策略,实现微耕机主要零部件结构强度自动化快速分析和结果提取,减轻操作人员工作强度、缩短建模时间,提高分析效率,具有重大理论与现实意义。

1微耕机结构强度快速分析机制

为提高微耕机结构强度求解精度,采用anSYS有限元分析工具求解微耕机结构强度响应。anSYS有限元分析环境具有强大的有限元分析计算能力,能够进行复杂结构静、动态结构强度、刚度分析。但anSYS软件的三维实体建模能力较低,直接在anSYS环境中构建复杂微耕机结构具有操作难度大、效率低的缺点。为提高微耕机结构建模效率,利用anSYS有限元分析环境与pro/engineer三维实体环境间的无缝接口,利用pro/engineer实体建模环境实现微耕机结构实体建模,实现充分发挥anSYS有限元分析能力和pro/engineer实体建模能力的目标。此外,pro/engineer的参数化建模技术和pro/toolkit二次开发工具箱,为实现高效微耕机结构实体建模提供的技术条件。

综合上述分析,针对现有微耕机结构强度分析建模难度大,操作繁琐,求解精度低等问题,构建微耕机结构强度快速分析机制如图1所示。数据组织模块负责组织、管理微耕机结构强度分析过程中所需的及产生的相关数据。用户通过用户接口与数据组织模块进行数据交换,实现对分析过程中控制参数的设定和结果数据的读取。微耕机结构强度分析过程主要包括微耕机结构参数及工况设定、创建微耕机结构三维模型、创建微耕机结构有限元模型、微耕机结构有限元分析、分析结果提取等5个基本模块。微耕机结构参数集工况设定主要实现对微耕机结构参数、有限元分析计算工况等初始条件的设定。初始条件设定后,数据组织模块根据设定的初始参数,基于参数化实体建模技术和pro/toolkit二次开发技术,在pro/engineer环境中快速重生成微耕机结构三维实体模型。之后,数据组织模块调用anSYS有限元环境,通过无缝数据接口导入pro/engineer环境中生成的微耕机结构三维实体模型,进行单元类型设定、网格划分、边界加载等操作创建微耕机结构有限元分析模型,进而执行有限元分析计算、提取计算结果并将结果通过用户接口呈现为用户。

2微耕机结构三维实体快速建模策略

目前,利用pro/toolkit二次开发工具箱实现参数化创建三维实体模型主要有以下2种方法:①调用几何特征创建函数建立三维模型;②基于参数化设计的模型样板建立三维模型。调用几何特征创建函数建立三维模型属于自底向上建模方法,柔性大,能够适应各种结构的参数化建模,但建模效率较低。基于参数化设计的模型样板建立三维模型属于自顶向下建模,建模效率高,且实现简单,但柔性较低,只能适应具有特定结构特征的实体模型。

基于参数化设计的模型样板建立三维模型的原理是通过基于pro/toolkit二次开发的应用程序控制修改模型样板的参数值,从而生成新的三维模型,其基本流程如图2所示。用户通过人机界面的对话框输入微耕机各零部件结构参数,系统判断当前是否已经启动pro/engineer环境,若还未启动则直接启动pro/engineer环境,并进行工作目录设置、载入结构模型样板、初始化参数环境等操作,进而根据用户设置的参数值修改模型样板的相应参数值,并在重生成模型后刷新屏幕,调整视图,为用户直观展现给定参数下模型效果,从而判断是否保存模型及退出pro/engineer环境。若选择保存模型,则同时保存实体模型值prt文件和实体参数至同名txt文件。

基于上述流程,在VisualStudio2008开发环境下构建微耕机主要零部件结构三维实体快速建模模块。如图3和图4所示分别为某型号微耕机牵引架总成建模界面及三维模型。

3微耕机结构高效有限元建模与分析

有限元模型是进行有限元分析的前提。有限元建模的任务是将实际问题或设计方案抽象为能为数值计算提供所有输入数据的有限元模型,其过程主要包括实体建模、网格划分、边界加载等3个过程。在有限元建模的三个阶段中,网格划分是关键环节之一,它对计算过程和计算结果有着重要的影响。

有限元网格划分对模型的细节提出了很多很高的要求,计算机也制约了模型的规模,简化模型是有限元建模最重要的一步。在创建实体模型时必须对实际模型进行简化,根据经验忽略螺纹孔、小半径倒角等不必要的细节。此外,网格的疏密也影响着模型的计算速度和计算精度。一般情况而言,计算变形量时,网格可以疏一些,而对应力计算,网格应当密一些。为避免网格大小划分不当对计算结果造成太大误差,采用如图5所示网格划分策略。程序开始时,用户设定初始网格大小、计算误差极限等初始条件,程序自动根据设定网格大小进行网格划分和有限元计算,若前后两次计算误差不在接受范围内,则将网格大小缩小一半,重新进行网格划分和有限元分析计算,直到前后两次分析计算结果误差满足误差极限要求,则上一次网格的规格作为有限元建模时依据的网格规格。基于上述有限元划分策略,构建了微耕机主要零部件结构网格自动划分模块。如图6所示为某型号微耕机牵引架总成网格模型。

网格划分完成后,利用apDL命令流,能够实现自动加载结构有限元分析计算边界条件,并执行有限元分析计算和计算结果提取。针对某型号微耕机牵引架总成,采用微耕机结构有限元分析模块对其进行三维实体建模、有限元建模、有限元分析计算及结果提取后,得到该结构的应力分布图和综合位移变形图如图7所示。从图中可知,该牵引架总成结构最大应力值为174.547mpa,最大变形量为1.041mm。计算结果不仅表明了该结构满足微耕机正常工作的结构强度要求和刚度要求,也验证微耕机结构有限元分析模块的可行性和有效性。

4小结

①针对现有微耕机结构强度分析存在的计算精度低、建模难度大、效率低等问题,期初了基于参数化实体建模和自动化有限元建模与分析微耕机结构强度快速分析机制,综合发挥pro/engineer强大的实体建模能力和anSYS强大的有限元分析计算能力。②基于pro/toolkit二次开发工具箱,提出了微耕机结构三维实体快速建模策略,实现了微耕机主要零部件结构的快速三维实体建模。③基于pro/engineer和anSYS的无缝数据接口和anSYS的Batch工作模式,构建了微耕机结构高效有限元建模与分析策略,实现了自动化微耕机结构网格划分,边界加载,结构强度分析计算和结果提取等操作,并提供了交互友好的人机界面,从而验证了微耕机结构强度快速分析方法的可行性和有效性。

参考文献:

[1]pateLR,KUmaRa,moHanD.Developmentofanergonomicevaluationfacilityforindiantractors[J].appliedergonomics,2000,31(3):311-316.

[2]杨懿,曾兴宁,等.微耕机自动测试系统研究[J].自动化与仪器仪表,2010(3):106-110.

[3]张季琴,杨福增.山地微型遥控耕地机的设计与试验[a].中国农业工程学会2011年学术年会论文集[C].

[4]颜华,吴俭敏,等.环形土槽微耕机试验平台设计[J].农业机械学报,2010,41(S1):68-72.

计算机在数学建模中的作用篇10

关键词:高职;计算机专业;数学实践

注:本文为黑龙江省高等学校教改工程项目《计算机数学实践教学体系的开发与应用》课题成果论文,课题编号:JG2012020789。

数学课是高职计算机应用专业应该开设的一门课程。以高职计算机应用技术专业(网络信息技术方向)为例。课程模块主要有以下几个部分:公民素质:思想品德修养、法律知识、思想邓小平理论三个代表重要思想、就业与创业教育、体育、国防教育、健康教育、英语;科学素养:高等数学、专业英语、数据结构;办公应用:电子写作、internet综述;软件开发:C语言程序设计、JaVa程序设计、weB程序设计、数据结构、网页设计;

网络信息技术设计(方向):网络工程师认证、inteRnet网络技术、企业网站维护技术、windows服务器网络技术、系统管理和网络服务、高级互换型互联网技术、网络综合布线技术、高级路由型互联网技术、ipV6技术、Voip网络通信技术。

培养科学素养而开设的高等数学课程,课程内容主要包括离散数学,线性代数,概率论和数理统计等内容。是计算机应用专业教学中最为重要的核心基础课程之一,它是学习专业理论中不可少的数学工具。

通过本课程的学习,能使学生具有现代数学的观点和方法,并初步掌握处理离散结构所必须的描述工具和方法以及计算机上常用数值分析的构造思想和计算方法。同时,也为培养学生抽象思维和缜密概括的能力打下基础,使学生具有良好的开拓专业理论的素质和使用所学知识,分析和解决实际问题的能力。

本课程是一门理论性较强,应用性较广的课程。因此,通过本课程的学习,使学生掌握课程的基本概念和基本原理,进一步提高抽象思维和逻辑推理的能力;熟悉数值计算方法的基本原理和基本方法,掌握常见数值计算的方法,进一步提高数值计算能力。但是,为了强化学生的应用能力、实践能力,我们应该十分重视实验室建设,如数学实验室及数学建模实验室等。尤其是高等数学中实践课程《数学建模》课的开设,开拓了学生的视野,将所学到的理论知识应用到工程实践中去,大大的提高了学生的实践能力和对学生岗位技能的培养。

数学教学实践原则:第一,学生为中心原则。教师配备、教材选择、教学计划制定以学生为中心,教学内容适应学生的专业的实际情况。第二,“必需、够用”原则。围绕专业特点和专业人才培养目标以“必需、够用”原则对课程内容进行取舍组合。使教学内容为后续专业课程学习提供数学理论、知识与方法,使学生能用数学知识与工具解决专业实际问题。第三,学生素质教育功能原则。提高学生的数学素质及发展学生的创造性思维能力,为思考问题提供观念和方法。

教学中采用以实际问题项目为导向的教学,将学生融入到有实际意义的项目完成过程中。通过分析问题、模型假设、建立模型和求解模型完成项目,从而达到培养学生分析问题、建立数学模型的能力,加深对抽象概念及相关理论的理解,实现教学内容科学性、实用性的有机统一。同时,引入数学工具软件,通过软件的使用,一方面使得学生学会借助计算机解决数学问题,另一方面建立对于软件开发的概念和信心,提高对计算机软件系列课程的兴趣。例如《数学建模》课程的实践。与传统教学相比,建模的教学重过程、重参与,不苛求建模过程的严密、结果的准确。学生应该成为这一过程的主体,在此过程中他们自主合作,积极交流,动手操作,努力探索发现,养成了勤学好问的习惯和团队精神。而教师则对学生在建模过程中遇到的问题,在可能的范围内提出一些建议。对学生的选题乃至学生建模的思路、研究的方法则不予干涉。因此,教师不再是知识与技能的传授者而是建模活动的组织者,学生研究工作的建议者、参谋者、学生成果的欣赏者。