首页范文建筑结构抗震设计十篇建筑结构抗震设计十篇

建筑结构抗震设计十篇

发布时间:2024-04-26 01:24:00

建筑结构抗震设计篇1

关键字:高层建筑抗震理论结构设计

一、高层建筑的概述

在古代人们就开始建造高层建筑,比如埃及的亚历山大港灯塔,高100多米,为石结构。中国山西应县的佛公寺释迦塔,高约为67米,为木结构。现代高层建筑发展迅速,在大中城市随处可见。高层建筑是指超过10层的住宅建筑和超过24米高的其他民用建筑。高层建筑可以带来明显的社会经济效益:首先,使人口集中,可利用建筑内部的竖向和横向交通缩短部门之间的联系距离,从而提高效率;其次能使大面积建筑的用地大幅度缩小,有可能在城市中心地段选址;第三,可以减少市政建设投资和缩短建筑工期。

由于高层建筑的高度比较高,所以解决水平抗剪问题成为关键,而抗震是解决水平抗剪问题的一个重要因素。然而对于不同的结构形式,同一设防烈度下,抵抗地震能力有很大区别,因此选择合适的结构形式对于高层建筑尤为重要。

二、高层建筑抗震理论分析

2.1高层建筑抗震的有关规范

建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。甲类建筑应属于重大建筑工程和地震时可能发生严重次生灾害的建筑,乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,丙类建筑应属于除甲、乙、丁类以外的一般建筑,丁类建筑应属于抗震次要建筑。多层高层建筑结构的抗震措施是根据抗震等级确定的,抗震等级的确定与建筑物的类别相关,不同的建筑物类别在考虑抗震等级时取用的抗震烈度与建筑场地类别有关,也就是考虑抗震等级时取用烈度与抗震计算时的设防烈度不一定相同。全国大部分地区的房屋抗震设防烈度一般为8度。

2.2建筑抗震设计的理论

2.2.1、拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

2.2.2、反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

2.2.3、动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

2.3高层建筑抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

三、高层建筑的结构抗震设计

3.1高层建筑抗震设计的理念

按抗震设计要求进行结构分析与设计时,其目标是希望使所设计的结构在强度、刚度、延性及耗能能力等方面达到最佳,从而满足我国《建筑抗震规范》(GB50011-2001)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。由于地震作用是一种随机性很强的循环、往复荷载,建筑物的地震破坏机理又十分复杂,存在许多的不确定因素,因此规定建筑结构当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此在有抗震设防要求的高层建筑除应满足强度、刚度要求外,还要满足延性的要求,使建筑具有足够的变形能力,使其弹塑性变形不超过规定的弹塑性变形限值。

对于“两阶段”设计,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

3.2高层建筑的抗震设计方法

我国的《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:1、高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法。2、除规定1外的建筑结构,宜采用振型分解反应谱方法。3、特别不规则的建筑、甲类建筑和限制高度范围的高层建筑,应采用时程分析法进行多遇地震下的补充计算,可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值。

在进行抗震设计是应掌握以下要点及注意事项:1.选择对建筑抗震有利的场地,宜避开对建筑抗震不利的地段,不应在危险地段建造甲、乙、丙类建筑。2.建筑的平立面布置应符合概念设计的要求,不应采用严重不规则的方案。不规则的建筑,在结构设计时要进行水平地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施。3.结构材料选择与结构体系的确定应符合抗震结构的要求。4.尽可能设置多道抗震防线。地震有一定的持续时间,而且可能多次往复作用,根据地震后倒塌的建筑物的分析,我们知道地震的往复作用使结构遭到严重破坏,而最后倒塌则是结构因破坏而丧失了承受重力荷载的能力。适当处理构件的强弱关系,使其形成多道防线,是增加结构抗震能力的重要措施。5.具有合理的刚度和承载力分布以及与之匹配的延性。6.确保结构的整体性。各构件之间的连接必须可靠,符合下列要求:1)构件节点的承载力不应低于其连接构件的承载力,当构件屈服、刚度退化时,节点应保持承载力和刚度不变。2)予埋件的锚固承载力不应低于连接件的承载力。3)装配式的连接应保证结构的整体性,各抗侧力构件必须有可靠的措施以确保空间协同工作。4)结构应具有连续性,注重施工质量,避免施工不当使结构的连续性遭到削弱甚至破坏。

建筑结构抗震设计篇2

关键词:建筑;抗震结构;设计;特点;结构布置

中图分类号:tU352.1+1文献标识码:a文章编号:

引言

地震灾害对不仅破坏地表,而且还造成建筑物、构筑物的破坏和倒塌,严重危及人类的生命安全和造成极大的财产损失。依法对各种建筑物、构筑物进行相应的抗震设防,是目前建筑工程设计的重中之重。

1建筑抗震设计特点及原则

1.1高结构延性

建筑抗震设计具有高结构延性是指,建筑结构在结构的承载力未发生明显变化时不会发生弹性形变的能力。它是建筑结构变形能力的反映,也是抗震过程中

最关键的因素之一。高结构延性有助于建筑的抗震作用,它能够起到吸收和分散地震能量效果,从而防止建筑产生结构性破坏造成倒塌后果。

提高建筑结构延性,应通过将建筑构建进行弯曲破坏,防止建筑构建的剪切破坏程度。

1.2结构整体性

建筑结构是由非常多的不同构建连接构成,通过不同形式的组合,进行构建间有效协调行成完整整体,因此,建筑结构具有高度整体性。在建筑设计过程中应遵循以下三个原则:

1.2.1连续性原则

在相邻构建组合设计中,应加强其连续性组合,使得相邻构建能够完美协调。在建筑结构抗震完整性设计中,结构的连续性是使结构在地震作用时能够保持

整体的重要手段之一。

1.2.2可靠连接原则

在将各个组件进行连接时,应加强构建连接的可靠性,保证各个构件充分发挥承载力,使得地震能量传递能够有效传递,减少局部构建的重大破坏出现。

1.2.3增强竖向刚度原则

在建筑抗争结构设计时,应保持结构纵、横方向同时具有足够的整体竖向刚度,通过增加其竖向刚度,可以有效提高建筑基础结构的整体性,在发生地震时,可以减少由于地基不均匀产生的沉降和地面裂隙危害。

2建筑的抗震设计理念

高层建筑抗震设计要点包括结构规则性,层间位移限制,控制地震扭转效应,减小地震能量输入。在对结构的抗震设计中,不仅要应进行概念设计,同时应进

行结构抗震验算。通过对历次地震对建筑的危害,总结以往经验教训,提高建筑结构延性、限制结构类型和使用材料等方面,坚持建筑抗震设计理念。

2.1结构规则性

建筑物尤其是高层建筑物设计应符合抗震概念设计要求,对建筑进行合理的布置,大量地震灾害表明:在众多建筑抗震设计中,在地震时具有较好抗震性能

的设计结构多为平立面简单且对称的建筑物。由于这种建筑结构容易对地震反正进行估算,因此,能够更为及时快速的采取相应的措施并就细部进行处理。

2.2层间位移限制

在大部分高层建筑中,其建筑特色均具有较大高宽比,这种比例在风力和地震的作用下层间位移较大,严重时还会出现超过结构最大唯一限值。因此,在设计过程中,结构在水平荷载的作用下产生过大的位移而影响结构的承载力、稳定性以及正常使用功能。

2.3控制地震扭转效应

由于建筑物在扭转作用下各片抗侧力结构的层间变形不同,其中距刚心较远的结构边缘的抗侧力单元的层间侧移最远的结构边缘的抗侧力单元的层间侧移最各层的刚度中心未能在同一轴线上,甚至会产生较大差距,以上情况都会使各层结构的偏心距和扭矩发生改变,因此,在设计过程中应分别对各层的扭转修正

系数进行计算。

2.4减小地震能量输入

高层建筑通常要求高度抗震性能,对于地震作用的变形能力有良好控制。在高层建筑的设计过程中,应结合控制构件的承载力与地震作用下的层间位移极限

值或位移延性比,确定构件变形与结构位移的变形值,同时根据截面达到的应变大小及分布来确定构件的构造要求,选择坚硬的场地土来建造高层建筑等方法来

减小地震能量的输入。

3抗震效果优越的高层建筑结构

高层建筑抗震结构设计原则要遵从刚柔并济,多道设防。

选择高层建筑结构抗侧力体系,通常需要考虑的两个主要原因,是建筑物的高度和用途。由于高层建筑中抗水平力成为设计的主要矛盾,因此采用何种抗侧

力结构是结构设计的关键性问题。

3.1剪力墙结构

框架——剪力墙结构是以框架结构为基础沿其柱网的几个主轴方向,通常是沿建筑平面的纵向、横向或斜向,在框架结构中的适当部位增设一些剪力墙所形成的结构体系。框架一剪力墙结构是刚柔相结合的结构体系,能提供建筑大开间的使用空间,是由若干道单片剪力墙与框架组成。在这种结构体系中,框架和剪力墙共同承担水平力,但由于两者刚度相差很大,变形形状也不相同。必须通过各层楼板使其变形一致,达到框架和剪力墙的协同工作。从受力特点看,剪力墙是以弯曲变形为主,框架是以剪切变形为主,由于变位协调,在顶部框架协助剪力墙抗震,在底部剪力墙协助框架抗震,其抗震性能由于较好的发挥了各自的优点而大为提高。因此,可以适用于各种不同高度建筑物的要求而被广泛采用。.

3.2钢结构

钢结构具有整体自重轻、强度高、抗震性能好、施工工期短等优点,并且钢结构构件截面相对较小,具有很好的延性,适合采用柔性方案的结构。其缺点是造价相对较高,当场地土特征周期较长时,易发生共振。历次地震表明,在同等场地、地震烈度条件下,钢结构房屋的震害要较钢筋混凝土结构房屋的震害小得多。以1985年9月墨西哥城大地震,里氏8.1级的震害为例,其中倒塌和严重破坏的钢结构房屋为12栋,而钢筋混凝土房屋却有127栋。

现在我国钢材产量已居世界前列,建筑钢材的类型及品种也在逐渐增多,钢结构的加工制造能力已有了很大提高。因此,在有条件的地方,建议尽可能采用

型钢混凝土结构SRC、钢管混凝土结构CFS或钢结构,以减小柱断面尺寸,并改善结构的抗震性能。

3.3选择合理的结构布置

协调好建筑与结构的关系,要做到经济合理,便于施工。建筑物的开间、进深、层高、层数等平面关系和体型除满足使用要求外,还应尽量减少类型,尽可能统一柱网布置和层高,重复使用标准层。在结构布置时,应加强结构的整体性及刚度,加强构件的连接,使结构各部分以最有效的方式共同作用,加强基础的整体性,以减少由于基础平移或扭转对结构的侧移影响。在地震区为了减少地震作用对建筑结构的整体和局部的不利影响,应使结构各部分刚度对称均匀,各结构单元的平面形状应力求简单规则,立面体型应避免伸出和收进,避免结构垂直方向刚度突变等。

平面的长宽比不宜过大,以避免两端相距太远,振动不同步,应使荷载合力作用线通过结构刚度中心,以减少扭转的影响。尤其是布置楼电梯问时不宜设在平面凹角部位或端部角区,它对结构刚度的对称性有显著的影响。

3.4提高结构的抗震性能

由于高层建筑的受力特点不同于低层建筑,因此在地震区进行高层建筑结构设计时,除应保证结构具有足够的强度和刚度外,还应具有良好的抗震性能。为

了达到这一要求,结构必须具有一定的塑性变形能力来吸收地震所产生的能量,减弱地震破坏的影响。使其在地震作用下呈弯剪破坏,且塑性屈服尽量产生在墙

的底部。连梁宜在梁端塑性屈服,且有足够的变形能力,在墙段充分发挥抗震作用前不失效,按照“强墙弱梁”的原则加强墙肢的承载力,避免墙肢的剪切破坏提高其抗震能力。

建筑结构抗震设计篇3

关键词抗震;结构;设计方法

如何能够让建筑在地震中保持安全,不受严重的损害,是当前建筑施工设计必须要考量的一个大问题,特别是近年来地震频繁,人们的生命财产受到严重威胁,建筑安全则成了社会安全的一个重要影响因素,为保证建筑的抗震能力,设计人员必须要根据相关标准,设计出具有相当抗震能力的房屋。

1.抗震设防的目标

我们所说的抗震设防,指的是对建筑物进行抗震设计,同时有针对性的采取一定的抗震构造的措施,最终实现结构抗震的效果和目的。一般来说,抗震设防主要依据的是抗震设防烈度。而抗震设防烈度的依据,是以国家规定权限审批或颁发的文件执行的,其是一个地区作为抗震设防标准。通常情况下,是采用国家地震局颁发的地震烈度区划图中规定的基本烈度的。从当前内外抗震设防目标的发展总趋势来看,其基本要求建筑物在使用期间,可以应对对不同频率和强度的地震,即“小震不坏,中震可修,大震不倒”。这是我国抗震设计规范所采用的抗震设防目标。

建筑工程在施工中的设防的目标如下:1)如果所遭受的是低于本地区设防烈度多遇的常规地震,建筑物不受损坏,不需修理仍可继续使用;2)如果遭受到本地区规定的设防烈度的地震,建筑物,包括结构和非结构部分,可能损坏,但不会对人民生命和生产设备的安全造成威胁,经修理仍可使用;3)如果遭受高于本地区设防烈度的罕遇地震,尽量保证建筑物不倒塌。

也就是说,在建筑结构的防震设计上,设计方可以按照多遇烈度、基本烈度和罕遇烈度这三个层次进行考虑。从概率上看,多遇地震烈度是发生机会较大的地震级别。按照现行规范设计的建筑,在设计上要达到这样的防震效果:当遭遇多遇烈度作用时,建筑物处于弹性阶段,通常不会损坏;当遭遇相应基本烈度的地震时,建筑物将进入弹塑性状态,但一般不会发生严重破坏;当遭遇罕遇烈度作用时,建筑物可能会有严重破坏,但不至于倒塌。

2.建筑结构抗震设计方法要点

我国所颁布的《抗震规范》提出了两阶段设计方法,以实现上述3个烈度水准的抗震设防要求。第一阶段的设计方案,必须要符合抗震设计原则,同时根据与基本烈度相对应的众值烈度(相当于小震)的地震动参数,通过采用弹性反应谱法求得结构在弹性状态下的地震作用标准值和相应的地震作用效应,接着与其他荷载效应按一定的组合系数进行组合,同时对结构构件截面,进行具有针对性的承载力验算,如果建筑物较高,还必须要进行变形验算,以保证其侧向变形不要过大。这样,一方面满足了第一水准下必要的承载力可靠度,同时也满足第二水准的设防要求(损坏可修)。当然,最后还必须通过概念设计和构造措施来满足第三水准的设防要求。

对于非地震高发区的大多数建筑结构而言,只进行第一阶段的设计已经足够了,但根据建筑的特点和地区的特征,少部分结构诸如有特殊要求的建筑和地震时易倒塌的结构,还必须要进行第二阶段的设计,也就是按与基本烈度相对应的罕遇烈度(相当于大震)验算结构的弹塑性层间变形是否满足规范要求(不发生倒塌)。如果发现有变形过大的薄弱层,那应该积极修改设计,或者可以采取相应的构造措施,以满足第三水准的设防要求,也就是大震不倒。

3.结构选型与结构布置

3.1结构材料的选择

选择哪一种材料对建筑的结构抗震有着直接的影响,所以材料的选择应该与建筑的方案设计同步,在研究建筑形式的同时进着手进行研究。同时还应该要确定采用什么样的结构体系。这样做的目的,主要是为了能够根据工程的各方面条件,选择既符合抗震要求又经济实用的结构类型。结构选型是较为复杂的一项工作,在选择时必须要考虑建筑的重要性、设防烈度、房屋高度、场地、地基、基础、材料和施工等因素,再加上经技术、经济条件比较后再确定。如果我们单从抗震角度考虑,好的结构型式,应具备以下特点:1)延性系数高;2)“强度/重力”比值大;3)匀质性好;4)正交各向同性;5)构件的连接具有整体性、连续性和较好的延性,并能发挥材料的全部强度。如果只从数据上看,按照上述标准来衡量,常见建筑结构类型,理论上的抗震性能优劣顺序是:1)钢结构;2)型钢混凝土结构;3)混凝土一钢混合结构;4)现浇钢筋混凝土结构;5)预应力混凝土结构等。当然,在这里必须要强调的是,我们说的抗震最好的钢结构,其优越性是相对性的,从优点看,其延性,连接较好,具有可靠的节点,同时拥有在低周往复荷载下有饱满稳定的滞回曲线,从实际的经验看,钢结构建筑的表现都不错。但是,我们说的相对性,是只设计理念即施工方法的到位如果不到位这些建筑同样会在地震中受损。

3.2抗震结构体系的确定

不同的结构体系,在抗震性能、使用效果和经济指标等方面的效果是不同的。因此,确定适合的抗震结构体系至关重要。《抗震规范》的基本要求:1)必须具备明确的计算简图和合理的地震作用传递途径;2)形成多道抗震防线,避免因部分结构或构件破坏而导致整个体系丧失抗震能力或对重力的承载能力;3)必须具备必要的强度以及良好的变形能力和耗能能力;4)应该具有合理的刚度和强度分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中;对可能出现的薄弱部位,应采取措施提高抗震能力。

总之,在选择确定建筑的结构体系时,建筑物刚度与场地条件的关系是必须要考虑的。如果建筑物自振周期与地基土的卓越周期接近一致,那就说明建筑可能会产生共振,进而加重建筑物损害。一般来说,建筑物的自振周期与结构本身刚度有关,所以在设计房屋之前,设计单位必须要掌握场地和地基土及其卓越周期,以便在建筑结构的设计中调整结构刚度,最终避开共振周期。

当然,在选择结构体系时,还应该要注意选择合理的基础形式。基础应该有足够的埋深,如果是多层房屋,就应该设置地下室。根据实践调查,设置地下室的房屋,可以减轻整个结构的震害。至于那些地基软弱的,就应该考虑选用桩基、筏板基础或箱形基础。而针对岩层高低起伏不均匀的情况,则可以考虑选择桩基,桩基可以穿入非液化土层,使建筑结构更加稳固。如果建筑物层数不多、地基条件又较好时,也可以采用单独基础或十字交叉带形基础等。

3.3结构布置的一般原则

3.3.1平面布置力求对称通常情况下,对称结构在地面平动作用下只会发生平移振动,各构件的侧移量相等,这样就使得水平地震作用按构件刚度分配,所以各构件受力比较均匀,不会导致力的分布失衡。如果是非对称结构,刚心会偏在一边,质心与刚心不重合,即便只是发生地面平动也可能出现扭转振动。最终会导致远离刚心的构件,侧移量大,承担过度的水平地震剪力。这就很容易发生严重破坏,甚至可能会导致整个结构因一侧构件失效而倒塌。

3.3.2竖向布置力求均匀结构竖向布置均匀,可以最大限度的使其竖向刚度、强度变化均匀,这样可以有效的避免出现薄弱层。从建筑结构的特点看,临街的建筑物,往往会因为商业的需要,底部几层有大空间的设置。非临街的建筑物,底部也可能门厅、餐厅或停车场,而出现大空间。在这种结构中,上部的钢筋混凝土抗震墙或竖向支撑或砌体墙体到此被中止,而下部须采取框架体系。也就是说,上部各层为全墙体系或框架一抗震墙体系,而底层或底部两三层则为框架体系,整个结构属“框托墙”体系。地震经验指出,这种体系很不利于抗震。因此,在实际的抗震结构设计中,应该要保持结构竖向布置的均匀。

也就是说,同一楼层的框架柱,必须要具有大致相同的刚度、强度和延性,以此避免地震时,因受力大小悬殊而被各个击破的危险。此外,还必须注意的是,在采用纯框架结构的高层建筑中,楼梯踏步斜梁和平台梁直接与框架柱相连时,应该避免该柱变成短柱的情况,这样才能有效的避免地震时发生剪切破坏。

4.结语

总之,在建筑结构的防震设计中,设计人员必须根据建筑的实际情况,结合地质环境,在经济与安全的综合考量下,设计出科学合理的防震方案,保证建筑物在相应的防震标准下进行施工,保证建筑的安全。

参考文献:

[1]寇秀梅.结构设计中的抗震设计问题[J].中国西部科技,2008(06).

建筑结构抗震设计篇4

关键词:建筑;地震;抗震设计

中图分类号:tU984文献标识码:a文章编号:

地震是一种随机性振动,它有着难以把握的复杂性和不确定性。到目前为止,人类的科技水平还不能进行短期或临震预报,也就无法准确预算建筑物在遭遇地震时的各项变形参数,而且单靠计算也很难确保房屋具有足够的抗震性能。因此,在建筑的方案设计阶段,应尽可能在兼顾建筑造型,又满足使用功能要求的前提下,将建筑的抗震问题融入考虑,得到一个美观的、适用的、结构合理科学的方案,真正实现我们国家规定的“小震不坏,中震可修,大震不倒”的抗震设防目标。

1地震对建筑的破坏

当前,随着各地地震灾害的多发,给你们带来了精神及物质方面的损失,尤其是四川汶川、青海玉树的高震级地震,给人们造成了巨大伤害。因此,对于抗震设计的研究越来越受到建筑界专业人士的关注。要想针对震害做出正确的抗震设计,使建筑能有效地抵抗地震带来的破坏,就必须首先了解地震对建筑物的破坏机理。地震是由于地下深处岩石破裂、错动把长期积累起来的能量瞬时急剧释放出来,以地震波的形式向四面八方传播出去,从而在一定范围内引起地面振动的现象。建筑物位于地球表面,建筑物受地震破坏的方式主要受地震波的传播方式影响。

地震波的传播方式有三种:纵波、横波、面波。

1.1纵波是推进波,它使地面发生上下振动,建筑物便随之上下颠簸,力量非常大,使底层承重的柱子或墙突然增加很大的动荷载,加之上部建筑物的自重压力,若超出底层墙、柱的承载力,柱、墙就会垮掉,从而引发上层建筑的连续倒塌;

1.2横波是剪切波,它使地面发生前后、左右抖动;

1.3面波是由纵波与横波在地表相遇后激发产生的混合波,其波长大、振幅强,只能沿地表面传播,这两种波使建筑物水平摇摆,相当于对建筑物沿水平方向施加了一个来回反复的作用力。若底部柱、墙的强度或变形能力不够,就会使整栋建筑物向同一方向歪斜或倾倒。这种破坏方式在震区较常见,是造成建筑物强烈破坏的主要因素。

很多时候,三种波同时发生作用,引起建筑物的扭转,而建筑物的抗扭能力通常较差,很容易扭坏。震区有的建筑物角部坍塌,便多属于这种情况。

2抗震建筑方案设计

以下本人就从建筑的平面设计、立面和造型设计、竖向布置设计、防震缝的设置等角度探讨建筑方案设计阶段应注意的几个问题。

2.1建筑的平面设计

建筑的平面布置是整个建筑设计中十分重要的部分,它直接反映了建筑的使用功能和要求。其中,柱子的距离、横墙的布置、空间活动面积的大小特别是无柱大空间的布置、楼电梯的位置、阳台出挑尺寸的大小、错层或跃层的室内设计、飘窗和大落地窗的设计等都会影响到建筑物的抗震性能。例如,由于建筑使用功能不同,每个楼层的房间布置有可能有较大差异,导致部分填充墙和内隔墙的位置不对称、不协调,打断了荷载传递的连续性,使建筑物在地震时产生扭转地震作用,引起结构的局部破坏。

还有的建筑物,其刚度很大的电梯井筒被布置在建筑平面的角部或是平面的一侧,结果在地震中造成靠电梯一侧建筑物的严重破坏。这是因为电梯井筒具有极大的抗侧力刚度,吸引了地震作用的主要部分。也有的建筑物,在平面布置上一侧的墙体很多,而另一侧的墙体稀少,或是在房间的功能分配上两侧的差异很大,这就造成平面上刚度分布的很不对称,质量分布也偏心,使结构的受力和变形不协调,导致扭转地震作用效应,对抗震不利。

由此可见,建筑的平面布置设计对建筑抗震影响很大,从概念上要解决的一个核心问题是:建筑平面布置设计上要尽可能做到使结构的质量和刚度分布均匀,对称协调,避免突变,防止产生扭转效应。

2.2立面和造型设计

建筑的立面和造型设计往往是建筑方案设计时的难点,因为直接关系到建筑建成后呈现出来的外观效果。建筑造型包括建筑的平面形状和主体的空间形状的设计。历次震害表明,许多平面形状复杂(如平面上大量的外凸和凹进、侧翼的过多伸悬、不对称的侧翼布置等)的部位在地震中都遭到了不同程度的破坏,是建筑物抗震性能较差的“软肋”部分。而那些平面形状简单规则、“中规中矩”的建筑在地震中却未出现较重的破坏,有的甚至保持完好无损。同样,沿高度立体空间形状上的复杂和不规则在地震时也会造成震害。特别是在建筑结构刚度发生突变的部位更易产生破坏。因此在建筑体型的设计中,应尽可能地使平面和空间的形状简洁、规则:在平面形状上,矩形、圆形、扇形、方形等对抗震来说都是较好的体型,尽可能少做外凸和内凹的体型,尽可能少做不对称的侧翼和过长的伸翼;在体型布置上尽可能使建筑结构的质量和刚度比较均匀地分布,使建筑的结构质量中心与刚度中心相一致,避免产生因体型不对称导致质量与刚度不对称的扭转反应。

2.3竖向布置设计

建筑的竖向布置设计问题在建筑设计中主要反映在建筑沿高度(楼层)结构的质量和刚度分布设计上。无论是在单层、多层还是高层建筑中,这个问题都是不容忽视的。存在这个问题的原因主要是由于建筑使用功能的不同要求形成了建筑物沿高度分布的质量和刚度的不均匀、不协调。例如底层或下面几层是商场、购物中心或酒店,建筑上要求柱距大,空间大,墙少柱多;而上面的楼层则是开间较小的写字楼或公寓楼,空间上以墙为主,柱很少。这样就使上下楼层的质量和刚度相差过大,形成突变,并且在刚度最差的楼层形成对抗震极为不利的抗震承载力不足和变形很大的薄弱层。这是在建筑设计中必须高度重视的问题。在实际工程设计中,在建筑使用功能不同的情况下,很可能出现上下相邻楼层的墙体不对齐,柱子不对齐,墙体不连续,不到底;上层墙多,下层墙少;上层有柱,下层无柱等,使地震力的传递受阻或不通;抗震用的剪力墙设置不能直通到底层、布置严重不对称或数量太少。所有这些布置都将给建筑物带来地震作用分布的不均匀、不对称和对建筑物很不利的扭转作用。多次大震害表明,建筑物竖向楼层刚度的过大变化,容易给建筑物造成很多破坏,甚至导致整个楼层的垮塌。例如:在2008年的汶川大地震中,也有许多底层框架的砖混建筑由于底层框架的刚度远小于上部结构,在地震作用下底层框架变形集中损伤严重,成为整个结构的软弱楼层而造成严重震害。因此,尽可能使墙、柱上下连续贯通,使剪力墙布置均匀并使其直通到建筑物底部,以避免楼层因刚度不均匀而在地震时产生扭转效应。

2.4合理设置防震缝

建筑抗震性能的强弱很大程度上取决于这个建筑的整体刚度和整体稳定性。由此可见,建筑的形状和体型越规则则抗震性能越强,反之其抗震性能就越差。但是从建筑的美学角度出发,建筑设计人员在进行方案创作时不可避免地会在平面、立面和造型处理上做一些变化。这个时候就应当尽量在适当部位设置防震缝,将建筑物分割成若干个体型相对规则、结构刚度均匀的独立单元,以防止在地震力的作用下由结构刚度和体型差异而引起的结构破坏。

通常,防震缝的设置部位一般在建筑物立面高差大于6m时;建筑物有错层,且错层高差较大时;建筑物各部分结构刚度、质量截然不同时。当因建筑原因不宜留防震缝时,也应留混凝土后浇带。

参考文献:

[1]包世华,方鄂华.高层建筑结构设计[m].北京:清华大学出版社,2008.

建筑结构抗震设计篇5

关键字:多层砌体震害特征;抗震概念设计;砌体结构

砌体结构是多层住宅,办公楼,学校和医院等建筑工程中广泛应用的一种结构形式。尽管汶川大震中经过抗震设计的房屋发生严重破坏和倒塌的比例约为20%--30%。但是我们也看到经过抗震设计的的砌体结构在经过了远超出设防烈度的情况下,仍有相当比例的砌体房屋达到了“大震不倒”的设防目标。有的甚至经过维修加固仍能使用。映秀镇漩口中学框架结构的教学楼由于只有一道防线完全倒塌,倒塌的教学楼后面一栋五层的住宅楼在地震烈度高达11度的情况下仍屹立不倒,也说明了砌体结构经过严格按照规范设计施工的砌体结构完全可以实现“大震不倒”的设防目标。鉴于目前我国国情,砌体结构由于造价低廉,方便取材,仍是我国中小城市或县镇建设中大量使用的一种结构形式。

为提高多层砌体结构建筑的抗震性,必须重视概念设计,做好抗震构造措施,从地震中吸取经验教训,应做好以下工作:

一.严格按照抗震规范控制层数和高度

历次地震都证明:二,三层房屋震害要比四,五层的震害轻得多,六层及六层以上的砌体房屋震害明显加重。海城和唐山地震中,相距不远的房屋,四,五层比二,三层的破坏严重,倒塌比例也高得多。如果阁楼仅仅为层高不高且不住人,只是屋架的一个组成部分,此时可不作为一层,若层高较高可住人,则屋面阁楼计入层数,高度计算至阁楼层山尖墙的1/2处。半地下室从地下室室内地面起算高度,全地下室和嵌固条件好的半地下室允许从室外地面起算高度。横墙较少的总高度应比抗规表7.1.2降低三米,层数相应减少一层;横墙很少的房屋应再减少一层,高度再减少三米。

地震烈度相对较低的6,7度,按照规定采取加强措施并满足抗震验算时,其高度和层数可不减小。

多层砌体房屋的层高不应该超过3.6米层高。如学校确实需要较高的层高时,在采用约束砌体等加强措施后层高仍不能超过3.9米。

二.平面和立面布置要规则

有的建筑师为追求立面效果而忽视了房屋的规则性,从汶川地震中我们可以清晰看到,建筑平面的凹凸变化容易造成应力的集中,引起各个击破从而导致严重破坏甚至倒塌。平面凹凸尺寸不应超过典型尺寸的50%,超过25%时房屋转角应采取加强措施。因此,房屋平面最好是矩形,体型布置上尽可能使建筑结构的质量中心和刚度刚度中心重合,避免因体型不对称导致扭转反应引起应力集中。

三.控制房屋的高宽比

由于砌体结构抗压能力较强而抗拉,抗弯能力较差,为了防止底部过早受拉破坏,因此抗震规范规定高宽比目的就是为了保证房屋的整体稳定性,防止整体弯曲破坏。合适的高宽比能提高砌体结构的抗震性能。注意计算宽度时单面走廊房屋不包括走廊宽度。

四.横墙间距要限制

横墙间距的大小和震害有直接的关系。砌体结构的墙体是主要受力构件,墙体数量越多,间距越小,震害越轻,抗倒塌能力就越强。汶川地震中大开间多层砌体房屋倒塌比例明显偏高再次证明了横墙间距对抗震的重要性。

五.控制墙体的局部尺寸

窗间墙的破坏形态按照窗洞高和窗间墙的比值大致分为三种:

a:比值小于不大于1.0时,窗间墙裂缝表现为较小的交叉裂缝。

B:比值大于1.0时,尽管也表现为交叉裂缝,但裂缝较陡,随着比值的增加裂缝两侧的砌体破裂直至掉落。

C:当比值远大于1.0时,即很窄的窗间墙,表现为弯曲破坏,严重的导致压碎脱落。

汶川地震中这种典型破坏特征,屡见不鲜。

为此规范规定窗间墙的开洞面积6,7度时不宜大于55%,8,9度时不宜大于50%。不能过分追求大窗而牺牲抗震性能。和横墙相连处除设置构造柱以外,应根据情况适当增加拉结钢筋网片的数量。和纵墙不相连的窗间墙更要加强配筋数量,必要时在窗间墙两侧增设构造柱。

规范明确规定,局部尺寸不满足时应采取加强措施弥补,通常可增设构造柱,但要注意不要认为设置了构造柱尺寸可任意缩小,至少也要满足局部尺寸的80%。

局部尺寸的限制是避免个别局部部位破坏失效而引起内力重分布,从而造成连锁反应造成整栋房屋的破坏甚至倒塌。

六.加强楼梯间的安全性

楼梯间是地震或火灾时最重要的安全通道,楼梯间也是砌体房屋的薄弱环节。汶川地震中楼梯间遭到严重破坏和倒塌,有的甚至连同梯段一起被折断,楼梯上有人后果可想而知。规范规定除楼梯间四角设置构造柱外,斜梯段上下端对应处也设置构造柱。再加上层间设置的钢筋混凝土带,这样楼梯间四周墙就被划分成了比较小有约束的区格,大大增强了楼梯间的整体性。如果再适当加强梯板的厚度和配筋及梯梁的纵筋和箍筋,那么楼梯间的安全性无疑会大幅提升。

出屋面的楼梯间由于鞭梢效应更应该得到加强。

七.砌体房屋的底部要加强

由于地震剪力沿房屋高度为三角形分布,地震剪力底部大,向上逐步减小。汶川地震中底部和底部数层震害明显比上部严重。规范规定6,7度底部1/3楼层,8度时底部1/2楼层,9度时全部楼层均需沿墙通长设置拉结钢筋网片,构造柱也宜适当加密或构造柱适当加大截面及配筋。这样可以限制底部的裂缝宽度,使受力更均匀。从抗震规范这个措施也可以看到随着经济的逐步发展砌体结构从无筋砌体逐步向配筋砌体过渡。

八.采用合理的结构体系

由于横墙开洞少且和纵墙互为支撑,横墙承重能较好的传递地震力,所以应优先采用横墙承重或纵横墙共同承重,严禁采用砌体墙和混凝土墙混合承重的结构体系。由于砌体结构的脆性和扭转效应严禁开转角窗。为了使地震力传力明确,均匀传递,承重墙体布置宜均匀对称,沿平面宜对齐,竖向应连续,并且纵横向墙体有效面积不宜相差太大。

九.加强房屋的整体性

房屋是由四周墙体和楼板组成的一个个封闭空间。很明显抗震能力与房间的整体性密切相关。地震发生时地震作用的传递是通过楼板传递给墙体。楼板和四周墙体的连接显得尤为重要。汶川地震中倒塌的预制楼板端部钢筋有的很明显看到被弯折,楼板之间以及楼板和墙体之间没有任何有效连接,如果有一块预制板被砸断坠落就会引起连锁反应,抗震能力可想而知。唐山地震时这种现象屡见不鲜,预制板也被当地百姓称为“棺材板”,所以唐山也是较早不采用预制板的城市之一。如果采用预制板必须加强楼板和墙体的连接,预制板侧边也应和墙或者圈梁拉结。只有这样才能均匀传递地震力,即使楼板被砸断也不至于坠落,有条件的地区采用现浇楼板无疑是更好的选择。

九.合理设置圈梁和构造柱

根据实验研究和震害经验知道,设置在墙两端的构造柱可以提高墙体的受剪承载力10%--30%左右,提高幅度和墙段的高宽比,轴压力及开洞情况有关,构造柱主要作用是和圈梁组成边框对墙体起约束作用,使之有较高的变形能力和延性,达到消耗地震力的作用,防止墙体的突然坍塌。所以构造柱应设置在墙体的两端和阳角等应力集中的部位和错层及梁下墙垛等比较薄弱的部位。

横墙在地震作用下成“X”形裂缝破坏,墙体较长时中部就会出现水平裂缝,所以构造柱的间距不宜过大,一般不宜超过层高的二倍。从震害中我们也可以看到,构造柱间距较远起不到对墙体的有效约束,所以新抗震规范明确的增加了构造柱的设置数量,缩小了构造柱的间距,相应圈梁间距也减小了。汶川地震的震害中我们也看到设置构造柱的转角被剪断压屈,未设置构造柱的底层倒塌引起整栋楼完全坍塌。再次证明了构造柱可以提高墙体的抗剪和抗压能力。

由于砌体结构材料本身脆性的特征,所以构造柱和圈梁的设置,在一定程度改变了完全脆性的性质,特别是地震时具有了一定的延性。汶川地震的震害调查再次证明了圈梁和构造柱能大幅提高房屋的整体性,提高抗震能力,是抗震行之有效的措施。试想如果构造柱的设置间距和层高比较接近的话,砌体结构的抗震防倒塌能力无疑会更高。

建筑结构抗震设计篇6

关键词:建筑结构;结构设计;抗震设计

地震是一种破坏力巨大的自然灾害,往往因为其具有的随机性和复杂性,对建筑结构产生极大的破坏作用。当前依然不能够准确的预测地震位置和烈度,因此为了保证建筑结构安全性,需要提高建筑结构的整体抗震能力。通过合理的抗震结构设计是提高建筑抗震能力的有效技术措施。

1、建筑结构抗震设计的重要作用

在地壳运动过程中,若发生急剧变化会形成地震,其属于一种强烈的自然现象。从相关统计数据来看,全球每年发生地震次数超过百万次,其中大部分地震都发生在地层深处,其对表层人类活动造成的影响不大。但是,其一旦发生在浅层,尤其是遇到特大、特级地震时,会对地表人员活动产生十分严重的危害。例如,我国2008年发生的“汶川地震”产生了灾难性的毁坏。而在地震过程中对人员造成破坏的主要原因是建筑物的倒塌,因此在建筑结构设计过程中通过合理的技术措施提高建筑的抗震能力,能够显著降低人员生命财产的损失。

2、建筑结构抗震设计过程中需要关注的几个重要问题

2.1建筑结构体系的合理选择

建筑结构体系选择是建筑结构设计的首要内容,同时也是建筑结构设计最为主要的内容之一,其直接影响到建筑的整体安全性。在选择建筑结构体系的过程中,需要关注的问题主要包括这样几个方面:①建筑结构体系必须具有精确的力学简图,并形成合理的地震振动力传播途径。在建筑房屋内部结构的设计过程中要在建筑主梁上增加适当多的载荷,并设计尽量短的传播路径使得竖向荷载能够向主受力部位迅速传递、耗散。在布置竖向构件的过程中,竖向构件应该确保足够的均向压应力;②应该保证建筑结构体系的合理强度。合理的强度是建筑整体支撑性能的一个有效保证,这样才能够避免在建筑局部位置出现致命的薄弱位置。在建筑框架结构设计的过程中,需要保证建筑的节点状态不被破坏,并尽可能的分散柱端部和梁的塑性变形。

2.2抗震场地的合理选择

建筑物抗震审计工作的另一项重要内容是合理选择抗震场地,这是由场地抗震能力所决定的。在抗震设计过程中,要合理避开不利于提升建筑抗震能力的地段。因为地震能够对地表产生极大的破坏,因此要避开那些均匀度不足、软土地基甚至是液化地基进行建筑施工。若场地无法避免上述问题,则应该采取相应的抗震措施,使其整体抗震能力得到增强。对于可能存在滑坡、地裂的场地,应该采取对应的稳定措施;若需要在软土地基或者不均匀地层中进行工程建设,则应该对地基进行加固处理。

2.3确保建筑平面的规则性

在建筑结构设计过程中要将地震概念设计应用到建筑平面布置过程中,避免在设计过程中使用明显不规则的设计方案。设计过程中,可以使用楼板计算模型对不规范的楼板布局进行设计。对于立面不规则和平面不规则结构的结构模型,则可以使用空间结构计算模型进行设计。在实际的设计工作中,可以对结构规则性进行划分:①保证建筑主体的抗压能力,确保建筑抗侧力结构不发生变形,同时使得建筑的整体受力分布均匀;②建筑主体结构的平面抗侧力结构的合理布局,同侧建筑的强度应该在建筑主体抗侧力结构的布置过程中保持足够的均匀度;③对于围护结构,在建筑主体抗侧力结构的布置过程中要确保刚度的统一性,确保抗扭刚度得到保证。

3、建筑结构设计中抗震设计的相关技术

3.1基于能量的建筑结构抗震设计

基于能量的建筑结构抗震设计是从地震能量的角度分析地震产生的地面运动对建筑结构产生的作用来进行设计的一种方法。其具有设计目标明确的特点,而且能够将地震的强度、频谱和持续时间对建筑结构产生的破坏引入到建筑结构的设计中来。同时,从能量输入、能量耗散两个角度分析建筑结构在地震过程中的变形特征,为结构设计提供可靠的依据。

由于地震能量分析具有对应的复杂性,因此该方法当前还存在一些不成熟的地方,需要在实际的工程设计中根据实际的工程项目情况进行对应的修正。例如,建筑抗震设计过程中能量的概念以及破坏模型,其对于地震能量的耗散以及性能等提出了对应的要求。该种方法能够对建筑结构在地震作用下产生的滞回变形进行分析,同时对基于能量的抗震结构设计产生积极影响。因此,基于能量的建筑结构抗震设计是未来建筑抗震设计的发展方向之一。

3.2基于损伤的建筑结构抗震设计

近年来的抗震结构设计研究表明,由于地震的往复性、持续时间短等特点,导致建筑结构在地震作用下的损伤程度不但与结构的变形相关,而且还与建筑结构的低周疲劳效应导致的累积损伤相关。因此,在建筑结构设计过程中,结构变形和累积损伤效应等参数能够更好的对建筑结构的非弹性性能进行精确描述。其中,计算损伤指数是将建筑结构的累积滞回能耗作为基础,而建筑结构能量分析是计算累积滞回能耗的重点,所以在建筑结构设计过程中可以采取基于损伤的结构设计方法。在设计过程中,通过合理选择地震损伤模型中的损伤指数,计算结构损伤指数,并对损伤结果进行验算。

3.3基于性能的建筑结构抗震设计

基于性能的建筑结构抗震设计就是通过设计标准的合理选择,保证结构形式的合理性、规划方式的科学性,从而能够使得建筑物的结构以及非结构细部构造形式得到基本保证。通过对建造质量进行控制,并采取长期稳定的维护方式,使得建筑结构能够在对应水平的地震作用下,其对应的结构破坏处于对应的范围中。在具体的实现过程中,可以对混凝土结构使用基于性能的设计原理,使得在地震能量作用下能够通过牺牲部分非关键构件而保证建筑结构的整体性能。

4、国际先进抗震设计理念

日本是地震多发国家,其在建筑的结构抗震设计过程中积累了大量的先进技术。例如,日本东京通过建造弹性建筑,并通过了6.6级地震的考验,具有良好的抗震减灾效果。该种建筑是在对应的弹性隔离体上进行建造,所采用的隔离体主要包括分层橡胶、硬钢板组和阻尼器,建筑整体结构没有与地面直接相接触,达到抗震、减震的目的。其中,阻尼器使用螺旋钢板构成,能够有效的减缓地震产生的能量作用在建筑结构上的载荷。

在日本鹿岛,技术人员发明了一种防震营造方法,通过使用弹簧将地基的基础部分与建筑物相分离,使得建筑的主体建造于能够吸收地震能、减缓地震冲击的中介结构上。不论地基发生怎样的振动,传递至建筑物的振动能量都衰减至总能量的1/10。

参考文献:

[1]赵丽.谈建筑结构中的抗震设计[J].城市建设理论研究(电子版),2014(22).

建筑结构抗震设计篇7

[关键词]建筑结构设计;抗震设计;研究

中图分类号:tU3文献标识号:a文章编号:2306-1499(2014)08-0227-02

根据建筑结构抗震设计的规范可知,建筑结构可以通过不同的变量来体现对地震的反应。而在具体的抗震设计过程中,对于设计变量的选择,则需要通过结构自身类型的研究、地震反应特性、地震破坏模式等综合因素而定。按照抗震设计变量的不同,抗震设计主要分为基于承载力的抗震设计法、基于位移的抗震设计方法、基于能量的抗震设计方法和基于损伤的抗震设计方法。目前,国内建筑行业的设计人员在进行抗震设计时,主要是根据以承载力为主,结合建筑性能分析的设计原则来进行。

1.承载力的结构抗震设计思想

1.1理论基础

承载力的结构抗震设计理论是以惯性力的形式反映地震作用,通过静力分析理论的研究,按照弹性方法计算结构地震作用效应的大小、进行结构弹性位移验算,并把结构构件的强度是否满足特定的极限状态作为结构失效的准则。基于承载力的结构抗震设计方法是现行规范中在考虑结构延性的基础上普遍采用一种抗震设计方法。

1.2结构构件抗震承载力

在建筑结构设计的抗震设计过程中,必须依托结构构件的抗震力验算数据来进行。为了确保抗震构件的抗震性能,需要设计地震作用力验算,即一种以单独的一项乘以荷载分项系数加入到结构构件的承载力验算的作用效应的验算方式。在使用"承载力准则"对建筑结构构件进行安全水准考察时,地震力被视作是一种有效“荷载”以相应地震作用分项系数的取值体现其对建筑构件可靠性水准的影响,而以地震作用效应和其他荷载效应的组合效应起确定结构构件屈服水准的作用则是综合权衡抗震结构的安全水准的"设计地震力-延性"联合准则,两者概念有别,必须区分。

1.3降低系数与抗震措施

在现代的建筑结构抗震设计理念中,为了让结构在较低的地震作用下保持弹性的工作状态,必须要降低地震多用参与组合进行结构的抗震承能力的设计。但是在较大的地震作用下,为了让结构可以通过非有弹性变形抵御部分的地震作用,必须根据设计原则,在抗震设计时,引导结构进行合理的屈服,以满足设防的要求。根据抗震设计的基本原则和经验总结可以得出:在特定的地震分区,对于建筑结构而言,如果以设计地震作用为基准,使结构适中保持弹性反应,取用的地震作用越低,建筑结构在相同水准地震作用下位移延性需求会随之增加,或者水平位移越大,反之,水平位移就越小。

2.基于能量的结构抗震设计

能量的结构抗震设计是从输入能量和耗散能量的角度,捕捉到结构在强烈地震作用下的非弹性变形历程,其设计理论考虑了地震强度、频谱、地震持续时间对结构破坏的综合因素的影响,从能量角度分析研究地震地面运行以及运动对建筑结构作用。但是基于能量的结构抗震设计理论较为复杂,原因在于能量的变化没有规律可循。所以,到目前为止,能量的计算方案还未完全建立,基于能量的结构抗震设计方法仍处于研究探索之中。能量概念和破坏模型一直对立存在,成为抗震研究的中并行讨论的课题,基于设计理念和思路,对抗震结构的性能分析,又出现新的要求。

2.1设计特点

基于能量的抗震设计方案原理相对简单,思路简洁清晰,主要是从能量的角度考察地震对结构的作用,以及结构损伤破坏的相互关系角度阐述地震输入能量在结构中的转化、耗散过程。在建筑结构的抗震设计中,以能量分析方法解释地震三要素(幅值、频谱特性和持时)对结构抗震性能影响;能量分析为了能够使塑性累计损伤对结构破坏的影响清晰的反映出来,通过动力时程分析方法求得结构地震反应的全过程,对控制结构损伤性能意义重大。

2.2潜在问题与发展趋势

以能量谱的形式确定地震作用方式得到了绝大多数人的理解和支持,但能量谱的相关理论还不健全,需要继续加强研究;能量反应分析因为采用动力时程分析法,此分析方法比较准确,因而被广泛认可。在建筑结构中,对结构总耗能在非弹性变形耗能与阻尼耗能中的分配以及结构内部非弹性形变的耗能分布规律并没有明确的研究结果,无法建立一个广泛认可的关系表达式解释结构破坏状态与能量控制参数;目前为止,基于能量分析的抗震设计的研究还有一定的局限性,为了尽早的实现能量分析与实际工程的结合,必须加强自由度体系地震能量反应与单自由度体系反应的关系的研究,建立相应的标准规范,以促进抗震设计的发展,保证建筑的质量。

3.基于损伤的结构抗震设计

通过各国学者的研究证实:地震是一种持续时间短的往复运动,地震的破坏力不仅与结构的低周疲劳效应所造成的累积损伤有关,还与结构的最大变形有关。只有非弹性性能能够全面反应结构的变形和累积损伤效应的损伤性能参数,所以,通过非弹性性能建立地震损伤模型,按照结构在未来地震作用下的损伤允许值进行抗震设计是一种比较科学合理的设计方法。

4.基于位移的结构抗震设计

基于位移的抗震设计理论思想是为了确保结构达到该水准地震作用下的性能要求,一定水准的地震作用下,以结构的位移响应为目标设计建筑结构和相关构件。其原理是控制结构在大震作用下的层间位移角限值和总移限值,也就是说,为了使结构的塑性变形能力满足在预期地震作用下的变形要求,需要按照位移要求进行定量分析计算,以获得相应的资料数据,这是一种相对简单、合理的方法。该类设计由于设计思想的差异被分为了延性系数设计方法、能力谱法、直接基于位移的设计方法三大类,其中能力谱法主要体现的是一种位移验算方法,而直接位移法和控制延性方法是依据位移目标进行结构设计,本质相同,途径有异。

5.结语

伴随着建筑行业的发展,国内相关人员根据多年的研究,逐渐形成了一套较为先进有效的抗震设计方案,并在不断的发展中进行完善。当然,其中还有尚待改善的方面,只有通过不断的理论更新和实践证明,才能逐步成熟。为了确保建筑的抗震性能,满足建筑能够适应任何等级的地震,需要继续完善相关设计理念并用实践进行检验证实,促进我国建筑工程的持续健康发展。

参考文献

[1]李田超.浅谈工民建结构设计中的抗震设计[J].江西建材,2013(6):29-30.

建筑结构抗震设计篇8

【关键词】建筑结构;抗震;概念设计

过去我国结构计算理论经历了许多阶段,曾经有经验估算、容许应力法计算、破损阶段计算、极限状态计算,一直到目前普遍采用的概率极限状态理论计算等阶段。现行的《建筑结构可靠度设计统一标准》(GB50068-2001)则是采用以概率理论为基础的结构极限状态设计准则,从而使建筑结构的设计符合技术先进、经济合理、安全适用的原则。概率极限状态理论计算法更科学合理,但是此方法在运算过程中带有一定程度近似,只能把它作为近似概率法,而且只靠极限状态设计很不易估算出建筑物的实际承载力。其实,建筑物是一个空间结构,各种构件以相当复杂的方式共同工作,并不是脱离结构体系整体的单独构件。

地震通常具有随机性、不确定性和复杂性,因此目前很难做到准确预测建筑物所遭遇地震的特性和参数。建筑物其本身又是一个很庞大很复杂的系统,在遭受地震作用后其破坏机理和破坏过程非常复杂。而且在结构分析方面,因为不能充分考虑结构的空间作用、非弹性性质、材料时效、阻尼变化等诸多因素,也将存在着不确定性。所以结构工程抗震问题不能全部依赖“计算设计”解决。应该立足于工程抗震的基本理论以及长期工程抗震经验总结的工程抗震基本概念,从“概念设计”的角度着眼于结构的总体地震反应,按照结构的破坏过程,灵活运用抗震设计准则,全面合理地解决结构设计中的基本问题,既注意总体布置上的大原则,又顾及到关键部位的细节构造,从根本上提高结构的抗震能力。

建筑结构抗震概念设计要从如下几个因素考虑:

1选择对抗震有利场地,避开不利的场地

造成建筑物震害的原因是多方面的,场地条件是其中之一。由于场地因素引起的震害往往特别严重,而且有些情况仅仅依靠工程措施来弥补是很困难的。因此,选择工程场址时,应进行详细勘察,搞清地形、地质情况,挑选对建筑抗震有利的地段,尽可能避开对建筑抗震不利的地段。

对建筑抗震有利的场地,一般是指位于开阔平坦密实均匀中硬土地段。建造于这类场地上的建筑一般不会发生由于地基失效导致的震害,从而可从根本上减轻地震对建筑物的影响。对建筑抗震不利的场地,一般是指软弱土、易液化土、山嘴孤丘、陡坡河岸、采空区和土质不均匀的场地。

2建筑物形状力求简单、规则

建筑物的动力性能基本上取决于其建筑布局和结构布置。如果建筑布局简单合理,结构布置符合抗震原则,那么就能从根本上保证房屋具有良好的抗震性能。

经验表明,简单、规则、对称的建筑抗震能力强,在地震时不易破坏;反之,如果房屋体形不规则,平面上凸出凹进,立面上高低错落,在地震时则容易产生震害。而且,简单、规则、对称结构容易准确计算其地震反应,可以保证地震作用具有明确直接的传递途径,容易采取抗震构造措施和进行细部处理。

3选择对于抗震合理的结构形式

抗震结构体系是抗震设计应考虑的关键问题。按结构材料分类,目前主要应用的结构体系有砌体结构、钢结构、钢筋混凝土结构、钢-混凝土结构等;按结构形式分类,目前常见的有框架结构、剪力墙结构、框架剪力墙结构、简体结构等。结构体系的确定受到抗震设防烈度、建筑高度、场地条件以及建筑材料、施工条件、经济条件等诸多因素影响,是一个综合的技术经济问题,需进行周密考虑确定。

抗震规范对建筑结构体系主要有以下规定:

3.1结构体系应具有明确的计算简图和合理的地震作用传递途径;

3.2结构体系宜具有多道抗震防线,应避免因部分结构或构件破坏而导致整个体系丧失抗震能力或对重力荷载的承载能力;

3.3结构体系应具有必要的抗震承载力,良好的变形能力和耗能能力;

3.4结构体系宜具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力集中或塑性变形集中,对可能出现的薄弱部位,应采取措施提高抗震能力;

3.5结构在两个主轴方向的动力特性宜相近,在结构布置时,应遵循平面布置对称、立面布置均匀的原则,以避免质心和刚心不重合而造成扭转振动和产生薄弱层。

4确保结构的整体性

结构是由许多构件连接组合而成的一个整体,并通过各个构件的协调工作来有效地抵抗地震作用。若结构在地震作用下丧失了整体性,则结构各构件的抗震能力不能充分发挥,这样容易使结构成为机动体而倒塌。因此,结构的整体性是保证结构各个部分在地震作用下协调工作的重要条件,确保结构的整体性是抗震概念设计的重要内容。

为了充分发挥各构件的抗震能力,确保结构的整体性,在设计的过程中应遵循以下原则:

4.1结构应具有连续性。结构的连续性是使结构在地震作用时能够保持整体的重要手段之一。

4.2保证构件间的可靠连接。提高建筑物的抗震性能,保证各个构件充分发挥承载力,关键的是加强构件间的连接,使之能满足传递地震力时的强度要求和适应地震时大变形的延性要求。

4.3增强房屋的竖向刚度。在设计时,应使结构沿纵、横两个方向具有足够的整体竖向刚度,并使房屋基础具有较强的整体性,以抵抗地震时可能发生的地基不均匀沉降及地面裂隙穿过房屋时所造成的危害。

5提高结构的延性

结构的延性可定义为结构在承载力无明显降低的前提下发生非弹性变形的能力。结构的延性反映了结构的变形能力,是防止在地震作用下倒塌的关键因素之一。

结构良好的延性有助于减小地震作用,吸收与耗散地震能量,避免结构倒塌。而结构延性和耗能的大小,取决于构件的破坏形态及其塑化过程,弯曲构件的延性远远大于剪切构件,构件弯曲屈服直至破坏所消耗的地震输入能量,也远远高于构件剪切破坏所消耗的能量。因此,结构设计应力求避免构件的剪切破坏,争取更多的构件实现弯曲破坏。始终遵循“强柱弱梁,强煎弱弯、强节点、弱锚固”原则。构件的破坏和退出工作,使整个结构从一种稳定体系过渡到另外一种稳定体系,致使结构的周期发生变化,以避免地震卓越周期长时间持续作用引起的共振效应。

参考文献:

[1]高淑英;加强结构抗震设计中的概念设计.河北工程技术高等专科学校学报,2001年09月(第3期).

[2]李庆宪;邹银生;陈俊;甘袁华;论建筑抗震设计中的概念设计[J].基建优化2004年02期

[3]赵祜茂;抗震概念设计在钢筋混凝土结构中的应用[J].山西建筑2004年09期

[4]葛学礼;朱立新;张海明;建筑抗震概念设计重要性[J].建设科技2005年02期

[5]刘辉;浅谈结构的概念设计[J].广西土木建筑2000年04期

[6]肖桂清;建筑结构抗震设计的若干对策及改进建议[D].武汉:武汉大学,2004.

[7]龚思礼;建筑抗震设计手册,2002

建筑结构抗震设计篇9

关键词:建筑结构设计抗震措施

随着高层建筑的迅速发展,建筑高度不断增加,高层建筑的结构设计也成为结构工程师设计工作的主要重点和难点。其抗震设计变得尤为重要,建筑结构的抗震设计是一个完整、系统的概念,从场址的选择到建筑物的结构设计,抗震设计贯穿了整个过程。建筑物的抗震设计是衡量建筑结构设计是否符合要求的重要指标。因此如何准确、合理的运用不同的抗震设计方法,是非常重要的,对于不同的建筑、不同的情况应区别对待,从而寻求最合理的抗震设计。

一、抗震设防的目标

目前,我国抗震设防为“三水准”目标,即“小震不坏、中震可修、大震不倒”,具体含义为:当遭受低于本地区抗震设防烈度的多遇地震时,建筑物不受损坏或不需修理仍可使用,建筑处于正常使用状态,从结构抗震分析角度,可以视为弹性体系,采用弹性反应谱进行分析;当遭受相当于本地区抗震设防烈度的地震影响时,建筑物可能损坏,经一般修理或不需修理仍可继续使用,结构在地震影响时进入非弹性工作阶段,但非弹性变形或结构体系损坏控制在可修复的范围;当遭受高于本地区抗震设防烈度的罕遇地震时,建筑物不致倒塌或发生危及生命安全的严重破坏,此阶段结构有较大的非弹性变形,但人员可以逃离。

二、建筑结构设计中的抗震设计策略

1、建筑场地

(1)应选择对建筑抗震有利的地段,如开阔平坦的坚硬场地土或密实均匀的中硬场地土等地段。

(2)应避开对建筑抗震不利的地段,如软弱场地土,易液化土,条件突出的山嘴,高耸孤立的山丘,非岩质陡坡、采空区、河岸和边坡边缘,场地土在平面分布上的成因、岩性、状态明显不均匀(如故河道、断层破碎带、暗埋的塘滨沟谷及半填半挖地基等)等地段。当无法避开时,应采取有效的抗震措施。

(3)不应在危险地段造建甲、乙、丙类建筑,对建筑抗震危险地段,一般是指地震的可能发生滑坡、崩塌、地陷、地裂、泥石流等地段,发震断裂带上地震等可能发生地表错位地段。建筑场地为Ⅰ类时,甲、乙类建筑可按本地区抗震设防烈度的要求采取抗震构造措施;丙类建筑允许按本地区抗震设防烈度降低一度的要求采取抗震构造措施,但抗震设防烈度为6度时,可按本地区抗震设防烈度的要求采取抗震构造措施。另外,场地土的刚度大小和场地土覆盖层厚度是影响建筑物震害得主要因素。震害调查表明,土质越软,覆盖层越厚,建筑物震害越严重,反之越轻。

2、选择有利于抗震的建筑平面和立面布置

(1)建筑的体型要简单,平立面布置宜规则。体型简单和规则的建筑,受力性能明确,设计时容易分析结构在地震作用下的实际反应及其内力分析,且结构细部的构造也易于处理。所以这类结构遭遇地震后其震害相对都较轻。反之,建筑体型不规则,平面上曲出凹进,立面上高低错落。易于形成刚度和强度上的突变,引起应力集中或变形集中,也容易形成薄弱环节,往往造成比较严重的危害。

(2)建筑的平、立面刚度和质量分布力求对称。建筑的刚度和质量分布不对称、即使在地面平动分量作用下也会发生扭转振动,从而造成比较严重的危害。所以,建筑或其独立单元应力应求刚度、质量的对称,使其质心与刚心重合或偏心很小。

(3)建筑的质量和刚度变化要均匀。建筑的质量和刚度沿竖向分布往往是不均匀的、例如,由于建筑的竖向收进,地震时收进处上、下部分振动特性不同,易于在收进处的横隔层(楼板)产生应力突变,使竖向收进的凹角处产生应力集中;又如,在建筑物底层设置上下不连续的抗震墙(如底层框支抗震墙)、使建筑物沿竖向的不均匀性;框架的填充墙在层高范围内未连续设置或存在楼层的错层,使框架形成短柱。也易于造成危害。设计时对上述质量和刚度沿竖向分布不连续的情况应加以限制、采取必要的构造措施。

(4)必要时设置防震缝。防震缝的设置,应根据建筑类型、结构体系和建筑体型等具体情况区别对待,不提倡一切都设,也不主张都不设。抗震规范的原则是,建筑防震缝的设置,可按结构的实际需要考虑。体型复杂的建筑不设防震缝时,应选择符合实际的结构计算模型,进行精细的抗震分析,估计其局部应力和变形集中及扭转影响、判别其易损部位、采取措施提高抗震能力。当设置防震缝时,应将建筑分成规则的结构单元,防震缝应根据烈度、场地类别、房屋类型等留有足够的宽度,其两侧的上部结构应完全分开。

3、建筑结构体系的合理选择

(1)建筑结构体系应当避免因部分结构或构件的破坏而导致整个建筑结构丧失抗震能力或对重力荷载的承载能力。建筑结构抗震设计的一个重要原则就是结构应当具有必要的赘余度、良好的变形能力和内力重分配的功能,地震中,即使一部分构件退出工作,其余部分构件仍能承担起竖向荷载,避免整体建筑结构失稳。

(2)建筑结构体系应当具有清晰明确的计算简图和恰当合理的地震作用传递路径。在这过程中,竖向建筑构件的布置,应尽量使竖向建筑构件在垂直重力荷载作用下的压应力水平接近均匀;楼屋盖梁体系的布置,应尽量使垂直重力荷载以最短的路径传递到竖向构件墙、柱上去;转换结构体系的布置,应尽量做到使上部结构竖向构件传递来的垂直重力荷载通过转换层一次至多二次转换。另外,建筑的整体抗侧力结构体系也必须明确,抗侧力结构一般由框架、简体、剪力墙、支撑等组成,它们宜尽量连续贯通。

(3)建筑结构体系应当具有合理适度的强度和刚度。宜具有合理恰当的强度和刚度分布,防止和避免因局部削弱或突变形成薄弱部位,产生过大的塑性变形集中或应力集中;建筑的框架结构设计应使节点基本不被破坏,底层柱底的塑性铰宜形成晚,应当使柱、梁端的塑性铰出现得尽可能地分散;对于可能出现的薄弱部位,应采取适当措施提高抗震能力。

4、重视建筑平面布置的规则性

建筑的平、立面布置应符合抗震概念设计原则,宜采用规则的建筑设计方案,不应采用严重不规则的设计方案。抗震设计规范规定,对平面不规则而竖向规则,或平面规则而竖向不规则的建筑结构,应采用空间结构计算模型;对凹凸不规则或楼板局部不连续时,应采用符合楼板平面内的实际刚度变化的计算模型,对薄弱部位应乘以内力增大系数,应按规范有关规定进行弹塑性变形分析,并应对薄弱部位采取有效的抗震构造措施。在我国建筑中,结构的对称性主要指的是抗侧力主体结构的对称。对称的建筑如平面对称的框架结构、筒中筒结构、筒体结构、框剪结构、剪力墙结构、框架结构等,一般比较容易实现结构的对称性。结构的规则性主要体现在以下四个方面:一是建筑主体抗侧力构件在两个主轴方向的刚度要比较接近、变形特性要比较相近;二是建筑主体抗侧力构件沿竖向断面、构成变化比较均匀,不要突变;三是建筑主体抗侧力构件的平面布置,应注意同一主轴方向各片抗侧力构件刚度尽量均匀;四是建筑主体抗侧力构件的平面布置还应注意中央核心与周边结构的刚度协调均匀,保证主体结构具有较好的抗扭刚度,以避免建筑在地震或风荷载作用下产生过大的扭转变形,从而引起结构或非结构构件的破坏。可以说,重视建筑平面布置的规则性在建筑结构设计中相关重要,在实践中应高度重视这方面的规范。

综上所述,建筑结构的抗震设计是一个完整、系统的过程,从场址的选择到建筑物的结构设计,抗震设计贯穿了整个过程。而且建筑物的抗震设计是衡量建筑结构设计是否符合要求的重要指标。因此如何准确、合理的运用不同的抗震设计方法,是非常重要的,对于不同的建筑、不同的情况应区别对待,从而寻求最合理的结构布置。

参考文献:

建筑结构抗震设计篇10

关键词:概念设计建筑结构

引言

随着社会经济的发展和人们生活水平的提高,对建筑结构设计也提出了更高的要求。发展先进计算理论,加强计算机的应用,加快新型高强、轻质、环保建材的研究与应用,使建筑结构设计更加安全、适用、可靠、经济是当务之急。其中,打破建筑结构设计中的墨守成规,充分发挥结构工程师的创新能力是相当必要的,因为他们是结构设计革命的推动者和执行者。

1概念设计的理念分析

概念设计的理念是一种设计思维方式的改进,概念的含义就是用笼统而科学的思维方式来确定一些设计上的难点,一般是不需要进行精确计算的设计问题。因为这种问题在设计中很难给出确定的答案,尤其是在抗震设计中,按照整体结构体系和分体结构之间的力学关系,来解释地震所造成的对建筑物的损害。这种损害很难用精确的数据来衡量,因为地震本身所产生的破坏力就是一个不确定的数值,一味地提高建筑物的刚性是不恰当的。因此从抗震的角度看,利用宏观的概念性估算的设计思维更加符合抗震的需求。这就是概念设计理念的基本内涵。

概念设计是一种先进的设计思维的体现,结构工程师可以利用其完成对特定建筑空间的设计并形成总体结构方案,同时将构件与结构、结构与结构之间的关系看得更加透彻清晰。在不借助计算机的情况下,通过简单计算就能正确定性,帮助建筑师选择最佳的设计方案,优化结构并降低成本。

概念设计的理念优势还在于对它可以弥补一些结构设计理论和计算理论中存在的一些缺陷和不可预见性。如:对混凝土结构的设计。内力计算公式基于弹性理论,而截面积的计算是建立在塑性理论的基础上,这两种方法从根本上看是矛盾的,因此计算的结果跟实际情况是有差距的,用概念设计的思路可以弥补这类计算的漏洞。

概念设计也是施工图设计阶段判断计算机计算结果可靠与否的主要依据。例如:结构模型的简化与实际情况不符,程序的计算假定与实际情况不符,输入数据的错误、参数选择的错误等,都会影响最终的计算结果,这时就要运用概念设计对计算结果加以判断和甄别。

2抗震概念设计

2.1传统设计思维对建筑抗震的影响

传统结构设计的计算理论为建筑设计提供的是结构设计中对结构抗力的研究和计算。这种传统的设计思维使得结构工程师过度注重细节。而不是整体结构形式。抗震设计中传统的设计思路不能完全适用于结构设计,完全的照本宣科只能让结构趋向不合理。

2.2抗震概念设计

在抗震设计中,概念设计的应用已经成为设计者关注的设计理念。建筑抗震概念设计是根据地震灾害和工程经验等所形成的基本设计原则和设计思想,是保证结构具有优良抗震性能的一种方法。概念设计包含极为广泛的内容,选择对抗震有利的结构方案和布置。采取减少扭转和加强抗扭刚度的措施,设计延性结构和延性结构构件,分析结构薄弱部位,并采取相应的措施,避免薄弱层过早破坏,防止局部破坏引起连锁效应,避免设计静定结构,采取二道防线措施等。应该说,从方案、布置、计算到构件设计、构造措施每个设计步骤中都贯穿了抗震概念设计内容。

3概念设计的应用分析

3.1概念设计应重视结构规律

在建筑的概念设计中应当对建筑的体型设计进行合理的概念化修正,力求简单、规则、对称、在质量和刚度上分布应当均匀,避免局部刚性过大。建筑和结构的布局是否对抗震有利是概念设计中首先要思考的问题。简单对称的建筑在地震中的实际反映和应力分析都是容易做到的,且容易达到一致。凹凸的立面和错层设计虽然可以达到很好的艺术效果。但是在地震时却会产生复杂的地震效应。很难实现抗震的最佳效果。

3.2概念设计在结构体系上的应用

任何建筑结构都是由水平构件和竖向构件组成的空间结构,竖向荷载由水平构件承担并传递给竖向构件。最后传递给基础。水平荷载由水平构件和竖向构件共同组成抗侧力体系承担并传递给基础。不同的竖向构件组成不同的抗侧力体系,常见的抗侧力体系有框架、剪力墙、框架-剪力墙、框架-核心筒、筒中筒、束筒等以及这些抗侧力体系的组合。抗侧力体系是结构是否安全、合理、经济的关键。概念设计在结构体系上的应用就是依据建筑物的抗震等级和建筑物的高度选择合适的抗侧力体系并合理布置,通过概念近似手算来确定结构设计方案的可行性及主要构件的基本尺寸。延性是建筑结构一个很重要的特性。建筑结构的承载力和延性是一对矛盾,概念设计就是要选择合适的结构体系并合理布置,使结构的承载力和延性相协调。地震中的扭转对结构的危害很大,刚度大的抗侧力构件沿结构布置有利于结构抵抗扭转。

3.3概念设计在结构构件上的应用

抗震的实现还要有构件的支持,因此在抗震结构中各种构件都应当具备合理的强度和刚度,并且形成可靠性连接。建筑结构是一个多次超静定结构。抗震结构应设置多道抗震防线,在地震作用下允许部分构件先屈服或破坏,剩余的结构依然能形成独立的结构,可以承受竖向荷载和地震力,这是结构抗震耗能的一种措施。合理预见并控制结构先屈服或破坏的部位,适当处理构件强弱关系。使结构形成多道抗震防线,是结构概念设计的重要内容。

概念设计中应避免非结构构件的设置不合理,从而影响到整个结构的受力情况,导致抗震效果的下降。所以在设计中可以采用如下方法:做好细部构造的设计,防止非结构构件直接进入到抗震体系:防止非结构构件在地震的作用下出现平面性的损毁;避免非结构性构件的连续损毁。

4概念设计的新发展

目前在抗震设计中创新了很多新措施。如隔振和消能的设计思路等。隔振和消能就是利用某些科学的结构或者方法减小地震对建筑物的影响,隔振的基本法就是利用一些柔性结构消除地震对建筑地震力,如增设钢板橡胶隔振垫,增加消能支撑、阻尼器、顶部增加反摆等,都可以有效地提供附加阻尼作用,消耗一部分地震能量,降低加速度,以此减少建筑的“摆动”,降低地震波的破坏作用。

5结语

总之,概念设计必然会成为今后结构设计的主流思想,这就要求我们需要不断的学习和提高,为结构设计的发展作出应有的贡献。概念设计中最重要的是分析、预见、控制结构的耗能和薄弱部位,找到能支持结构不倒塌的关键部分。

参考文献