首页范文基因遗传学原理十篇基因遗传学原理十篇

基因遗传学原理十篇

发布时间:2024-04-25 19:31:24

基因遗传学原理篇1

关键词:生物科学;核心课程;逻辑关系

中图分类号:G633.91

文献标识码:a文章编号:1674-9944(2016)21-0130-03

1引言

生物化学、遗传学、细胞生物学、分子生物学、基因工程学是生物科学专业的核心课程,由于它们相互联系,交叉渗透,因此存在逻辑关系不清,课程内容重叠较多等问题,例如原核生物和真核生物基因表达调控在生物化学、细胞生物学、分子生物学都有介绍,基因工程原理在分子生物学、基因工程学中都有介绍,导致教师教学内容难以起舍,课程顺序难以安排。要理顺生物化学、遗传学、细胞生物学、分子生物学、基因工程学的逻辑关系,确定各课程教学内容和教学顺序,必须把其定义,研究内容,发展历史动态结合起来。

2生物科学专业核心课程概述

2.1生物化学

生物化学是运用化学的理论和方法研究生物分子结构与功能、物质代谢及遗传信息传递与调控规律的科学。

生物化学是生命科学中最古老的学科之一。随着生命科学的发展,各学科相互渗透。18世纪,一些从事化学研究的科学家转向生物领域,为生物化学的诞生播下了种子。19世纪末,生物化学从生理化学中独立。20世纪中后期又从生物化学分离出部分内容与遗传学部分内容结合为分子生物学,然后,分子生物学基因操作部分独立出来,形成基因工程学。

1920年以前,生物化学研究内容以分析生物体的化学组成、性质和含量为主,称为静态生物化学时期。

1920年-1950年,随着同位素示踪技术、色谱技术等物理学手段的广泛应用,生物化学从单纯的组成分析深入到物质代谢、能量转化,如:光合作用、生物氧化、糖、脂肪、蛋白质代谢等领域。这是生物化学飞速发展的时期,称为动态生物化学时期。

1950年以后,蛋白质化学和和核酸化学进展迅速,生物化学进入了分子生物学时期。分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类在认识的巨大飞跃。根据生物化学的定义和历史,生物化学研究的内容包括以下几个方面。

2.1.1生物的物质组成

生物是由一定的物质按特定的方式组成的,直到今天,新物质仍不断被发现。如陆续发现的干扰素、环核苷一磷酸、钙调蛋白、粘连蛋白、外源凝集素等都具有重要的生物学功能。另一方面,早已熟知的化合物也发现了新的功能,如20世纪50年代才知道肉碱是一种生长因子,而到60年代又发现其是生物氧化的载体。

2.1.2物质代谢

生物体内绝大部分物质代谢是在酶催化下进行的,具有高度自动调节能力。一个小小的细胞内,有近2000种酶,在同一时间内,催化各种不同的化学反应。这些化学反应互不干扰,有条不紊地进行。表明生物体内的物质代谢有精确的调节控制系统。

2.1.3结构与功能

生物大分子的功能与其特定的结构有密切关系。如酶的活性中心的结构决定其催化活性及其特异性;变构酶的活性还与其催化的代谢终末产物的结构有关。

核酸中核苷酸排列顺序的不同,其结构就不同,所含遗传信息不同。这些不同的构象对基因的表达具有调控作用。

生物体的糖包括多糖、寡糖和单糖。由于多糖链结构复杂,具有很大的信息容量,对于细胞专一地识别、相互作用具有重要作用。糖类将与蛋白质、核酸并列成为生物化学的主要研究对象。

在生物化学中,有关结构与功能关系的研究才仅仅开始,尚待大力研究的问题很多,其中重大的有:亚细胞结构中生物大分子间的结合,细胞的相互识别、细胞的接触抑制、细胞间的粘合、抗原与抗体的作用、激素、神经介质与其受体的相互作用等。

2.1.4繁殖与遗传

生物典型特点是具有繁殖与遗传特性。基因是Dna分子中的一段核苷酸序列,现在Dna分子的核苷酸序列已不难测得,不但能在分子水平上研究遗传,而且还可能改变遗传,从而派生出基因工程学。

2.2细胞生物学

细胞生物学是从显微水平、亚显微水平和分子水平研究细胞的结构及其生命活动规律的科学。

过去,细胞生物学主要是在光学显微镜下对细胞的形态结构和生活史进行研究,称为细胞学。20世纪50年代以来,由于电子显微镜、放射性同位素、细胞结构组分分离技术、细胞培养等技术的广泛应用,特别是分子生物学的兴起,使细胞生物学研究的广度和深度都有迅猛发展,从宏观到微观、从平面到立体、从定性到定量、从分析到综合;从细胞、亚细胞、分子三个水平研究细胞的结构与功能、分裂与分化、衰老与死亡等生命活动规律及其调控机制,细胞与细胞、细胞与环境之间的相互关系。使原来以形态结构研究为主的细胞学转变成以生理功能研究为主、将结构与功能紧密结合起来的细胞生物学。由于细胞生物学在分子水平上的研究工作取得了深入的进展,因此细胞生物学又称为细胞分子生物学。细胞生物学研究内容如下。

2.2.1细胞社会学

细胞社会学是细胞生物学中的一个新的领域。它是以系统论的观点研究细胞群体中细胞间的相互关系、细胞群体的社会行为;细胞识别、通讯、相互作用;整体和细胞群对细胞的生长、分化、形态发生和器官形成等活动的调控;细胞外环境对细胞的影响。

2.2.2细胞的增殖、生长、分化与调控

研究细胞增殖、生长、分化及其调控机制,不仅是控制生物生长和发育的基础,而且是研究细胞癌变和逆转的重要途径。

2.2.3细胞遗传学

细胞遗传学从细胞学角度来研究染色体的结构和行为以及染色体与细胞器的关系,从而探讨遗传与变异的机制等。

2.2.4细胞化学

细胞化学:用切片或分离细胞成分,对单个细胞或细胞各个部分进行定性和定量的化学分析,研究细胞结构、化学成分的定位、分布及其生理功能。

2.2.5分子细胞学

分子细胞学:从分子水平研究细胞与细胞器中蛋白质、核酸等大分子的组成、结构与功能及其遗传性状的表现和调控等,探讨细胞生命活动的分子机理。

2.3遗传学

遗传学是研究生物遗传和变异规律的科学。孟德尔认为生物性状的遗传是受遗传因子控制的,并提出了遗传因子分离和自由组合的基本遗传规律。1900年,孟德尔的成果得到广泛重视,成为遗传学的基石。

20世纪初,利用光学显微镜发现了细胞有丝分裂和减数分裂过程中染色体及其行为,奠定了遗传的染色体理论基础。1910年左右,美国遗传学家摩尔根及其同事根据对普通果蝇的研究,提出了基因的连锁交换规律,并结合当时的细胞学成就,创立了以染色体遗传为核心的细胞遗传学。

遗传信息在分子水平上研究始于20世纪40年代。随着电子显微镜的发明,人们已能够直接观察遗传物质的结构及其在基因表达过程中的特征,使细胞遗传学的研究进入分子水平。

1953年,沃森和克里克提出了Dna的双螺旋结构模型,为进一步阐明Dna的结构、复制和遗传物质如何保持世代连续的问题奠定了基础,开创了分子遗传学这一新的学科领域。

遗传学研究的领域非常广泛,可划分成经典遗传学、细胞遗传学、分子遗传学和生统遗传学4个分支,各个分支领域相互联系、相互重叠、相互印证,组成了一个不可分割的整体。

经典遗传学研究从亲代到子代的遗传特性,包括遗传的分离规律;独立分配规律;连锁和交换遗传规律及机理;基因互作及其与环境的相互关系;性别决定与伴性遗传;基因及染色体变异;数量性状的特征及其多基因假说,近亲繁殖和杂种优势;细胞质遗传等。

细胞遗传学是通过细胞学手段对遗传物质进行研究。其内容包括细胞的结构和功能;染色体的形态结构;细胞的有丝分裂,减数分裂;配子的形成和受精。

分子遗传学是从分子的水平上研究遗传物质的结构及遗传信息的传递。内容包括Dna复制、转录和翻译,基因突变及修复,原核生物和真核基因表达与调控;基因、基因组及作图,遗传重组。

生统遗传学是用数理统计学方法来研究生物遗传变异规律的学科。根据研究的对象不同,又可分为数量遗传学和群体遗传学。前者研究生物体数量性状即由多基因控制的性状遗传规律,后者是研究基因频率在群体中的变化、群体的遗传结构和物种进化。

2.4分子生物学

分子生物学是从分子水平研究核酸与蛋白质的结构与功能、遗传信息传递和调控,阐明生命本质的科学。

从19世纪后期到20世纪50年代初,确定了蛋白质是生命的主要物质基础,Dna是生物遗传的物质的载体,是现代分子生物学诞生的准备和酝酿阶段。

从20世纪50年代初到70年代初,是现代分子生物学的建立和发展阶段,1953年watson和Crick提出的Dna双螺旋结构模型为现代分子生物学诞生的里程碑,确立了核酸作为遗传信息分子的结构基础,提出了硷基配对是核酸复制、遗传信息传递的基本方式,为核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。

70年代后,基因工程技术出现,人类进入认识生命本质并开始改造生命的发展阶段。

分子生物学原来是生物化学的一部分,因其太重要了,20世纪中后期从生物化学中分离出来并与遗传学结合,独立出来成为单独的学科,是生物化学的发展和延续。涉及的部分内容比生物化学更细致深入,并从整体上考虑。

分子生物学从蛋白质、核酸、基因及基因组结构开始,以中心法则为主线,阐述生物大分子在信息传导、基因表达调控中的相互作用和机理。主要内容包括蛋白质、核酸、基因和基因组的结构、Dna的复制、转录、转录后加工、基因突变与修复、蛋白质生物合成和翻译后加工、原核生物基因表达的调控、真核生物基因表达的调控。基因工程技术的原理和应用等。

2.5基因工程学

20世纪70年代,随着Dna的内部结构和遗传机制逐渐呈现在人们眼前,生物学家不再仅仅满足于探索、揭示生物遗传的秘密,而是开始设想在分子的水平上去干预生物的遗传特性。这就像工程设计,按照人类的需要(设计)把这种生物的某个“基因”与那种生物的某个“基因”进行“施工”,“组装”成新的基因组合,创造出新的生物的工程技术被称为“基因工程”。

基因工程包括如下几个主要的内容:①目的基因的合成或提起分离。②载体的构建。③将载体转移到受体细胞并增殖。④重组Dna分子的受体细胞克隆筛选。⑤将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。

3课程间的逻辑关系,教学内容选择及课程顺序安排

从生物化学、遗传学、细胞生物学、分子生物学、基因工程学的定义,研究内容,发展历史动态可知,各学科的逻辑关系是:理解细胞结构及功能需要一定的生物化学基础,理解遗传物质的结构和功能需要一定的细胞生物学基础,而分子生物学是生物化学、遗传学交叉融合的产物,研究核酸和蛋白质分子结构和功能以及相互关系,而各个分子不能孤立发挥作用,必须依赖于一定的细胞结构,因此,生物化学是细胞生物学的基础;细胞生物学是遗传学和分子生物学的基础。基因工程是利用分子生物学的理论和实验技术进行转基因操作的部分独立出来的,因此分子生物学是基因工程学的基础。所以,高校应按生物化学、细胞生物学、遗传学、分子生物学、基因工程的顺序安排课程教学最为合适。

由以上可知,由于历史的原因,生物化学、细胞生物学、遗传学、分子生物学、基因工程学相互联系,交叉渗透,研究内容重复较多。因此,本研究根据其定义、逻辑关系及发展历史,同时为编写教材和教学的方便,建议生物化学、遗传学、细胞生物学、分子生物学、基因工程学教学内容如下。

(1)生物化学主要教学内容主要有:蛋白质化学、核酸化学;酶学基础;糖代谢与生物氧化;脂类代谢;蛋白质的分解代谢等内容。而将Dna复制、转录、翻译、突变、修复及原核生物和真核生物基因表达调控留在分子生物学讲授。

(2)细胞生物学的教学内容主要有:细胞的基本结构;细胞生物学研究方法;细胞膜的结构与功能及物质跨膜运输;细胞质基质与细胞内膜系统;细胞通讯与信号传递;线粒体和叶绿体;细胞核与染色体;细胞骨架;细胞增殖及其调控;细胞分化、衰老与凋亡。

(3)遗传学的教学内容主要有:遗传的分离规律;独立分配规律;连锁和交换遗传规律;基因互作及其与环境的关系;基因定位与连锁遗传图;性别决定与伴性遗传;基因及染色体变异;染色体畸变;数量性状的特征及其多基因假说;近亲繁殖和杂种优势;细胞质遗传;遗传重组。

(4)分子生物学的教学内容主要有:Dna的复制、转录、转录后加工、基因突变与修复、蛋白质生物合成和翻译后加工、原核生物基因表达的调控、真核生物基因表达的调控。

(5)基因工程学的主要教学内容有:基因工程技术的原理和应用等。

以上各门课的教学内容相对前述和我国现行教材的教学内容作了较大调整,例如;核酸和蛋白质的组成及结构只在生物化学中讲授,细胞信号传递只在细胞生物学中讲授,基因工程原理只在基因工程学中讲授,避免了课程内容的重复。

参考文献:

[1]沈振国.细胞生物学(第2版)[m].北京:中国农业出版社,2011.

[2]欧阳五庆.细胞生物学[m].北京:高等教育出版社,2010.

[3]翟中和,王喜忠,丁明孝.细胞生物学[m].北京:高等教育出版社,2007(8).

[4]Georgem.malacinski,DavidFreifelder.essentialsofmolecularbiology(thirdedition)[m].北京:科学出版社,2003.

[5]Jeremym.Berg,JohnL.tymoczko,LubertStryer[J].Biochemistry,2002.

[6]徐晋麟.现代遗传学原理[m].北京:科学出版社,2000.

[7]王亚馥,戴灼华.遗传学[m].北京:高等教育出版社,1999.

[8]孙乃恩.分子遗传学[m].南京:南京大学出版社,1990.

[9]RobertH.tamarin:principlesofGenetics[J].5thed.,1996.

[10]朱玉贤,李毅.现代分子生物学[m].北京:高等教育出版社,2002.

[11]杨业华.普通遗传学[m].北京:高等教育出版社,2000.

[12]HartwellL,HoodL,GoldbergmL,etal.Genetics:FromgenestoGenomes(firstedition)[J].mcGraw-HillCompanies,Boston,2000.

[13]马建岗.基因工程学原理[m].西安:西安交通大学出版社,2001.

基因遗传学原理篇2

关键词:高中生物课程;“遗传与进化”模块;逻辑体系;小进化

abstract:thetheoreticalsystemofmoderngeneticsisaxiomsystemwithscientifictruthasthelogicalstartingpoint.atthesametime,thedevelopmentofgeneticsprovidelogicalbasisfortheresearchofsmallevolution.thecontentsystemofhereditaryandevolutionmoduleintheBiologyCurriculumStandardsinGeneralSeniormiddleSchools(experimentaledition)isconstructedaccordingtologicalregulations.inthedevelopmentalcoursesofgeneticsandevolutionism,scientistshaveusedmanyscientificwayswhichhaveveryhigheducationalvaluesforscientificrealization.teachingmaterialscouldbewritteninaccordancewithlogicallinesorwithhistoricallinesofsubjectdevelopment,whichhasitsownsignificance.andthecombinationofabstractthinkingandthinkinginimagesshowstheimportantvaluesofthinkingtraininginthismodule.

Keywords:biologyinseniormiddleschools;hereditaryandevolutionmodule;logicalsystem;smallevolution

关于生物课程内容体系的建构,作者曾在《高中生物课程内容建构及稳态与环境模块的分析》一文中作过讨论,认为像“遗传与进化”模块的内容,可以按形式逻辑的方法,确定若干科学事实或概念作为逻辑起点,通过演绎推理构建一个公理化的体系。[1]本文拟对此做一具体分析。

一、现代遗传学理论的构建

科学研究首先要通过观察和实验获得感性认识。孟德尔正是通过豌豆杂交实验,获得了大量经验材料。但是,感性材料的获得只是认识的第一步,认识的真正任务在于达到理性认识。这就需要用科学的方法去处理这些材料。如何处理?首先要概括总结出这些经验材料所反映的事物的本质和变化规律。这需要科学抽象。所谓科学抽象,就是人们运用思维能力,透过事物的各种现象,抽取出事物的本质属性及其变化发展规律。科学抽象是一个复杂的思维过程。第一步是以经验材料为基础形成概念,就是从“感性上的具体”上升到“抽象的规定”。所谓“感性上的具体”,就是人们在科学实践中形成的混沌的表象;所谓“抽象的规定”,就是通过一定的方法抽象出事物的本质属性。孟德尔正是从豌豆大量具体的遗传性状(如花的颜色、子叶是否饱满、植株的高矮等)中,抽象出“相对性状”的概念,并进一步把它区分为“显性性状”和“隐性性状”。第二步,是运用概念进行判断和推理,建构规律、原理,就是从“抽象的规定”上升为“思维中的具体”。“思维中的具体”不同于“感性上的具体”,感性材料已不再是各种事实的混沌的总和,而是受一定规律支配的有组织的知识。孟德尔就是依据显性性状和隐性性状等概念,总结出了分离现象和自由组合现象。整个过程从逻辑方法的角度看,是一个归纳推理的过程:前提是若干科学事实,结论是从前提中通过推理得到一般规律。在科学认识活动中,科学抽象与逻辑方法是同一认识过程中的两个侧面。一方面,认识过程是一个不断抽象形成科学概念的过程;另一方面,认识过程是一个运用逻辑方法进行判断和推理的过程。

认识了分离现象和自由组合现象后,孟德尔没有停步,他开始建立遗传因子假说。在科学研究中,当对科学事实的认识达到一定程度后,就必须通过理论思维的能动作用,运用各种理论思维方法进行整理和加工,建立科学假说。这是将研究引向深入的重要环节和一般方法。在孟德尔所处的时代,科学界盛行的理论思维方法是牛顿的方法。牛顿在《自然哲学的数学原理》中提出的第一条科学方法规则,就是简单性原则。[2]对“简单性原则”概念的界定,学术界至今尚无一致意见。牛顿和孟德尔所运用的简单性原则的含义,是事物内部的简单性,即认为在对自然的认识中,最简单的解释总是比较可取的。正如爱因斯坦所说:“我们所谓的简单性,并不是指学生在精通这种体系时产生的困难最小,而是指这种体系所包含的彼此独立的假设或公设最少。”[3]近代科学中,道尔顿首先在19世纪初按照简单性原则,把宏观的、高层次的、凭感官能觉察但认识还不够清楚的化学物质的多样性、复杂性,分解成数量无限多而种类比较少的微观的、低层次的、感官不能直接察觉的物质最小微粒──原子(当时道尔顿的认识),再以原子之间的相互联系和相互作用,来理解、说明、解释化学物质的形态、结构、功能和属性的无限多样性、复杂性,达到对化学物质和化学变化的全面、深刻的认识,从而奠定了现代化学的基础。孟德尔在创建其遗传因子假说的过程中,有否借鉴道尔顿的原子论认识模式,我们不得而知。但他运用简单性原则取得了成功。他建立了遗传因子成对存在的模型并创造了符号体系予以表达,以有限种类基因的无限组合,解释了无限种生命形式的存在。

假说虽然具有一定的事实基础和知识依据,但毕竟不同于科学理论,它带有一定的猜测性和或然性。因此,在建立起假说后,孟德尔又运用演绎推理以测交实验验证其遗传因子假说。演绎推理是进行逻辑证明的一种重要方法,是运用一般原理对具体事物进行推论并作出科学预见和发展科学理论的必要环节。

由此可见,孟德尔工作的开拓性,除了正确选择材料和采用统计方法,更重要的是巧妙地抽象出科学概念,建立假说,创造符号体系予以表达并与有计划的实验相结合。这种方法自伽利略和牛顿以来在物理学中一直被使用,但在当时的生物学中无人知晓。这可能是孟德尔的工作没有被与他同时代的最优秀的生物学家所认同的原因。但正是这种方法的建立使遗传学不断取得进展并成为一门真正的科学。

从逻辑方法来分析,遗传因子假说的逻辑起点是分离现象的自由组合现象,概括得出这两个现象时孟德尔使用的归纳方法是简单枚举法,即根据若干对象都具有某种属性而无一反例,于是推论得出该类对象都具有这种属性的结论。简单枚举归纳法得出的结论带有某种程度的或然性,不能作为科学理论来使用,只能提供尚需进一步加以研究和验证的一种假定。为了从根本上提高结论的可靠性,必须努力发现某种属性与某类对象之间的必然联系。如果能够确定某属性是该类对象所必然具有的,那么其推论就最终成立了。这样,推理方法也就由简单枚举法过渡到科学归纳法了。细胞遗传学和分子遗传学的成果,最终证明了孟德尔假说的正确性,因为它们根据对遗传现象和遗传物质之间必然联系的认识,推定分离规律和自由组合规律具有普遍性。至此,孟德尔假说才被确立为遗传学理论。

其实,经过分子遗传学的建立这一场“科学革命”后,现代遗传学的“范式”与经典遗传学已经完全不同了。现代遗传学的逻辑起点是三个方面的科学事实,一是有性生殖细胞的形成和受精作用(特别是这些过程中染色体的变化);二是Dna是主要的遗传物质,每个染色体都是由特定的Dna链和蛋白质组成的;三是遗传物质对遗传信息的储存、传递和表达(分子遗传学中心法则)。通过对这三方面所发现的科学事实的综合,建构起了现代遗传学理论。而前面所述的遗传学的发生发展过程,已经成为历史。

二、进化理论构建的科学方法

达尔文进化论包括两方面的内容,一是肯定生物是进化的,二是说明生物进化的机理。对于“生物是进化的”这个结论,达尔文在自己的环球考察和前人研究的基础上,收集了大量的材料,主要运用归纳法得出。后来,又有越来越多的发现提供了新的证据。迄今未遇到反例。因此可以说,自1859年达尔文的《物种起源》发表后,进化论取得了胜利。对“生物进化的机理”,达尔文用自然选择理论解释。现在有许多异议,但尚未有一个理论可以取而代之。对此,我们从科学方法的角度做一分析。

自然选择理论的逻辑起点是四个科学事实:过度繁殖、遗传变异、生存斗争和隔离。达尔文以它们为基础,通过与人工选择的类比,依据因果关系而建立起理论体系。在作为逻辑起点的四个科学事实中,过度繁殖和生存斗争,可以通过观察直接证实;对遗传变异,现代科学研究也已充分证明,在各种生物中都发现了大量的突变,遗传多态现象(polymorphism)广泛存在;隔离阻断了基因交流,对于小种群来说,确实能使物种分化,这已成为珍稀动物保护中建立“种群通道”的理论依据。现在的争议在选择理论。达尔文的自然选择理论是通过与“人工选择”的类比而建立的,因此仅仅是一种推断。人工选择是在有限范围内进行的,而且是实验上可控的原理。把这样一种原理扩展成普遍意义上的原理,是否可以?而且到目前为止,人们除了在多倍体植物中发生的一些例子外,在可以观察的范围内从来没有出现过新物种。所以,通过自然选择产生新物种尚缺乏实证。因此,一些人从思维方式和科学方法的角度,对自然选择学说提出了质疑。伴随对生物进化过程中物种演变认识的深入,遗传学家歌德斯密特(R.B.Goldshmidt)在1940年提出了“大进化”和“小进化”的概念。1944年古生物学家辛普森(G.G.Simpson)对此概念又做了修正并给予明确定义,认为小进化(microevolution)考察进化过程中物种内性状维持或变异的规律,大进化(macroevolution)则研究物种规模演变的特征。达尔文和他以后的许多进化论者把生物个体看作是进化的单位,但小进化的研究表明这样的认识是不对的。实际上,进化的单位,对无性生殖的生物是无性繁殖系,对有性繁殖的生物是通过有性生殖联系起来的种群。这样,在遗传学研究成果的直接推动下,达尔文的自然选择学说发生了一次大的改造,主要体现在选择的效果不再是“生”或“死”的问题,而变成了在生物的繁衍过程中,突变基因对种群基因库分布(某突变基因和与它同源的等位野生型基因在种群总基因数中的比例)的影响大小的问题;生物进化的单位不再是生物个体,而是扩展到种群。这是对达尔文进化论的一次重要修正,人们把这次修正后的达尔文进化论称为“现代综合论”(themodernsynthesis)。

现代进化理论对小进化的研究,以遗传平衡定律(Hardy-weinberg定律,1908)为基础,引进适合度(fitness)和选择系数(selectivecoefficient)的概念后,为自然选择学说提供了可靠的逻辑基础和定量概念,是自然选择学说的重要发展。现在许多生物学家接受选择理论,正是因为遗传学在这个方面的发展。然而,对现代综合论,基于种群遗传学基础之上的小进化模式是否可以解释物种形成和高级分类群起源等大进化现象,多年来一直是进化生物学中争论的一个焦点问题。特别是20世纪70年代以来,古生物学研究证明生物的大进化过程并不总是与环境的变迁相一致。例如,我国云南澄江动物群化石揭示的寒武纪大爆发之类的进化现象(还包括大绝灭现象)告诉我们,进化不是一个连续的过程而表现为阶段性的过程,最初是以迅速形成几种主要类群的方式爆发性地形成类群的阶段,然后是缓慢的物种形成和在每个类群内对不同栖息地逐渐适应的阶段,最后是衰落和绝灭阶段。因此,进化不仅是由环境的变化和生存斗争决定的,它还受生命系统内部因素的制约。特别是大进化,更是如此。

从控制论的角度看,生命系统的稳态是反馈调节的结果。生命系统可能通过负反馈调节而保持稳态,也可能通过正反馈调节打破原有的稳态,从而建立新的稳态或趋于毁灭。因此,选择并非只是自然的选择,生命系统作为自组织系统,对系统的发展也存在一定的自身干预,如作为进化单位的种群内部的性选择对基因频率的影响等。从热力学的角度看,热力学第二定律揭示的孤立系统的熵增加,是一个退化的过程。20世纪中叶诞生的非平衡态热力学,说明生命系统在本质上都是开放系统。它们的结构都是耗散结构,因而可以发生“熵减少”的个体生长发育和系统进化过程,同时其中也可以包含局部的熵增加过程。所以,任何生命系统都在大量偶然的随机因素中发展着,并不只是适应环境的变化。在生物进化的过程中,内因是变化的根据,而外因只是变化的条件。

三、“遗传与进化”模块逻辑体系的构建

(一)模块体系构建的逻辑方法

《标准》对“遗传与进化”模块的知识体系,没有按遗传学和进化论的发展历史线索构建,而以逻辑线索构建,形成一个公理化的体系。公理化体系的特点是先提供不容置疑的科学事实或概念作为逻辑起点,然后主要运用形式逻辑的方法,通过判断、推理、证明来建构,其逻辑形式包括逻辑起点、逻辑中介、逻辑顺序和逻辑终点四个基本环节。

1.逻辑起点。逻辑起点是形成理论的起点,它必须是:①对事物最简单和最一般的本质规定;②能构成所研究对象的基本单位;③包含事物整个发展过程中一切矛盾的“胚芽”。例如,经典遗传学中的“相对性状”“基因”等概念,就是经典遗传学理论的逻辑起点。

2.逻辑中介。逻辑中介是联结起点和终点之间由一系列的概念、模型所组成的中间环节。它具有以下特点:①起沟通和联结的作用,能把逻辑起点和逻辑终点联结起来,构成一环扣一环的逻辑整体;②以事物之间的内在联系为依据,不能任意跳跃。例如,经典遗传学中的表现型、基因型、等位基因等概念和模型,就是经典遗传学理论的逻辑中介。

3.逻辑顺序。逻辑顺序是概念、模型、原理之间前后相继或相互隶属的关系。确定逻辑顺序的方式主要有两种:①从属性的联系方式,如相对性状与显性性状、隐性性状之间,基因型与纯合子、杂合子之间的联系,按照这种方式确定的逻辑顺序主要反映客观事物内部各个组成部分之间的从属关系;②继起式的联系方式,如相对性状与分离现象、自由组合现象、等位基因与基因的分离规律之间的联系,按照这种方式确定的逻辑顺序大体上与客观事物的发展顺序以及人类认识的发展历史相一致。

4.逻辑终点。逻辑终点意味着一个特定范围内的认识上升周期的结束,也是另一个新的认识上升周期的开始。思维从起点到终点的整个上升运动,一方面是对客观事物和实际过程的反映,另一方面又具有其严密的逻辑结构。

(二)模块逻辑体系的构建

1.第一个逻辑起点──“专题1.遗传的细胞基础”

现代遗传学的第一个逻辑起点是有性生殖细胞的形成和受精作用(特别是这些过程中染色体的变化),因此,《标准》安排了“举例说明配子的形成过程”和“举例说明受精过程”这两个知识点,重点在“阐明细胞的减数分裂并模拟分裂过程中染色体的变化”。

2.第二个逻辑起点──“专题2.遗传的分子基础”

其中的“总结人类对遗传物质的探索过程”“概述Dna分子结构的主要特点”这两个知识点,说明Dna是主要的遗传物质,每个染色体都是由特定的Dna链和蛋白质组成的。

3.第三个逻辑起点──分子遗传学的中心法则

围绕中心法则,“专题2.遗传的分子基础”安排了“说明基因和遗传信息的关系”“概述Dna分子的复制”“概述遗传信息的转录和翻译”等内容。

4.得出第一个理论──“专题3.遗传的基本规律”

先通过“分析孟德尔遗传实验的科学方法”,然后以上述三个逻辑起点为基础,来“阐明基因的分离规律和自由组合规律”。这里的逻辑证明和“分子与细胞”模块不同,那里是通过“使用显微镜观察多种多样的细胞”等活动来证明没有反例,而这里是通过“专题1.遗传的细胞基础”和“专题2.遗传的分子基础”,来阐明基因的分离规律和自由组合规律的内在必然性。

5.得出第二个理论──“专题4.生物的变异”

以前述三个逻辑起点为基础,再根据遗传的基本规律进行推理,便可“举例说出基因重组及其意义”“举例说明基因突变的特征和原因”“简述染色体结构变异和数目变异”。

6.从遗传学出发讨论进化问题

从遗传学出发来讨论进化机理,主要在小进化的范畴。所以安排了“用数学方法讨论基因频率的变化”的活动建议。然而小进化能否说明大进化,还有许多争议,所以《标准》只是要求通过“搜集生物进化理论发展的资料”活动,“说明现代生物进化理论的主要内容”。

至于对“生物是进化的”这个问题,因已为现代社会普遍接受,初中也已涉及,所以《标准》只在初中的基础上安排了一个知识点:“概述生物进化与生物多样性的形成”。

考虑到遗传学和进化论发展中的科学认识模式和方法所具有的教育价值,《标准》又安排了“总结人类对遗传物质的探索过程”“分析孟德尔遗传实验的科学方法”“探讨生物进化观点对人们思想观念的影响”等内容。

当然,在编写教材时,可以有不同的体系。例如,对遗传学的内容,既可以根据现代遗传学理论体系构建,也可以根据遗传学发展史上的学科思想和方法构建。

四、“遗传与进化”模块的思维方式特点分析

自孟德尔开始,遗传学便使用模型来表征概念及判断和推理的过程。例如,“表现型”就是一种实物模型,相当于生物体某性状的模式标本;减数分裂图解、染色体图解等则属于模拟模型。这些都是物质模型。而Dna分子双螺旋结构模型、蛋白质合成示意图等属于具象模型,“基因型”和杂交过程图解等属于抽象模型,二者都是思想模型。基因型,其实质是“基因组成模型”,它用英文字母来表示生物体中与所研究问题有关的基因组成。杂交过程图解是理想化的过程模型,它按遗传学规律把杂交过程简化,用以反映和解释杂交试验的过程和结果,并通过演绎推理来预测某些杂交试验的结果。

模型属于表象。过去的生物学课程在逻辑实证主义的影响下,往往只重视概念在思维中的作用而忽视对表象的研究。而认知心理学家一般认为,表象是更适合于进行创造性思维的认知成分。众所周知,想象是一种重要的创造性思维形式,而它正是大脑对表象进行分析综合、加工改造,从而形成新的表象的心理过程。因此,在教学改革中许多教师提倡要发挥生物学图解教学的功能,其实质就是运用模型来设计新的知识结构,注意通过对表象的操作、加工而实现的思维活动。例如,在遗传学问题解决中,人们经常使用模型方法。利用模型方法解决问题,需先建立模型,简称生物建模。所谓建模,就是要寻找变量之间的关系,构建模型;然后依据模型进行推导、计算,作出预测。其过程在实质上是一个需要概念思维和表象思维参与的过程。我们以2003年全国高考“理综”卷第26题为例说明。题目是:“小麦品种是纯合体,生产上用种子繁殖,现要选育矮秆(aa)、抗病(BB)的小麦新品种;马铃薯品种是杂合体(有一对基因杂合即可称为杂合体),生产上通常用块茎繁殖,现要选育黄肉(Yy)、抗病(Rr)的马铃薯新品种。请分别设计小麦品种间杂交育种程序以及马铃薯品种间杂交育种程序。要求用遗传图解表示并加以简要说明。(写出包括亲本在内的前三代即可。)”运用模型方法解题程序如下表所示。

我们可以运用认知心理学的双重编码理论对这个思维过程进行分析。该理论认为人的认知结构存在两个系统──言语系统和表象系统,二者之间存在三个重要的联结关系:一是言语刺激与表象刺激之间的表达联结,在上表中,“(1)分析变量”这一步骤建构了这个联结,如“矮秆或高秆”对应“aa或a_”;二是言语系统与表象系统之间的指称联结,上表中的“(2)构建亲本基因组合模型”步骤完成了这个联结,如小麦亲本“矮秆不抗病”对应“aabb”;三是言语系统和表象系统内部的联想联结,这是在“(3)推导杂交过程”和“(4)作出预测”中完成的,这两步既有运用言语的思维,又有运用表象(模型)的思维。根据双重编码理论,第一步骤中的表达意义即言语刺激和表象刺激之间的联结,来自对外在事件、字词或表象的熟悉感,表达意义以经验作为基础;第二步骤中的指称意义指相应的表象表达的激活或相应言语表达的激活,它来自言语系统与表象系统之间的相互激活和相互作用;最后两个步骤中的联想意义是分别在言语系统或表象系统本系统内的一种深层次表达,它依靠本系统内的联想网络结构赋予认知者以意义,这个过程在表象系统和言语系统的共同作用下完成。从整个问题解决过程来看,遗传学建模问题对学生来说有一定难度,其根本原因可能也在这里,它需要言语和表象两个系统共同作用才能完成。

在思维方式中,以科学概念为思维材料而进行的思维是科学抽象思维,以表象为思维材料进行的思维是科学形象思维。上述遗传学问题解决思维过程的特点在于抽象思维与形象思维相结合,这正是“遗传与进化”模块的重要思维训练价值之所在。

参考文献

[1]余自强.高中生物课程内容建构及稳态与环境模块的分析[J].课程·教材·教法,2004,24(9):54.

基因遗传学原理篇3

关键词:医学遗传学;遗传咨询;情景模拟

中图分类号:G642.4文献标志码:a文章编号:1674-9324(2014)46-0225-03

医学遗传学是医学与遗传学相结合、并互相渗透的一门综合性学科。医学遗传学理论学习中主要针对人类遗传性疾病的发生机制、传递规律、诊断方法以及治疗和预后进行系统学习。在此基础上开设实验课,将理论应用于实践,通过遗传咨询估算再发风险和制定应对对策和措施,有效预防遗传病的发生,从而达到降低遗传病发病率的目的[1]。根据现代医学的发展,我国将面临极具缺乏医学遗传学医师这一职业。目前,大多数医院无专门的遗传咨询门诊,使医学生没有机会接触到遗传病病例,学生对遗传性疾病的掌握只限于书本而无临床实践机会,这将会导致临床医生缺乏对遗传病的认知能力。因此,我校从2007年开始对五年制临床医学、检验等本科专业开展医学遗传学实验教学,其中开设了遗传咨询教学内容。通过多年教学实践探索和改进,发现利用情景模拟教学法进行遗传咨询知识点的传授可以更好地调动学生学习的积极性,更好地理解遗传咨询的理论基础及临床意义,培养学生综合运用知识的能力。

一、教学设计

1.明确教学目的。遗传咨询情景模拟教学法是模拟临床遗传咨询的情景进行教学的方法。它是针对临床医学、检验等专业本科医学生在学习过染色体标本的制备与人类非显带染色体核型分析两次实验课的基础上来开展的。通过此次课的学习,使医学生能够充分掌握系谱及系谱分析的理论知识,掌握系谱分析的过程及系谱的绘制方法,熟悉遗传咨询的一般步骤和原则,并能推测系谱中各成员的基因型,计算再发风险,了解系谱分析和遗传咨询的临床意义。在此过程中,培养学生独立思考分析问题解决问题的能力,表达能力,促进高素质医学生的培养。

2.教学内容。情景模拟教学法的主要内容是模拟遗传咨询过程、讲授和熟悉遗传咨询的概念、对象、时机、步骤等。作为医学生首先要让他们明确知道什么是遗传咨询。遗传咨询是由医学遗传学专业人员或遗传咨询医师(或称咨询医师、医学遗传学医师),应用医学和遗传学基本原理,对咨询者提出的家庭中遗传病的发病原因、遗传方式、诊断、治疗和预后、一级患者同胞和子女再患此病风险等问题进行交谈和讨论,并就咨询者提出的婚育等问题提出可供咨询者选择的建议或具体指导措施的过程[2]。遗传咨询的时机和对象是一个人在婚姻或生育方面遇到问题,意识到可能面临患遗传病的风险,或者本人或子女已患有遗传病等情况下的人群。其次,传授和强调进行遗传咨询的一般步骤包括遗传病的明确诊断、绘制系谱并确定遗传方式、估计再发风险、提出对策和措施。遗传病的诊断是一个复杂的过程,包括临床层次、细胞水平、蛋白质水平、基因水平(基因诊断)等四个水平层次的诊断;绘制系谱并确定遗传方式以及估计再发风险需要遗传学理论知识做基础,要求学生在本科医学遗传学中作为掌握的内容加以理解和熟悉后计算再发风险;提出的对策和措施更进一步要求在学生掌握各层次的分子生物学和分子遗传学的系统的理论知识后,给咨询者提出合适的意见和措施。最后,重点强调医生给咨询者提出意见和措施时,要遵循非指令性遗传咨询的原则。作为医生只提出可供咨询者选择的若干方案,并陈述各种方案的利弊提供咨询者选择,咨询医师不应代替咨询者做决定。

3.教学案例的准备。教学案例的好坏直接影响教学效果。任课教师需要注意从多渠道深入开展病案搜寻工作,从病案中挑选诊断明确、典型的遗传病案例,除了教材中给出的常见多发遗传病病例外,也需经常浏览omim(onLinemendelianinheritence)及等互联网址,了解重要的有关临床遗传学最新诊断技术及进展情况。案例挑选出来后,需要进行加工提炼、细心分析、集体讨论,按临床思维进行教学方案的设计。案例设计原则既要传授理论知识,又与临床需要结合,既有利于学生分析,于利于学生演练。

对于案例的教学准备,不但要求任课教师要熟悉案例遗传病的临床表现、发病机理,特别要熟悉遗传病的传递规律、传递方式、诊断方法、治疗方法和预后等方面的相关进展资料,还要要求教师对这些资料的深刻理解和透彻分析,以便针对学生演练过程中出现的各种不准确的表达或者错误的理解进行有效的指导。根据遗传咨询的复杂性,则需要教师具有深厚的理论知识基础,才能提高在模拟遗传咨询教学中的指导能力。因此,在案例准备时,要求任课教师要做好充足的教学准备,以应变课堂中随时出现的问题。

4.教学组织。做好充分的准备后,就进入了模拟遗传咨询情景课阶段,即开始遗传咨询情景模拟教学。由于课堂教学组织难度较大,需要教师在做好充分的案例准备基础上随机应变、深入浅出、因材施教。

教师组织教学的基本过程包括:第一步,教师详细讲解遗传咨询的定义、步骤、方法、意义;第二步,学生选择教师准备好的案例分组讨论,编写案例遗传咨询的对话,并要求学生在课结束后将所编写的对话上交作为课堂作业;第三步,学生两人一组,在45分钟左右的时间内讨论并编写对话,根据临床可能的情景,模拟演练遗传咨询的过程;第四步,当学生模拟演练完成遗传咨询的整个过程后,教师针对学生存在的问题一一进行分析和讲解。在肯定学生正确的理解和表达的基础上指出不当的或者不准确的或者错误的表达。

随着学生不同组别的模拟演练的进行,教师要注意始终引导学生围绕遗传咨询进行交谈,其询问和交谈的内容包括对遗传病的临床表现、发病原因、遗传方式、诊断等情况的了解,询问内容还包括病史、发育史、婚姻史和生育史、家族史,查阅和比对资料进行系谱分析,对咨询者提出的治疗和预后等问题一一作答,并且对患者同胞、子女再患此病的风险提出参考意见。教师始终在一旁提醒、引导和辅佐,并注意把控住整个课堂纪律,使每位学生积极参与到课堂中来,制造出学生在临床实践的气氛,提高学生课堂活跃度。

5.课堂总结。教师根据学生在课堂中的讨论、模拟遗传咨询的情况进行小结,联系理论知识肯定学生在讨论过程中表现好的地方,指出错误或忽视的地方,加深对理论知识的理解和记忆,加深学生对遗传咨询在临床工作的重要性和必要性的理解。最后根据学生在课堂中的表现进行评价,包括学生对案例的分析能力、理论知识的掌握、表达能力、临床综合分析能力、团队合作能力、创新能力等等方面。

二、教学思考与讨论

1.遗传咨询情景模拟教学法的优点和意义。经过多年的教学发现,大多数学生对于应用情景模拟方法进行遗传咨询都非常感兴趣,整个课堂气氛活跃,学生参与度高。整个教学活动中,一直围绕只有真实生活中才存在的病例来进行,组织学生分组开展讨论,教师从旁指导,真正做到以学生为中心,最大限度的激发学生的学习兴趣,取得了较好的教学效果。此教学法解决了以往医学遗传学理论教学与临床脱节,理论教学内容的枯燥难懂,教学手段落后等问题,有效地提高了学生对医学遗传学的学习效果及兴趣,是一种积极有效的教学方法。学生普遍认为通过情景模拟教学,对遗传性疾病的认识更加深刻和形象,他们所学习的内容不再是枯燥乏味的知识,而是在实际临床工作中切切实实需要解决的问题,极大的激发了学生对于学习《医学遗传学》的兴趣。

传统的遗传咨询教学主要以灌输式为主,要求学生大量记忆枯燥无味的基础知识,在这种模式下的教学不利于学生综合能力的提高。相反,经过实践证明,利用情景模拟教学进行遗传咨询,将所学理论知识与实际运用紧密结合,将理论课知识运用于实际临床当中,极大的激发了学生对于学习医学遗传学的兴趣,使学生整堂课都能够融入到课堂教学过程中,使学生将讲台变为他们自由发挥的舞台,而教师课堂中仅仅起到引导作用。在此过程中,学生从被动的接受知识向主动学习转变,既加深了对理论知识的记忆,又培养了学生独立思考分析问题的能力,训练了学生独立思考分析问题的能力。

近年来医患关系逐渐紧张,患者的维权意识也越来越强,如何缓解医患关系也是医学院校在培养学生时需要解决的一大难题。通过临床情景模拟教学的方法,让学生扮演患者有助于建立和谐的医患关系。学生通过扮演患者,能够充分的体会患者的心理和情绪上的变化,站在患者的角度看待就医过程,起到了换位思考的作用。另一方面,学生站在医生的角度学会处理医生和患者之间的矛盾,可以缩短学校与社会实践的差距,帮助学生建立医生角色,为学生将来走向社会处理医患关系奠定基础。

值得一提的是,遗传咨询师在我国医学领域缺乏大量的人才,是一个有待新增的职业。而在美国,绝大多数的医疗用人单位都要求他们的医生通过全美医学遗传学会的考试和资格认证[3]。所以,教师可借此课程向学生宣讲国际国内外医学遗传学理论、临床遗传学的发展的趋势和中国医学发展的所面临机遇和挑战。向学生说明遗传咨询是一项极具挑战的医疗活动,希望有更多的医学志愿者加入这项医疗事业中来。

2.遗传咨询情景模拟教学法的欠缺之处。首先,情景模拟与实际临床有一定的差别,学生由于缺少临床经验,在进行扮演患者的过程中,很容易用到所学的专业术语,与真正临床中所遇到的实际病例有较大的差别,没有达到角色交换的目的。其次,在提出对策和措施时,由于缺乏各层次的分子细胞生物学和分子遗传学的系统的理论知识,并且对所学医学遗传学知识不能灵活运用,只能提出供咨询者选择一到两种方案,没有真正提供可供咨询者选择的若干方案,且无法做到非指令性原则。最后,在教学实施的过程中,由于每位学生学习水平参差不齐,不愿意作为学习的主体,导致过分依赖老师,影响教学效果。目前看来,要使学生都能积极参与到教学活动中,最好的方法是让学生参与真正的临床实践,使学生体会到遗传咨询过程的复杂性。

通过7年的教学效果来看,情景模拟教学极大地调动了学生学习的积极性,真正实现了对医学生综合素质能力的培养,是一个值得推荐的好方法。

参考文献:

[1]蔡绍京,李学英.医学遗传学[m].北京:人民卫生出版社,2009.

[2]章远志,nanbertZHonG.中国目前的遗传咨询(英文)[J].北京大学学报(医学版),2006,(01).

[3]赵会全.美国临床医学进展[J].国外遗传学杂志,2007,30(2).

基金项目:遵义医学院教学改革计划项目2013(j-2-7)。

基因遗传学原理篇4

本节课选择中等职业教育国家规划教材《畜禽繁殖与改良》第一章《畜禽遗传基础》第5节"变异的其本规律",通过本节课的学习,人类可以利用一些特殊环境因素使遗传物质改变而制造出能遗传的变异,为人类所利用。学生可以理解生活中的一些所谓的异常现象,把理论应用于生产实际。

一、导入

师:同学们,我们曾经讨论过人的眼睑的遗传问题,这节课我们首先从人的眼睑的遗传问题开始我们新问题的研究。请同学们看下面得案例(多媒体,屏幕展示)

案例1有一对夫妇,他们有两个孩子,爸爸、妈妈的上眼睑是双眼

皮,两个孩子,一个是双眼皮,另一个孩子为单眼皮。

师:双眼皮的孩子继承了父母双亲的性状,这种现象在遗传学上叫什么呢?

生:遗传(齐答)

师:另一个孩子的上眼睑与双亲不同,是不是遗传呢?

生:不是(多数同学)

师:那叫什么呢?

生:变异

师:与遗传现象伴随存在的另一种生命现象就是变异,这节课我们就来研究"变异的基本规律"

板书课题变异的基本规律

二、新课教学

师:同学们讨论在我们周围,有哪些变异现象呢?

(学生们争先恐后)

生1:鸡有善啼的,有好斗的。

师:这是什么的变异呢?

生2:性格的变异

生3:奶牛的产奶量有高有低

生4:猪的增重速度有快有慢

师:这两个变异是什么的变异呢?

生5:新陈代谢的变异

师:回答的很好,还有吗?

生6:果蝇有残翅的有长翅的。

生7:一母生九子,九子各不同

生8:有人习惯用右手,有人习惯用左手

师:这些又属于哪方面的变异呢?

生9:特征特性

师:同学们答得太好了,我们就讨论到这,那么得到什么结论呢?

生:变异具有普遍性

师:对,这是今天我们研究的第一个问题:"变异是普遍存在的,"

板书:一变异的普遍性

那么小猫能不能变成小狗呢?

生:不能

生:能

师:请同学们阅读教材25页,找出答案

过了一会

生:不能(学生抬头)

师:为什么呢?

生:因为变异是在遗传的基础上的变异,是在一定范围内的变化,所用不能由猫变成狗。

师:他回答的好不好?

生:好。(掌声)

师:变异现象无处不在,是什么原因造成的呢,可以划分为几种类型?接着来看"变异的类型及原因"请看案例(大屏幕)

板书:二变异的类型及原因

案例2同一品种的小麦种在不同的田里,小麦的麦穗有大穗、小穗。

产生大穗和小穗的原因可能是什么?将大穗和小穗上的种子收获后

分别种子同样条件的田里,他们的后代平均没有大小之分。

师:这种变异是什么原因产生的呢?

生:环境(环境)

师:具体的说呢?

生:比如上肥、除草等田间管理。肥料多的长的就大,反之就小。

水分充足的长的就好。

师:非常好,那么这种变异遗传吗?

生:不遗传,因为把它们种在同一块地里,后代没有大小之分,所以认为同一种小麦的大穗和小穗是受环境影响的。不遗传。

师:太好了,那么能得出什么结论呢?

生:环境条件的改变,引起的变异是不遗传的变异

师:再看下面的案例(大屏幕展示)

案例3一个孩子惯用左手,但是,他的父母惯用右手,这种变异

怎样产生的,是否可以传递给后代呢?

师:这种遗传受什么影响呢?

生:基因型(齐答)

师:是否遗传呢?

生:遗传(齐答)

师:我们的结论是?

生:由基因型的改变引起的变异是遗传的变异。

师:通过以上两个案例,同学们发现了问题,得出了结论,我们来归纳变异的类型和原因。

生:类型有:遗传变异和不遗传变异

原因有:环境和基因型

师:是否由环境影响引起的变异都是不遗传的变异?

(学生考虑问题)

师板书:环境不遗传的变异

基因型遗传的变异

生:不一定

师:主要看遗传物质是否改变,若遗传物质改变,这样产生的变异是可以传递给后代的,根据这一原理,人类可以利用一些特殊环境因素使遗传物质改变而制造出能遗传的变异,为人类所利用。

师:环境和基因型是变异的原因,那么它们是否共同起作用呢?请分析案例(大屏幕展示)

案例4有人曾经把两个黄牛品种的两对同卵双生个体进行试验,分别在不同的饲养条件下饲养,结果体重上差异很大如下表

同卵双生

优越饲养

一般饲养

第一对

500kg

350kg

第二对

350kg

300kg

师:通过观察表格中的内容,你们发现了什么问题?

生:第一对,在不同的饲养条件下,体重不相同,说明受环境影响了。

师:说明什么呢?

生:基因型相同,环境不同它们的表现型(体重)不同。

师:我们还发现了什么问题?

生:第一对和第二对,即使在相同的饲养条件下,体重也不相同。

师:这说明什么呢?

生:环境相同,基因型不同,它们的表现型也不同。

师:刚才,同学们观察的很仔细,也得出了结论,现在我们把这两个结论归纳在一起是什么呢?请阅读教材26页。

生:生物性状的表现是遗传和环境共同作用的结果。

师:很好,那么我们可以用一个公式来表示

生:基因型加环境表现出表现型

师板书:基因型+环境表现型

三、拓展练习(利用大屏幕展示,学生回答)

四、课堂小结

师:我们这节课的内容就进行到这里,请大家一起来总结这节课的重点

生:通过学习我们知道了,变异无处不在,具有普遍性,并且环境和基因型共同控制生物的性状,只有把两者结合起来才能为我们所用。

师:归纳的很具体,给点鼓励(掌声)

师:通过学习,我们要学以致用,把理论应用于实践,希望你们的学习生活越来越丰富。

五、布置作业

基因遗传学原理篇5

关键词基因组医学精准医学医学遗传学教学改革

随着“人类基因组计划”的完成,以及新一代基因组测序技术的广泛应用,我们已经步入“精准医学”(precisionmedicine)新时代。精准医学主要利用疾病基因组学以及药物基因组学大数据,通过基因诊断并以此为依据对疾病进行分类、分型,根据基因组特征,采用最新的个性化治疗等技术,为病人选择最佳的治疗方案,最有效的药物,最安全的剂量,对传统的医疗模式进行革命和创新。

基因组学始于20世纪80年代,90年代后随着人类基因组计划的启动而迅猛发展。基因组医学是由诸多科学家在2003年为纪念Dna双螺旋结构发现50年时所提出的一个医学领域的新名词。基因组医学是以人类基因组的研究为基础,将生命科学与临床医学相整合,从而将基因组的研究成果快速地应用于临床医学实践,这将是贯穿21世纪的在生命科学和临床医学领域的一次伟大革命。

在基因组医学时代背景下,各临床专业科室都必须适应基因组医学带来的临床变革,不断更新知识体系。医学遗传学作为一门基础和临床相互融合且发展飞快的学科,不仅要求医学生掌握基础知识,更要求其可以将相关知识致力于临床实践,这就要求我们对医学遗传学传统教学内容及模式进行调整。因此,如何以基因组医学为导向,着眼于精准医学,推进临床医学教育,加强医学遗传学教学,提高教学质量,更好地让学生掌握医学遗传学的临床应用,并在以后的工作中将其普及社会是我们面临的问题。综上所述,我们对医学遗传学教学内容、课程体系及教学思维等进行了改革。

1改进课程内容设置

我们以培养适应21世纪社会发展需要的新型医学人才为目标,根据医学专业的发展特点,合理设计医学遗传学课程,而课程的设置、编排等问题直接影响到教学进程、教学的内容和教学质量。因此,课程改革也是教学改革的核心问题之一。[1]

首先,对于基本的医学遗传学课程,我们将围绕遗传病开展教学,课前引导学生查阅资料,让学生对遗传病基础有一定了解,课堂抽查课前预习效果。课堂上从临床遗传病常见病例着手,用实例激发学生学习兴趣,介绍其发病机制,如何导致疾病发生和具体的研究方法,然后系统地介绍遗传物质在疾病的发生、发展过程中的作用,最后再从临床遗传学角度开展疾病的预防、诊断与治疗,基本知识点和原则逐点介绍。

其次,根据医学遗传学课程发展需要,我们新增加生物信息学内容,介绍如何利用信息学和统计学等学科的技术,收集、整理、研究目前快速发展的基因组测序、蛋白质组序列测定、结构解析和代谢组等领域的大规模数据,同时通过生物信息学的研究实例,讲解生物信息学的基本知识和重要作用,激发学生对本门学科的兴趣。通过病例为示范,引导学生将生物信息学理论知识用于实践。例如我们实验室收集到一个高度近视的隐性遗传家系,致病原因未明,我们先采用基因芯片进行连锁分析定位致病区间,然后对两个患者和一个正常人进行全外显子测序,指导学生运用生物信息学分析法对三个样本的测序结果进行数据分析,对检测到的患者共有的而正常人没有的外显子区间影响功能的纯合突变进行初步筛选并对定位致病区间的突变在家系内进一步筛选验证,最后成功定位到3号染色体189713156位置上的nLepReL1基因一个GLn氨基酸的终止突变。该基因与胶原蛋白的装配和稳定性有关,此突变与带有白内障和玻璃体视网膜退化表型的非综合征型高度近视有关。这样的案例式教学法不仅巩固了学生对理论知识的理解,也提高了学生进行科学分析问题的能力。

医学遗传学是一门涉及数千种遗传性疾病的基础理论和临床实践的综合性学科,具有基础性和前沿性并存的特点。[2]为了让学生了解到最前沿的科研动态及相关遗传病的研究进展,我们同时开设了“医学遗传学研究进展”课程。“医学遗传学研究进展”是一门以“医学遗传学”课程为基础的课程,它着眼于现代医学遗传学最新最受关注的领域,旨在让学生对医学遗传学的知识进行消化和升华,它的课程内容紧跟国内外前沿,针对国内外研究的热点内容和最新进展设置讲座内容,结合教师当前研究的科研项目进展加以讲解,促使学生了解和关注医学遗传学的前沿进展。该系列讲座强调结合基础科学和临床科学,通过该课程的学习,开阔学生的眼界,掌握最前沿的科研进展。2改革课程体系

绝大多数疾病均与遗传相关,临床中每个科室都应不断更新对相关疾病的知识,因此我们在临床医学范畴下的二级学科的教学环节中应增加相关医学遗传学内容的介绍。例如,消化系统专业课,我们将增加消化系统的遗传学基础知识的介绍;神经内科专业课程,我们拟设置专门的神经内科遗传病及致病的遗传学基础的章节,系统介绍神经内科常见的遗传病种类、遗传学基础、分子和细胞系诊断方法以及相应的遗传咨询要点。

将基因组学作为一个大平台,根据不同的学科,每个学科上课的比重都不一样,把基因组医学与疾病基因组学灌输到临床,教师在授课过程中,不仅教授核心知识点,并且把基因组医学、遗传病学、精准医学、个体化医疗等理念贯穿到临床教学中去,使学生掌握从基因组水平上考虑对疾病诊断、防治与治疗的重要观念。通过打破常规,教授新的医学遗传学理念,以鼓励学生不拘泥传统的循征医学思维模式,以基因研究为导向,提倡“精准医学”,让个体化医疗这一概念从理论中走向生活。

3教学思维,引领学生建立个体化医疗的观念

在教学上,我们率先突破常规的循征医学思维模式,建立以基因研究为导向,提倡精准医学的思维模式。“精准医学”是以个体化医疗为基础,随着基因组测序技术快速进步以及生物信息与大数据科学的交叉应用而发展起来的新型医学概念与医疗模式。其本质上是通过基因组、蛋白质组等组学技术和医学前沿技术,对大样本人群与特定疾病类型进行生物标记物的分析与鉴定、验证与应用,精确寻找到疾病原因和治疗靶点,并对一种疾病不同状态和过程进行精确亚分类,最终实现对于疾病和特定患者进行个性化精准治疗的目的,提高疾病诊治与预防的效益,这是对传统医疗模式的革命和创新。[3]美国总统Barackobama在今年年初的国情咨文中正式宣布精准医学计划(precisionmedicineinitiative),该计划的提出是集合了诸多现代医学科技发展的知识与技术体系,体现了医学科学发展趋势,也代表了临床实践发展的方向。[4]我们顺应时展潮流,率先将个性化医疗、精准医学的理念引入课堂,不断渗透精准医学理念,使学生掌握从基因水平上考虑对疾病诊断与防治的重要观念。

为引领学生建立个体化医疗的观念,需要我们加强各相关学科的交叉融合,使现有的教学知识体系更加完善,让学生们能够学以致用。我们积极推进与细胞生物学、生物化学、分子生物学、病理学、医学免疫学、生物信息学、预防医学、材料学、计算机学等其他学科交叉融合,既促进不同学科之间的相互融合交流,又培养了学生跨学科的思维模式。通过交叉学科的建设,学生将本科专业知识和医学遗传学知识重新组合,更具创新性思维。我们还成立了“教育部国家生命科学与技术人才培养基地”,吸引了不同专业的学生进入医学遗传学领域来,学生在实践课题或项目的设计当中,不仅仅局限于本学科,并引进其他相关学科的方法,利用其他学科的优势来弥补自身不足。

科学技术飞速发展,已进入大数据时代,高效准确地处理数据显得愈发重要。以医疗大数据作为支撑,通过基因组、蛋白质组等组学技术和医学前沿技术,精确寻找到疾病的原因和治疗的靶点,实现对于疾病和特定患者进行个性化精准治疗是“精准医学”的最终目的。因此,我们需要建立一套完善、有效的数据分析平台。我们与生物信息专业进行合作,将临床诊断中收集的数据,进行科学的数据分析,再将分析的结果反馈到临床中去,建立个体化医疗。同时,在授课过程中,不但传授医学遗传学核心知识点内容,而且将精准医学理念渗透到教学的各个环节,使学生从基因水平上考虑对疾病诊断与防治的重要观念。

基因遗传学原理篇6

关键词:脊髓型颈椎病;后纵韧带骨化;遗传学

脊髓型頸椎病(cervicalspondyloticmyelopathy,CSm)及后纵韧带骨化(ossificationofposteriorlongitudinalligament,opLL)是引起颈部脊髓功能障碍最常见的两种原因。随着人类生活和工作方式的改变,CSm已成为常见的临床疾病,其以椎间盘退变为主要病理基础,包括相邻椎体后缘退变增生骨赘形成使该节段椎管管腔狭窄并导致脊髓的慢性压迫引起的临床症状和体征,这种退行性颈脊髓病的常见表现可从轻微的感觉障碍到四肢瘫痪和严重的括约肌功能障碍,患者普遍存在生活质量明显下降[1]。opLL是亚洲人群中常见的一种异常病理改变,其特征是后纵韧带中病理性异位骨化形成。opLL可以促进CSm的形成,同时许多CSm患者常常合并opLL。BednarikJ等[2]研究发现,22.6%的opLL患者将发展为CSm。另有研究显示,椎管狭窄超过60%、侧方发展的opLL及颈椎活动度过大均是脊髓病变的诱发因素[3]。对于无症状的opLL,其发展为脊髓病的可能性为0~61.5%。近年来,有关CSm和opLL的研究发现,除常见原因外,遗传因素、自身免疫、外交感神经、骨质疏松症、血管、炎症反应及颈部肌肉均与这两种疾病的发生发展相关。同时,CSm与opLL的遗传研究为CSm和opLL发病机制的研究和临床治疗提供了新的路径。目前,对CSm及opLL的遗传模式及相关基因的研究已取得一些成果,这不仅有助于揭示相关易感因素的传递方式,还为疾病发生发展的研究开辟了新的生物学道路。基于此,本文对近年来有关CSm和opLL的病理生理机制、遗传模式及相关基因的研究进行综述,旨在为CSm和opLL的临床诊治提供参考。

1CSm

1.1CSm的病理生理机制CSm是颈椎病中的一种类型,是颈椎结构退变导致椎管狭窄并压迫脊髓随后引起脊髓功能障碍或进行性残疾的疾病。当前颈椎病的患病率已明显超过以往常见的下腰痛,而且随着我国人均寿命的延长,此类以退行性变为基础的疾病必然增加[4]。CSm的临床症状和影像学表现较为多样,但其病理过程是一致的,这为疾病的早期防治、诊断及治疗提供了重要依据,对了解其临床表现具有重要意义,且有助于提高该病的诊治水平。在人的整个生命周期中,脊柱始终处于生理负荷状态,这可能导致椎间关节、后纵韧带和黄韧带的增生和钙化,也可能促进骨赘、骨刺以及椎体半脱位的发生,从而引起椎管直径减小,出现静态压迫。而椎管局部区域变窄,压迫神经根,将出现相应区域疼痛的症状;同时,动态脊髓的压迫(即过度的颈部屈伸运动)会反复损害脊髓功能。但静态和动态压迫并不能完全解释脊髓型颈椎病神经元损伤的机制。研究表明[5],CSm的病理生理过程涉及多种因素和机制。aljubooriZ等[6]在CSm患者的尸检研究中发现,受压迫节段的脊髓存在缺血性改变,如脊髓坏死和灰质空化等。说明脊髓的血液供应受到影响可导致脊髓神经元损伤、内皮细胞及小血管数量减少,而内皮细胞是血液-脊髓屏障的关键组成部分,其完整性的破坏可能导致外周炎性细胞侵入脊髓实质,进而造成脊髓神经元损伤,诱发CSm。血管渗透性增加可促进炎症分子和其他潜在细胞毒性蛋白释放到脊髓实质,从而促进脊髓实质水肿[7],这种脊髓实质水肿可加剧神经损伤,并在CSm的慢性退行性过程中发挥重要作用[8,9]。此外,谷氨酸毒性[10]、自由基介导的细胞损伤[11]和凋亡[12]也被认为是CSm继发损伤的重要途径。

1.2CSm的遗传模式环境因素在CSm发病过程中起着重要作用,但遗传因素在CSm发生发展中的作用也不可忽视[13]。mukerjin等[14]在双胞胎对比研究中发现了颈椎病的遗传易感性。patelaa等[15]使用犹他州居民的族谱数据库研究CSm在非双胞胎之间的遗传模式,并对CSm患者亲属的相对患病风险进行评估,结果显示共486例居民患有脊髓型颈椎病,且其一级亲属的相对患病风险是三级亲属的5倍以上。目前已经证实家族关系与CSm的遗传易感性显著相关,但其具体遗传模式还有待进一步研究证实。

1.3CSm相关基因随着基因组学的发展,单核苷酸多态性和蛋白质组学的研究不断进步,CSm相关基因的研究也越来越多。载脂蛋白e(apoe)、骨桥蛋白(opn)、Bmp-4、胶原蛋白Ⅸ色氨酸(tRp2)、维生素D受体(VDR)、HiF-1a、环氧合酶2(CoX-2)、apaⅠ和taqⅠ等基因均可能与CSm的遗传易感性、疾病严重程度或预后有关。wangZC等[16]研究了VDR、apaⅠ和taqⅠ的多态性,发现其与CSm患者密切相关,同时发现CSm和胶原蛋白9a2基因的色氨酸等位基因(trp2)以及吸烟暴露之间存在一定联系[17]。apoe是一种有效的血清蛋白,其通过与低密度和极低密度脂蛋白受体结合来调节血浆脂质水平,在各种中枢神经系统疾病的修复和再生中发挥重要作用,目前已知其与阿尔茨海默症、抑郁症等疾病密切关系。最新研究发现apoe与GSm密切相关,如Setzerm等[18]的研究显示,apoe4基因型与存在慢性颈髓压迫患者的CSm发病风险显著相关,并且该基因型的CSm患者在颈前路减压和椎体融合术治疗后症状没有明显改善,但这一观点还需大规模的前瞻性研究来评估其临床实用性。胶原蛋白Ⅸ是组织中胶原蛋白和非胶原蛋白之间的桥梁,已有研究表明[19],編码胶原蛋白Ⅸ的基因与椎间盘疾病的发生密切相关,破坏胶原蛋白Ⅸ的表达可加速椎间盘退变。胶原蛋白Ⅸ的α2和α3链由CoL9a2(trp2)和CoL9a3(trp3)基因编码,trp2中的色氨酸多态性导致了遗传性椎间盘疾病,而存在trp3突变的患者CSm患病风险明显增加[20]。有关CSm患者trp2和trp3基因多态性的研究表明,CSm患者的trp2等位基因频率明显较高,且与CSm的患病风险相关。opn是一种非胶原细胞外基质糖蛋白,主要由骨和肾中的成骨细胞和破骨细胞产生,其在骨形态、免疫调节和炎症反应中起主要作用。opn基因位于染色体4q21-25上,包含7个外显子,跨度约为11kb。研究表明[21],CSm患者的GG和G等位基因-66t>G多态性的频率明显高于健康人;但其-156G>GG和-443C>t等位基因的频率基本一致,说明opn-66t>G多态性显著影响了opn的局部表达和椎间盘炎性因子的水平。因此可以认为,opn-66t>G多态性可能通过增加opn的表达和炎症反应上调了机体对CSm的易感性,且促进了疾病不良结局。

2opLL

2.1opLL的病理生理机制opLL是一种特发性多因素疾病,其发病机制涉及遗传因素和非遗传因素,包括饮食、肥胖、后纵韧带生理劳损、年龄和糖尿病等。opLL由后纵韧带内异位骨化形成,通常发生在颈椎水平,属于人口老龄化疾病,人群患病率约为1%~4%[22]。研究显示[23],约17%的opLL患者会出现颈髓病变,29%的无症状opLL患者在未来30年内可继发脊髓病变。opLL临床表现主要为脊髓病变和/或神经根病变,严重者可出现感觉运动功能障碍,甚至四肢瘫痪,这些表现多由骨化后椎管体积减小以及骨化的韧带压迫和损伤脊髓所致[24]。异位骨化可能是opLL潜在的发病因素,多种生物力学和代谢介导的生长因子和细胞因子[25]被高度怀疑在异位骨化形成中起作用,如SatoR等[26]研究显示,新生血管形成、血管内皮生长因子阳性的化生软骨细胞和异常的胶原蛋白表达可能在软骨内骨化中发挥作用,进而诱发opLL。目前尚无确切的opLL病理生理机制,还需要大量的基因组学和蛋白质组学研究来提高临床对opLL的认识。

2.2opLL的遗传模式opLL是一种复杂的多因素疾病,遗传和环境因素相互作用。为了确定opLL的遗传模式,人们已经进行了一些遗传学研究。terayamaK[27]对347例opLL患者的研究发现,opLL患者父母的患病率为26%,兄弟的患病率为28%,该研究显示,opLL患者一級亲属罹患opLL的相对风险是普通人群预期发病率的5倍以上。也有研究显示,opLL患者亲属罹患opLL的相对风险是普通人群的7倍。opLL患者的亲属的患病率很高,这意味着opLL可能存在常染色体显性遗传模式,但这些研究均未能发现opLL存在确切的常染色体显性或隐性遗传模式。同样,这些研究也否定了多基因遗传假说。总之,虽然已有研究表明opLL遗传率很高,但目前尚缺乏确切的数据支持。

2.3opLL相关基因目前研究普遍认为opLL是多基因疾病。外源核苷酸焦磷酸酶/磷酸二酯酶(e-npp)基因一种跨膜金属酶,主要通过产生钙化抑制剂无机焦磷酸酯来调节软组织钙化和骨质矿化[28],KoshizukaY等[29]研究检查了e-npp基因中的单核苷酸多态性,发现e-npp可能是治疗opLL的潜在靶点,但还需进一步的研究来阐明其在opLL发生发展过程中的确切机制。骨形态发生蛋白和转化生长因子β在骨形成和代谢的病理生理学途径发挥着重要作用,单核苷酸多态性与这两种蛋白质密切相关,特别是骨形态发生蛋白-2、骨形态发生蛋白-4和转化生长因子β1[30]。同时,单核苷酸多态性可能与opLL密切相关。一项opLL的全基因组关联研究在8p11.21、8q23.1、8q23.3、12p11.22、12p12.2和20p12.3的3条染色体上识别出26个单核苷酸多态性,这些单核苷酸多态性被认为与opLL显著相关,其中6个单核苷酸多态性在复制试验中被确认为是对opLL高度敏感的基因座,这些基因靶点为观察opLL病理生理机制提供了新的途径。

基因遗传学原理篇7

一、性状为可遗传变异或不可遗传变异的判断

1.依据原理

由遗传物质改变引起的变异或由环境改变引起遗传物质改变的变异是可遗传的,单纯由环境改变而遗传物质未改变引起的(性状)变异是不可遗传的。

2.判定方法

在正常的环境中用正常个体、变异个体间分别杂交,获得的子代在相同条件下培养并比较性状。对于植物还可用营养生殖的方法。

例1.果蝇是做遗传实验极好的材料,在正常的培养温度25℃时,经过12天就可以完成一个世代,每只雌果蝇能产生几百个后代。某一生物兴趣小组,在暑假饲养了一批纯合长翅红眼果蝇幼虫,准备做遗传学实验,因当时天气炎热,气温高达35℃~37℃,他们将果蝇幼虫放在有空调的实验室中,调节室温到25℃培养,不料培养到第7天开始停电,空调停用1天,他们也未采取其他的降温措施。结果培养出的成虫中出现了一定数目的残翅果蝇(有雌有雄)。兴趣小组成员推测残翅形成的可能原因是温度改变使遗传物质改变导致性状变异,也可能是温度使性状改变而遗传物质未改变。请设计一个实验验证你关于残翅形成原因的推测:________。

解析:正常的长翅果蝇幼虫在培养过程中由于温度的改变出现了残翅,这种变异产生的原因可能是温度改变使遗传物质改变导致性状变异,也可能是温度使性状改变而遗传物质未改变。为证明这种变异产生的原因,根据上述原理,可在25℃的环境中用残翅雌、雄果蝇杂交并培养幼虫,看子代是否出现残翅,若出现,则说明遗传物质改变引起的;若不出现则是由温度改变引起,遗传物质未改变。

答案:用这些残翅果蝇杂交繁殖的幼虫在25℃下培养。如果子代全为长翅,说明变异由温度改变引起,遗传物质未改变;如果子代全为残翅或部分为残翅,则说明变异由遗传物质改变引起。

二、遗传方式的判断(基因位于细胞核还是位于细胞质)

1.依据原理

受精卵中的细胞质几乎都来自卵细胞,故细胞质遗传具有母系遗传的特点,子代性状始终与母方保持一致,与父方性状无关。因此当基因位于细胞质中时,具有相对性状的纯合亲本正、反交结果不相同,子代性状始终与母方相同。而细胞核遗传中,具有相对性状的纯合亲本正、反交结果相同,都表现为显性性状。

2.判定方法

设计正反交杂交实验。①若正反交结果不同,且子代始终与母方相同,则为细胞质遗传;②若正反交结果相同,则为细胞核遗传。(提示:伴性遗传和细胞质遗传的正反交结果都会出现不同,但细胞质遗传产生的子代总是与母方性状相同,而伴性遗传则不一定都与母方相同。)

例2.果蝇的繁殖能力强,相对性状明显,是常用的遗传实验材料。果蝇对的耐受性有两个品系:敏感型(甲)和耐受型(乙)。有人做了以下两个实验。

实验一:让甲品系雌蝇与乙品系雄蝇杂交,后代全为敏感型。

实验二:将甲品系的卵细胞去核后,移入来自乙品系雌蝇的体细胞核,由此培育成的雌蝇再与乙品系雄蝇杂交,后代仍全为敏感型。

(1)此人设计实验二是为了验证________。

(2)若另设计一个杂交实验替代实验二,该杂交实验的亲本组合为________。

解析:本题主要考查核移植、细胞质遗传、基因位置的判断,细胞质遗传不符合孟德尔遗传定律。

①实验二是通过核移植直接证明耐受型个体受细胞质基因的控制;②验证细胞质遗传常采用正反交法,即可通过耐受型()×敏感型()替代实验二。

答案:(1)控制的耐受性的基因位于细胞质中;(2)耐受型(雌)×敏感型(雄)

三、相对性状中显、隐性性状的判断

1.依据原理

2.判定方法

按图1所示的方法:

例3.玉米的常态叶与皱叶是一对相对性状。某研究性学习小组计划以自然种植多年后收获的一批常态叶与皱叶玉米的种子为材料,通过实验判断该相对性状的显隐性。①甲同学的思路是随机选取等量常态叶与皱叶玉米种子各若干粒,分别单独隔离种植,观察子一代性状:若子一生性状分离,则亲本为________性状;若子一代未发生性状分离,则需要________。②乙同学的思路是随机选取等量常态叶与皱叶玉米种子各若干粒,种植,杂交,观察子代性状,请帮助预测实验结果及得出相应结论。

解析:①甲同学是利用自交方法判断显隐性,即设置相同性状的亲本杂交,若子生性状分离,则亲本性状为显性;若子代不出现性状分离,则亲本为显性纯合子或隐性纯合子,可再设置杂交实验判断,杂交后代表现出的性状为显性性状;②乙同学利用杂交实验判断显隐性,若杂交后代只表现出一种性状,则该性状为显性;若杂交后代同时表现两种性状,则不能判断显隐性性状(此时可通过让两种表现型的植株所接种子分别单独种植在相同环境中,然后以株为单位收集并统计观察,确定显隐性)。

答案:①显性分别从子代中各取出等量若干玉米种子,种植,杂交,观察其后代叶片性状,表现出的叶形为显性性状,未表现出的叶形为隐性性状;②若后代只表现一种叶形,该叶形为显性性状,另一种为隐性性状;若后代既有常态叶又有皱叶,则不能作出显隐性判断。

四、控制一对相对性状基因位置的判定

1.依据原理

常染色体上的基因控制的性状遗传,雌雄个体表现型是一致的,与性别无关;性染色体上的基因控制的性状遗传,雌雄个体表现型会出现不一致现象,性状与性别相联系(如果统计子代群体中,同种表现型小群体的性别比例,推断遗传类型。一般情况下,若同种表现型群体的性别比例均为1∶1,则说明子代性状和性别无关,属于常染色体遗传;如果性别比例不是或不全是1∶1,则为伴性遗传)。Y染色体上的基因控制的性状遗传,则仅限雄性遗传。

2.判断方法

按如下两种方法:(1)控制一对相对性状的基因位于常染色体上还是X染色体上。①在已知显隐性性状的条件下,可设置雌性性状个体与雄性显性性状个体杂交。其推断过程如图2。②在未知显性性状(或已知)条件下,可设置正反交杂交实验。若正反交结果相同,则基因位于常染色体上;若正反交结果不同,则基因位于X染色体上。(见下页图2)

a.野生型(雌)×突变型(雄)

B.野生型(雄)×突变型(雌)

C.野生型(雌)×野生型(雄)

D.突变型(雌)×突变型(雄)

解析:由条件可知,突变型是显性性状;野生型是隐性性状;选择隐性性状的雌鼠与显性性状的雄鼠杂交时,若后代雌鼠全为显性性状,雄鼠全为隐性性状,则该基因位于X染色体上;若后代雌雄鼠中都有显性性状,则该基因位于常染色体上。

答案:a。

(2)基因位于X、Y的同源区段,还是只位于X染色体上,选取纯合隐性雌与显性雄杂交,其推断过程如图3。

例5.大麻是一种雌雄异株的植物,下图为大麻的性染色体示意图,X、Y染色体的同源部分(图中Ⅱ片断)上的基因互为等位,非同源部分(图中i、Ⅲ片断)上的基因不互为等位。若大麻的抗病性状受性染色体上的显性基因D控制,大麻的雌、雄个体均有抗病和不抗病类型。现有雌性不抗病和雄性抗病两个品种的大麻杂交,请根据以下子代可能出现的情况,分别推断出这对基因所在的片段:如果子代全为抗病,则这对基因位于________片段;如果子代雌性全为不抗病,雄性全为抗病,则这对基因位于________片段;如果子代雌性全为抗病,雄性全为不抗病,则这对基因位于________片段。

答案:Ⅱ;Ⅱ;Ⅱ或i。

五、基因的遗传是否遵循孟德尔遗传规律

1.依据原理

2.判定方法

可应用自交法、测交法和花粉鉴定法:

(1)自交法。若自交后代出现两种表现型,且分离比为3∶1,则符合基因的分离定律,由位于一对同源染色体上的一对等位基因控制。若自交后代出现四种表现型,且分离比为9∶3∶3∶1,则符合基因的自由组合定律,由位于两对同源染色体上的两对等位基因控制。

(2)测交法。若测交后代出现两种表现型,且性状比例为1∶1,则符合基因的分离定律,由位于一对同源染色体上的一对等位基因控制;若测交后代出现四种表现型,且性状比例为1∶1∶1∶1,则符合基因的自由组合定律,由位于两对同源染色体上的两对等位基因控制。

(3)花粉鉴定法(或花药离体培养法)。根据花粉表现的性状(如花粉的形状、染色后的颜色等)判断。若花粉有两种表现型,比例为1∶1,则符合分离定律,由位于一对同源染色体上的一对等位基因控制;若花粉有四种表现型,比例为1∶1∶1∶1,则符合自由组合定律,由位于两对同源染色体上的两对等位基因控制。

例6.已知桃树中,树体乔化与矮化为一对相对性状(由等位基因D、d控制),蟠桃果形与圆桃果形为一对相对性状(由等位基因H、h控制)。蟠桃对圆桃为显性。下表是桃树两个杂交组合的试验统计数据:

(1)根据组别________判断桃树树体的显性性状为________。(2)甲组的两个亲本基因型分别为________。(3)根据甲组的杂交结果可判断,上述两对相对性状的遗传不遵循自由组合定律。理由是:如果这两对性状的遗传遵循自由组合定律,则甲组的杂交后代应出现种表现________型。比例应为________。

解析:本题主要以蟠桃生物育种为题材考查遗传规律。通过乙组乔化蟠桃与乔化圆桃杂交,后代出现了矮化圆桃,说明矮化为隐性。两对相对性状的杂交实验,可以对每一对相对性状进行分析,乔化与矮化后,后代出现乔化与矮化且比例为1∶1,所以亲本一定测交类型即乔化基因型Dd与矮化基因型dd,同理可推出另外一对为蟠桃基因型Hh与圆桃基因型hh,所以乔化蟠桃基因型是DdHh、矮化圆桃基因型是ddhh。根据自由组合定律,可得知甲组乔化蟠桃DdHh与矮化圆桃ddhh测交,结果后代应该有乔化蟠桃、乔化圆桃、矮化蟠桃、矮化圆桃四种表现型,而且比例为1∶1∶1∶1。根据表中数据可知这两等位基因位于同一对同源染色体上。

答案:(1)乙;乔化(2)DdHhddhh(3)4;1∶1∶1∶1

六、显性突变还是隐性突变的判断

1.依据原理

显性突变(dD)是由隐性基因突变成显性基因,突变完成个体即表现为显性性状(基因型为DD或Dd),具有突变性状的亲本杂交,子代会表现出原有性状(发生性状分离)。隐性突变(Dd)是由显性基因突变成隐性基因,突变个体的性状往往不能立即表现,只有出现隐性纯合体时才能表现。具有突变性状的亲本杂交,子代不会表现出原有性状(不发生性状分离)。

2.常用判定

方法选取多组突变的雌雄个体进行杂交,统计后代表现情况,若后代出现了原有性状(野生型性状),则为显性突变;若后代只表现突变性状,则最可能是隐性突变。

例7.石刀板是一种名贵蔬菜,为XY型性别决定雌、雄异株植物。野生型石刀板叶窄,产量低。在某野生种群中,发现生长着少数几株阔叶石刀板(突变型),雌株、雄株均有,雄株的产量高于雌株。

(1)要大面积扩大种植突变型石刀板,可以用________来大量繁殖。有人认为阔叶突变型株是具有杂种优势或具有多倍体特点的缘故。请设计一个简单实验来鉴定突变型的出现是基因突变还是染色体组加倍所致?

(2)若已证实阔叶为基因突变所致,有两种可能:一是显性突变;二是隐性突变。请设计一个简单实验方案加以判定(要求写出杂交组合,杂交结果,得出结论)。

解析:本题考查基因突变与染色体变异的区别及基因突变的类型判断。在已证实阔叶为基因突变引起的前提下,可以推知阔叶突变可能是显性突变,设其基因型为DD或Dd,也可能是隐性突变,设其基因型为dd。当利用多个阔叶植株杂交后,在其后代群体中出现野生型个体时,说明阔叶性状为显性性状,突变为显性突变,当其后代群体中全是阔叶个体,则阔叶性状为隐性性状,突变为隐性突变。

基因遗传学原理篇8

基因,一代代的传承

因为继承了父母的遗传基因,所以孩子身上或多或少都能看到父母的影子。可是,为什么有的孩子长得像父母多一些,有的像得少一些。有的孩子遗传了父母的疾病,有的孩子却没事?现在,就让我们追寻这神秘的基因,来看看遗传的真相吧。

显性遗传&隐性遗传

我们的基因都是成对的,每对基因中一个来自父亲的,另一个来自母亲的卵子。我们的性状都是由基因决定的,比如双眼皮和单眼皮等。基因又有显性(a)和隐性(a)之分,显性基因在杂合(aa)的情况下就能表现性状,而隐性基因必须在纯合(aa)时才能表现其性状。如果一种性状是由显性基因控制的,我们称其为显性性状,它的遗传方式为显性遗传,如双眼皮性状等;由隐性基因控制的性状为隐性性状,它的遗传方式为隐性遗传,如单眼皮性状等。这类由于某个基因发生突变而导致的疾病称为单基因遗传病。单基因遗传病是质量性状的,要么就是坏的,要么就是好的。

在显性遗传病中,致病基因是显性基因,孩子只要有一个致病基因,就一定会发病,而且父母中有一个是患者,比如舞蹈病等。

隐性遗传病要得到两个一样的致病基因才能发病。也就是说,父母都携带了一个相同的致病基因,但是他们本人并不发病,各自都给了孩子一个相同的致病基因,孩子就会发病,如果只有一方给了孩子这种致病基因,孩子不会发病,但会是这种基因的携带者,比如苯丙酮尿症等。

隐性遗传病的发病频率是很低的,因为两个没有血缘关系的人,带有同样一个致病基因的可能性很小。而有血缘关系的人,有相同致病基因的可能性就比较大,结婚后两个致病基因结合的可能性也大,生下病孩子的可能性也就大,所以近亲不能结婚。

隔代遗传&交叉遗传

爸爸妈妈明明很正常,孩子为什么会患病?其实,只要再往前找,一定可以找到爷爷辈甚至更上一辈有这样的病史,为什么会这样呢?因为妈妈给了孩子一个致病基因,而爸爸给的是正常的,这样孩子就不会发病,但他是一个致病基因携带者,会传给下一代、下两代。如果这个携带者遇到了另外一个相同致病基因的携带者,并且同时传给了孩子,孩子就会发病,这就是隔代遗传。

有的病,爸爸只会传给女儿,而妈妈只会传给儿子。这种性别交叉的遗传是怎么回事?实际上,交叉遗传是X-连锁遗传,因为男性X染色体上的基因只能来自于妈妈(他的Y染色体来自于爸爸),将来他也只能传递给女儿(Y染色体将传递给儿子),所以,如果爸爸的X染色体异常的话,是不会传给儿子的,只会传给女儿。

提问时间

父母近视,孩子一定会近视吗?

近视是有遗传倾向的,如果父母都是高度近视,子女近视的可能性就很大,因为这属于常染色体隐性遗传。如果孩子是遗传性近视,他近视的度数会比较高,通常要高于600度,而且在孩子年龄很小的时候就会发生。当然,近视也受环境因素的影响,所以,即使父母双方都不近视,但孩子不注意保护眼睛,同样也会患上近视。

我的孩子能长多高?

身高的遗传是多基因性状,由遗传基础和环境因素共同决定,涉及许多基因,而不仅仅是一对基因决定的。身高的基因有很多,如果父母遗传给孩子高的基因多,那么孩子长得就会高些。而遗传给孩子的身高基因高和矮各占一半,孩子的身高可能就是中等。这是一种数量上的变化,而不是质量上的变化。

当然,除了遗传,环境因素对身高也有很重要的影响,比如营养、睡眠、运动等。有的父母个子不高,但孩子却长得很高,除了遗传了父母高的基因比较多外,他一定是营养摄入均衡而充足,而且睡眠好,爱运动,才能达到这样的身高。

做了婚检,怎么还有遗传缺陷的孩子出生?

做不做婚检和常见的遗传性疾病发病没有关系。因为婚前检查查的是双方是否有传染性疾病和一些生育方面的疾病,比如卵子异常、无精等,非传染性的遗传疾病并不在检查的范围之内。所以,畸形儿、先天性疾病的发病率和婚检没有关系。

致病基因的携带率和发病率有多大区别?

一种遗传病,携带者可以很多,但发病率却很低。比如某种遗传病,在人群里有百分之一的携带率,夫妻两个人都携带的可能是万分之一。而他们同时遗传给孩子,即生出一个有病的孩子则是四万分之一。可见,遗传病携带率高,但发病率很低。

不过,即使发病率很低,也不可掉以轻心。一旦家族里有孩子出现遗传病,就要在家系里筛查携带者,以便再生育时进行干预,避免再次生育的孩子仍然有缺陷。

一举一动都有你们的影子!

关于遗传与环境的争论

长期以来,心理学中一直存在着遗传与环境的争论,这一争论从心理学诞生起就一直存在,一直争到今天,仍未有定论。具体来说,遗传与环境之争,又称为“天性-教养”之争或先天与后天的争论:人的发展主要是先天遗传的结果(生物的力量),还是后天教养的结果(环境的力量)?

第一阶段华生(美国著名行为主义心理学家):给我一打健康的儿童,我能把他们随机训练成任何一种类型的专家――医生、律师、艺术家、商人、政治家,当然也可以是乞丐、小偷。这里没有一样是能力、天赋、气质、智力结构和行为特征的遗传结果。

第二阶段霍尔(美国著名心理学家):一两的遗传胜过一吨的教育。

第三阶段目前这一争论进入了“How”阶段,即两者怎样相互作用,也就是行为遗传学的阶段。

除了基因,还有什么可以“遗传”

遗传与环境的争论发展到今天,促进了行为遗传学这门学科的出现。行为遗传学是一门探讨行为的起源、基因对人类行为发展的影响,以及在行为形成过程中,遗传和环境之间的交互作用的学科。行为遗传学认为,遗传对人的影响是肯定存在的,但是影响的方式不是简单地通过Dna、通过基因、通过生儿育女的途径来把一些生物特征进行直接传递。在遗传起作用的过程中,环境具有不可忽视的强大力量。环境会影响遗传基因在后代身上表达、表现的程度、方式和方向等很多方面。

那么,环境与遗传是怎么影响孩子的?我们的想法哪些是对哪些是错?

遗传的作用在小时候还看不出来,或者说不太明显?

人们通常认为,随着时间的延长,环境的影响可能越来越重要,而遗传的影响越来越不重要。但是,遗传研究所证明的正好相反:在人的一生发展中,遗传对认知能力的影响力会逐渐增加。

家庭教养让我们彼此之间更相似?

我们过去认为,在同一家庭长大的兄弟姐妹,心理上也相似。但是,同胞兄弟姐妹在大多数行为问题和疾病方面的相似性都可以用遗传来解释。环境影响确实重要,但是环境的影响表现为,它使那些在同一家庭长大的兄弟姐妹更不同,而不是更相同。

人因为与环境的互动(而不是遗传)而创造经验?

行为遗传学认为,人的经验虽然来自于与环境的互动和个体自身的成长,但是更深层次的原因是遗传。一方面,遗传差异影响着父母对待孩子的行为;另一方面,遗传也影响着孩子与环境的互动。举个例子,家里有很多书籍的父母,其子女可能在学校学习好,但这种相关并不一定说明,家里藏书多是子女在学校学习好的环境原因。更有可能的关系是:遗传因素影响着父母的特质,这些特质和父母藏书多少有关;相应地,通过藏书,也和孩子在学校的成绩有关。而孩子在学校取得的成绩,除了跟父母为他布置的“藏书较多”的环境有关,也跟他自身的遗传特质相关。所以说在某种程度上,人是由于遗传原因创造了环境,进而创造了自己的经验。

共享环境VS非共享环境

在环境如何使人相同或不同方面,英国学者、行为遗传学的开创者之一罗伯特•普洛明教授提出了两个新概念:共享环境与非共享环境。

共享环境:指生活在同一家庭的子女在平均水平上所分享的相同环境,包括通常意义上的家庭背景(家庭社会经济地位、父母职业、受教养程度、等)、学校状况、共同伙伴、邻里情况、民族情况等。它使环境中的个体有彼此相似的经验。

非共享环境:则指子女在家庭内外获得的独特经验的环境。这种独特经验来源于仅仅被一个子女经历的事情或条件,可以分为系统影响和非系统影响。系统的非共享环境包括父母对某个子女的独特教养行为、出生次序、性别差异等家庭内的经验,以及独特的同伴、教师、职业经历等家庭外经验的影响。非系统的非共享环境则往往无法预期,常见来源有意外事故、疾病以及其他特异的经历等。

普洛明认为:正是“非共享环境对人格特征的影响,使得同一个家庭的同胞如同在不同家庭里成长起来的一样,彼此不同”。

提问时间

脾气、性格会遗传吗?

脾气、性格都属于人格特征,而人格特征多数是后天环境影响所致,只有与气质类型相关的部分是遗传的决定作用更大一些。所以,孩子小的时候表现出脾气大或者性格内向,可以说跟遗传关系更大一些,但是父母可以通过后天的教育和抚育在一定程度上进行改变。当然,人格不是那么容易就被改变的,而且随着年龄的增加,可能会更受遗传的影响。

他很爱笑,是不是爸爸遗传给他的?

爱笑,有可能是神经系统方面的遗传,也有可能只是孩子后天对大人的模仿,甚至只是幼儿期的一种与生俱来的环境互动模式。因为孩子需要通过亲社会行为来吸引成年人的养育和监护行为。而这是一个好的、对人际交往和个人生活有益的特征,所以,从小就爱笑对孩子来说是好事。

他不爱整洁,难道是我的毛病遗传给了他?

不爱整洁属于生活习惯,更可能是后天环境的影响。如果父母不爱整洁,孩子天天处于这样的环境当中,就会不知不觉受到父母的影响,对个人卫生、环境卫生问题比较漠视、懒惰。所以,这方面主要看父母的做法和教育,目前还谈不上和遗传有关。

丢三落四也会代代相传吗?

一个人丢三落四,在心理学上一般认为这和个体的注意力、记忆力等认知因素有关,同时也和多血质、胆汁质这两种外向型的气质类型有关。一般的理解,神经系统活动类型与气质类型都会更多地受到遗传的影响,但后天生活的环境也会影响到这种粗心大意的认知特点和行为表现。所以,不能简单说这是不是天生的或者会不会代代相传。如果已经有天生的成分存在,那在后天的养育过程中就一定要注意从家庭环境、家庭教育的角度去注意培养孩子认真仔细的认知特点和风格,从环境的角度去努力纠正孩子丢三落四的毛病。

热心肠是不是与生俱来的?人缘好是父母给的吗?

“热心肠”与“人缘好”都和人的人际交往水平有关,只不过前者是自己与别人交往时的社交风格问题,后者是别人对自己的看法。心理学上一般认为这两种现象都主要是后天从父母和其他人那里通过模仿和学习而得到的,当然,人缘好还有一个特殊的原因,就是外表,有些人的外表天生就会让人愿意接近,有些人则正相反。所以,不管是热心肠还是人缘好,都不是天生的,而是后天逐渐培养出来的和习得的,其实从某种意义上来说,这也是“父母给的”。而环境因素当中,“共享环境”是比较关键的因素。

体质、才能也会遗传?

遗传病≠先天性疾病

遗传病和先天性疾病不完全是一回事。先天性疾病是指孩子出生时就表现出症状的疾病。先天性疾病中有些是遗传因素引起的,如先天愚型(唐氏综合征),也有些是怀孕期间受外界不良因素影响而引起的胎儿发育异常,如风疹病毒感染所致的先天性心脏病,就不属于遗传病的范畴。另外,有些遗传病并非一出生就表现出来的,要到一定年龄时才能发现。所以,一些后天出现的疾病也可能是遗传病。例如进行性肌营养不良、舞蹈病等。

宝宝品貌的三个决定因素

什么东西是宝宝与生俱来的?又是什么因素决定了宝宝出生后是什么样儿?

遗传基因

遗传基因可以说是身体所有细胞的设计图。因为人的细胞中几乎没有一个不是遗传基因参与构造的。宝宝从父母那里继承了他们的Dna,所以,他最初的外形、容貌、体质、才能等都是以此为基础的。

宫内环境

胎宝宝在妈妈的子宫里会受到各种各样的影响,所以,尽管有相同的遗传基因,但是宫内环境不一样的话,宝宝出生时的状况也会不同。但是,这种状况也是在宝宝出生的时候就已经决定了的,从这个意义上说,也算是与生俱来的。

出生后的环境

孩子所具有的遗传性特征,也会因受到出生后环境的影响而发生巨大改变。处在不同的环境当中,喂养方式的不同,社会环境的因素,都会对孩子有很大的影响。图片提供/东方iC

提问时间

父母体质弱、爱过敏会不会遗传给孩子?

孩子的体质如何,主要与胎儿期的生长发育和出生后的喂养有关系,而且体质随着孩子的成长是可以改变的。比如体质很强的妈妈,如果孕期营养摄入不足,或因各种原因早产,也会使生下来的孩子体质比较弱。但如果通过后天精心喂养,也可以追上别的孩子。相反,出生时体质很好的孩子,如果喂养不当,照样会长得不好。所以,孩子的体质强弱,虽然有遗传倾向,但主要还是看后天的喂养和锻炼。另外,父母双方是过敏体质,也会遗传给孩子,使孩子比其他人更容易发生过敏。

说话晚、走路晚也会遗传吗?

为孩子的说话晚、走路晚焦虑的话,先问问你们的父母,你们小时候是多大说话、走路的,因为这是有遗传倾向的。孩子和孩子之间的个体差异本来就很大,再加上家族中有说话晚、走路晚的遗传倾向,孩子这些方面比别人晚点儿是正常的,不用担心。当然,如果孩子走路和说话明显落后于同龄孩子,为保险起见,最好到医院做相关检查,排除疾病导致的智力和行为发育迟缓,以便及早治疗。

运动天赋能不能遗传?

体育天赋和遗传有很大关系,很多体育运动项目是必须要有一定的身体基础作为前提条件的,所以,选运动员的时候,教练不光要看孩子,还要看孩子父母的身体条件。

基因遗传学原理篇9

【关键词】基因遗传孟德尔定律

【中图分类号】G633.91【文献标识码】a【文章编号】1006-5962(2012)07(b)-0103-01

1噬菌体侵染细菌的实验

误区一:实验过程中用放射性32p和35S同时标记噬菌体的Dna和蛋白质外壳

更正:噬菌体侵染细菌的实验也遵循生物学实验的设计原则——对照性原则。该实验应分为两组,即一组用32p标记噬菌体的Dna另外一组用35S标记噬菌体的蛋白质,通过观察离心后离心管中两组之间放射性情况进行对照。

误区二:用32p和35S的培养基直接培养噬菌体,得到被标记的噬菌体。

更正:由于噬菌体属于专门寄生在细菌细胞内的病毒,病毒没有独立的代谢能力,属专性活细胞内寄生生物,所以不能用普通的培养基(即含碳源、氮源、无机盐、生长因子、水的培养基)培养病毒,必须用活细胞培养病毒。想得到被标记的噬菌体,必须先用含32p和35S的培养基分别培养细菌,得到被标记的细菌,再用普通的噬菌体去侵染被标记的细菌,才能得到被标记的噬菌体。

2生物的遗传物质

误区一:某些细菌的遗传的物质是Rna

更正:生物的遗传物质是Dna或Rna,但只有某些病毒的遗传物质才是Rna,所有具细胞结构的生物其遗传物质均为Dna,细菌均有细胞结构,所以所有细菌的遗传物质均为Dna。遗传物质的判断规律为:某生物体内只要含Dna,Dna肯定是遗传物质,无Dna时遗传物质才选择Rna,如果该生物体内无Dna和Rna,蛋白质才是遗传物质。如朊病毒只由蛋白质组成择其遗传物质只能为蛋白质。

误区二:细胞质遗传遗传物质为Rna

更正:真核生物的遗传方式分为细胞核遗传和细胞质遗传,可能有些同学认为细胞质中主要的核酸为Rna,所以有些同学认为细胞质遗传遗传物质为Rna,其实无论核遗传还是质遗传,其遗传物质均为Dna,细胞质遗传指的是叶绿体、线粒体内少量Dna的遗传,只有某些病毒的遗传物质才为Rna。

3基因概念的理解

误区一:基因是由编码蛋白质的序列组成

更正:基因是有遗传效应的Dn断,而遗传效应指的是能够传递和表达遗传信息,所以有同学就认为基因是全部由能编码蛋白质的序列组成,其实是错误的。无论是原核生物还是真核生物的基因结构都是由编码区和非编码区两部分组成,而只有原核生物的编码区和真核生物的编码区和内含子才能编码蛋白质,非编码区和内含子不能编码蛋白质,只起调控作用,所以基因是由编码蛋白质的序列和在编码蛋白质时起调控作用的非编码区和内含子组成。

误区二:非编码区等同于非编码序列

更正:非编码区是指位于基因结构中编码区上游和下游的起调控作用的序列。非编码序列指的是不能编码蛋白质的序列,包括原核生物基因结构中的非编码区和真核生物基因结构中的非编码区和编码区中的内含子,所以非编码区不同于非编码序列。

4孟德尔遗传定律

误区:孟德尔遗传定律适用于所有的真核生物

更正:孟德尔的遗传定律是指基因的分离和自由组合定律,即同源染色体上的等位基因随同源染色体的分开而分离,非同原染色体上的非等位基因随着非同原染色体的自由组合而组合。而同源染色体分开与非同源染色体的自由组合均发生在减数分裂过程中,只有进行有性生殖的生物才进行减数分裂,所以孟德尔定律适应于进行有性生殖的真核生物,且必须为细胞核遗传。这里需要指出的是基因的自由组合定律发生在进行有性生殖的真核生物涉及到两对或两对以上相对性状的细胞核遗传。

5基因重组

误区一:基因重组发生在配子的结合时

更正:基因重组指的是控制不同性状的基因重新组合,该过程应主要发生在减数分裂过程形成配子的过程中。一般基因重组有三种情况,一是交换重组,发生在减数第一次分裂的前期,同源染色体上的非姐妹染色单体交叉互换时;二是随机重组,发生在减数第一次分裂的后期,同源染色体分离的同时非同源染色体自由组合的过程中;三是基因工程,既Dna重组技术,目的基因与运载体结合导入受体细胞。

误区二:基因重组能产生新的基因

更正:基因重组只是在减数分裂过程中控制不同性状的基因自由组合,此过程不产生新的基因,只产生新的基因型,只有基因突变才产生新的基因。

6基因突变和染色体结构的变异

基因遗传学原理篇10

1.考纲要求及教学策略

在高三一轮复习中,学生对知识已有一定的认识,失去新鲜感,因而教师不能对知识进行简单的重现,而应引导学生立足教材,夯实基础知识和基本技能,提高理性思维能力。考纲中对“人类对遗传物质的探索过程”为Ⅱ类要求,“Dna是主要的遗传物质”一节中“遗传物质”是生物学概念,“Dna是遗传物质,遗传信息的传递是通过Dna复制实现的”是核心概念,核心概念的教学实际上是建立在一般概念、原理和规律之上的对生物学核心问题认识和理解的构建[1],前者是构建后者的重要基石。“遗传物质”是亲代与子代之间传递遗传信息的物质,如何理解“Dna是遗传物质,遗传信息的传递是通过Dna复制实现的”这一核心概念?布鲁纳认为“人是通过认知表征的过程来获得知识、实现学习的”。因此,教师不能不遵循认知结构学习的规律,更不能用教师思维替代学生思维的发生、发展、延伸。教师可以科学家的研究历程为背景资料,引导学生思考实验设计思路,分析实验现象,使学生从形象表征走向抽象表针,进而理解核心概念。本节复习思路:遗传现象探究遗传物质遗传物质必备条件经典实验分析正确理解“Dna是遗传物质,遗传信息的传递是通过Dna复制实现的”和“Dna是主要的遗传物质”。

2.复习过程

2.1导入

生命之所以能够一代一代地延续,主要是因为遗传物质绵延不断地向后代传递,从而使后代具有与前代相同的性状。遗传给后代的究竟是什么?通过对细胞结构、细胞分裂、受精作用的学习可知,遗传给后代的细胞是和卵细胞,遗传给后代的结构是染色体,染色体在生物的传宗接代过程中,保持一定的稳定性和连续性。染色体的主要成分是Dna和蛋白质,谁才是遗传给后代的物质呢?引导学生思考“作为遗传物质,必须具备哪些条件”,使学生对遗传物质有正确的认识。遗传物质需满足以下四个条件:(1)能够精确地自我复制,使前后代具有一定的连续性。(2)能够指导蛋白质的合成,从而控制生物的性状和新陈代谢的过程。(3)具有贮存大量遗传信息的潜在能力。(4)具有相对的稳定性,可产生可遗传的变异。

2.2设计实验探究“遗传物质究竟是什么”

田奇林老师在《做一位“发展学生高阶思维能力”的积极践行者》中指出[2]:前天――授人以鱼,“灌知识”“灌方法”,用自己的理解代替学生的理解;昨天――授人以渔,学会阅读学习,变革接受学习,;今天――授人以渔场,给学生提供信息场、创设问题场、留足探索场、提供创造场、建构情感场,让学生摸索着捕,如有不会,再有针对性地指导;明天――“做科学”,生物是一门实验学科。因此,在高中生物学教学中,教师应发展学生理性思维,动脑动手,加强学生实验设计能力尤其是实验设计思路的培养和训练。

根据导入中染色体的主要成分是Dna和蛋白质及遗传物质的满足条件可知,遗传物质是Dna或蛋白质,依据实验设计的单一变量原则和对照原则,实验应设法将Dna和蛋白质分开,可通过分离提纯法或同位素标记法实现,然后单独看其作用。若是探究未知病毒遗传物质是Dna还是Rna,可利用酶的专一性,通过酶解法,破坏一种物质,看另一种物质,也可以使用病毒重组法。

2.3教材中的三个经典实验如何体现单一变量原则和对照原则

从实验设计的两大原则角度,重新审视经典实验,加深对实验的理解。将教材中的基础和主干知识以问题的形式呈现给学生,既能夯实基础,又能提高实验设计和分析能力。

2.3.1肺炎双球菌体内转化实验

(1)R型活细菌小鼠健康

(2)S型活细菌小鼠死亡

(3)加热后杀死的S型细菌小鼠健康

(4)R型活细菌+加热后杀死的S型细菌小鼠死亡

(1)(2)两组通过控制细菌的类型进行对照,可知R型活细菌是无毒的,而S型活细菌是有毒的。(2)(3)两组通过控制S型细菌的存活状态进行对照,可知加热后杀死的S型细菌是无毒的。在此基础上进行的第(4)组实验,实验现象是小鼠死亡,从小鼠体内分离出S型活细菌,但是注射到小鼠体内的是活的R型细菌和加热杀死的S型细菌,小鼠体内无毒的R型活细菌转化有毒的S型活细菌的实质是什么?第(4)组死亡的小鼠体内都是S型活细菌吗?为什么?

由该实验可知:S型菌中有转化因子,那么究竟S型菌中的什么物质是转化因子呢?怎么从S型菌的组成成分中判断哪种物质是转化因子,实验怎么设计,为什么这样设计?引导学生运用单一变量原则和对照原则积极思考。要判断S型菌中哪种物质是转化因子,要设法将S型菌的各种组成成分分开,单独观察其作用。

2.3.2肺炎双球菌体外转化实验

(1)S型菌的Dna+R型菌R型菌和S型菌

(2)S型菌的蛋白质+R型菌R型菌

(3)S型菌的多糖+R型菌R型菌

(4)S型菌的Dna+Dna酶+R型菌R型菌

(1)(2)(3)三组通过控制S型菌的组成成分进行对照,可知S型菌的Dna使R型菌转化为S型菌,S型菌的蛋白质和多糖不可以。(1)(4)两组通过控制是否加入Dna酶进行对照,可知转化因子是Dna,而不是Dna的分解产物。进一步抛出问题,既然实验遵循了单一变量原则和对照原则,设计合理,那么为什么仍有人对该实验的结论提出质疑?从而训练学生的批判思维能力。

分离提纯得到的物质纯度不能达到100%,有没有更好的方法将Dna和蛋白质区分开来?选择什么实验材料最合适?

2.3.3t2噬菌体侵染大肠杆菌的实验

选择合适的实验材料是十分重要的。从实验操作程度和可控制性等方面看,最好选择只有Dna和蛋白质这两种物质作为组成成分的生物为实验材料。既然无法通过提纯得到100%的相关物质,我们就要追踪Dna和蛋白质的作用,可以用什么方法?引导学生对分泌蛋白形成的复习,得出采用放射性同位素标记法。放射性强度是实验观察指标,我们不能判断具体是哪种物质哪种元素产生的放射性,因而只能对Dna和蛋白质分别进行标记,且标记Dna的特有元素和蛋白质的特有元素。实验通过控制噬菌体中被标记的物质进行对照,可知噬菌体侵染细菌时,噬菌体的Dna进入到细菌细胞中,而噬菌体的蛋白质仍留在细菌细胞外,且两组都产生了子代噬菌体,子代噬菌体中只检测到p,没有检测到S。因此p标记的Dna是亲代噬菌体与子代噬菌体之间传递遗传信息的物质,即Dna是遗传物质。引导学生进一步思考:既然Dna进入细菌体内,蛋白质未进入,为什么p标记的噬菌体侵染大肠杆菌时,上清液中含有很低放射性?为什么S标记的噬菌体侵染大肠杆菌时,沉淀物中含有很低放射性?由此,对今后的实验操作和实验设计有什么启发?

自然界中并不是所有的生物都有Dna,如烟草花叶病毒、艾滋病病毒只有Rna和蛋白质两种成分,可通过病毒重组法或酶解法探究其遗传物质。通过对遗传物质的探究发现自然界中大多数生物都是以Dna为遗传物质,所以“Dna是主要的遗传物质”。

3.反思

生物学核心概念的理解不是一节课或一个自然章节就可以完成的,通常需要花费较长时间,从多角度学习才能形成。虽然遗传物质不是核心概念,但它是构建核心概念的基石,在“遗传物质”概念的基础上,教师通过引导学生从实验设计思路和原则角度,抽丝剥茧,分析科学家的经典实验,揭开遗传物质的面纱,理解“Dna是遗传物质”,而对“遗传信息的传递是通过Dna复制实现的”只能通过后续章节来建立。

参考文献: