首页范文医学影像技术的优势十篇医学影像技术的优势十篇

医学影像技术的优势十篇

发布时间:2024-04-29 15:47:08

医学影像技术的优势篇1

论文摘要:本文主要论迷了现代医学影像技术的迅猛发展时医院影像学科管理模式变革的决定性意义和作用,大型综合性医院通过组建医学影像中心在专业化、标准化、综合性基础上充分发挥全院医学影像科室的整体优势。

医院的医学技术装备建设是医疗、教学、科研的物质基础,也是提高医疗质量和服务质量、提升医院整体经济技术实力的重要前提和基本条件。医学影像学科体系是现代医院的一个重要组成部分。在医院中,医学图像信息量占医疗信息总量的70%左右,医院影像科室的组织结构、管理模式、设备配置、学术交流、人才培养以及与临床的分工协作问题对全院影像技术功能的发挥、医疗质量和服务质量的提高、科技实力的增强以及经济效益与社会效益的提高具有重要的作用。结构决定功能,效益取决于管理。对大型综合性医院来说,通过组建疗影像中心,从人才、设备、技术标准和管理效能等方面加强医学影像科室建设,在专业化、标准化、综合化的基础上充分发挥整体优势,逐渐成为主流趋势。

1.成立影像中心是现代医学影像技术飞速发展对影像科室管理模式的必然要求

技术决定战术,现代医学影像技术的迅猛发展对影像科室的管理模式发挥着决定性的作用。

近二十年来,伴随着影像技术的数字化、计算机化、网络化趋势和介人医学的兴起,医学影像学已经由传统的形态学检查发展成为组织、器官代谢和功能诊断及治疗为一体的,包括超声、放射性核素影像、常规x线机、pei,一ci’,ct,mri,dsa,cr,dr以及pacs、电子内镜等多种技术组成的现代影像学科体系,成为与外科手术、内科药物治疗并列的现代医学第三大治疗手段。医学影像学科已经是现代化医院的支柱之一,影像学设备占医院固定资产三分之一以上。医学影像技术的革命性变化必将改变医院对影像科室的管理模式,促进影像学科的发展。

1.1影像学科医技人员的专业化和临床实践的标准化将得到进一步的重视和加强,成为学科发展的立足之本。随着数字化、计算机化、网络化技术的广泛应用,在技术和设备进步的新形势下,影像学科的发展需要理、工、医的紧密结合,影像科医技人员按系统分专业将进一步强化,并且逐步向纵深专科领域扩展,影像科人员的工作模式也必须随之改变,向着人员专业化和临床实践标准化方向不断发展、完善、提高。这种专业化、标准化构成了医院医疗质量控制与管理的基础,也是影像学科发展的出发点和落脚点。

1.2随着影像学科医技人员的专业化进程,影像学科的亚专业与各临床学科之间的联系也更加紧密,临床与影像学科之间的互相渗透使彼此界限逐渐模糊,工作配合得更好,效率更高,使由于设立临床、影像科室和划分不同专业而引起彼此工作和知识脱节的问题得到解决。一方面影像学科医生的临床专业知识更加深人,另一方面临床学科医生对医学影像学知识的了解更好,或一人具有两个学科的行医资格,可以身兼两职。同时,影像学科亚专业各科在理论与实践上出现了许多交汇点,在诊断与治疗上相互借鉴、互相支持、密切配合,在一个新的、高层次上协作共进。

1.3数字化成像、存储、传输的实现,pads系统的建立,使各种影像技术手段得以优势互补、扬长避短、资源共享,使诊断综合化的目标得以实现。

pacs,医学影像存储与通讯系统(picturearchivingandcommunicationsystem,pals)是医学影像技术与数字化图像技术、计算机技术和网络通讯技术相结合的产物,它是通过计算机和网络通讯设备对医学影像资料进行采集、存储、处理、传输和管理的综合性系统。它使得影像设备不再是孤立的一台设备,而是pacs网上的一个节点。科室间数据流的屏障被解除,以实现资源共享和医院内数据流的无缝连接。

诊断的综合化是影像学料发展的一个方向,即在诊断台上比较多种诊断设备的图像,发挥各种设备的综合优势,进而可以用工作站将不同检查设备的图像进行“图像融合”,大幅度提高诊断准确率。随着诊断综合化的实现,在影像学科内部管理模式上,必将改变目前以诊断设备为主的“分工”分组,转向以人体器官/系统为主的专业化分组,充分发挥影像技术人员和装备的系统性、整体性优势,进一步提高技术一经济效益。

与技术进步相适应,在管理模式上影像科室的发展也经历了三个阶段:专科化发展阶段~专科协作发展阶段~系统专业化发展阶段。

当前,国内外医院pacs的规模有四种类型:

1.4成立医学影像中心是优化医院诊疗工作流程,提高效率,实现“以病人为中心”的根本保证。在传统的影像科室管理模式下,医学影像信息在医院各影像输出科室之间以及影像输出与输人科室之间传输、存储、使用过程中,存在着流程环节多、周期长、通道狭窄、手工作业化程度高,经常发生诊疗工作的延误和堵塞,影像信息的丢失和误差率也居高不下(有关资料表明:即使一个管理制度十分完善的医院,由于借出、会诊等,x光片丢失率也会在10%一20%之间)。通过对全院医学影像(输出)科室的服务与管理模式调整与改革,组建全院医学影像中心后,就可以通过pacs网络改造和优化医院诊疗工作的作业流程,简化医学影像流通环节、提高效率,为临床一线提供快捷、优良的医学影像信息服务,可以有效地缩短平均住院日、手术待诊时间、提高住院病人的三日确诊率,降低病人的诊疗费用,“把时间还给医生、护士,把医生、护士还给病人”成为现实,力争实现以病人为中心、努力争取最佳诊疗效果、提高医疗质量和服务质量的目标。以先进的技术包装陈旧的医院影像科室管理模式是行不通的。

1.5组建医学影像中心可以大幅度提升医院的学术水平和整体实力,通过组建全院医学影像中心,实现“强强联合”,使医院影像学科体系更加完备、科学、合理,影像学科体系和影像技术装备体系良性互动、相得益彰,人才培养、科研实力和学术水平有大幅度的提升。医院医学影像(输出)学科实力的增强也将带动全院学科建设的发展,从整体上提高医院的医、教、研能力。

2医院组建医学影像中心要总体规划、分布实施、掌握标准、注重实效

医学影像技术的优势篇2

【关键词】医学影像技术发展状况发展趋势

一、医学影像技术学科的发展近况

(一)医学影像学科的教育教学现状

医学影像技术是进行医学检查的一项常用技术,该项技术的应用层面非常广泛。近几年,伴随着医学影像技术的广泛应用,市场上对医学影像技术人才的需求也随之增加。不少高校依据市场对该项技术人才的广泛需求,具有针对性地设计了相关人才培训计划,并在高校课堂设置以培养医学影像技术人才为目标的医学影像技术学的专业课堂,对教材内容、课堂设计等方面也适时进行了技术创新和改革。虽然这项新的专业学科在进入高效课堂之初就受到了大多数人的认可,但由于该专业的设置时间较短,发展的时间也不长,在相关教材以及教育方式上依然存在着很多问题。这些问题之中,能够影响人才培训的最主要问题是,在不同层次的教育之间医学影像技术的学习在衔接的部分存在不小的问题,例如:专科与本科教育或者是本科与研究生教育之间存在着教育脱节的现象。另外,普通高校在医学影像技术专业应用的教材并不统一,导致大多数学校的人才培训方向不明确,相关设计计划不符合实际,这就导致了大多数医学影像学专业的人才更难在较短时间内适应医院的工作。

(二)应用医学影像技术的相关操作人员的工作状态

现阶段,应用医学影像技术的相关操作人员,在大多数医疗机构当中从事医学影像技术的专业人员被称为技师。除此之外,还能够在大学所附属的医院中担任技术讲师或者是教授。在的一些普通的医院当中,医学影像技术人员主要从事放射科的工作。在其他大型的综合性医院或者是专科医院当中,从事影像技术工作的人员基本上都是大学本科学历,一般很少有硕士毕业生,在医院的放射科博士学历的影像技术操作人员几乎上没有。而在略差于市级医院的地方医院当中,放射科担任影像技术操作人员的则为专科学历。在医院的放射科,各科的医生和相关的技术操作人员数量基本一致。因此,在一些大型的综合性质的医院,或者是具有较完善的医疗图像管理与通信系统的专科医院当中,放射科的大多数医生往往是进行后台的普通检验工作,而医学影像技术学科的人员担任前台检查的重要工作。该项技术人员不不仅仅担任接诊病人的工作,而且还负责患者所检查的疾病图像的收集工作和审核任务。这也就提高了技术人员对相关技术知识掌握的要求,不仅仅要有牢固的图像采集知识体系,还要熟悉各种处理和核查相关的技术。此外,最基本的还要牢牢掌握相关的医学知识。只有做到上述要求,医学影像检查技术人员才能够在第一时间为病人的检查做出正确的疾病医学判断以及准确的技术操作,有利于提高检查结果的准确率。除此之外,进行医学影像的相关影像设备一般价格较昂贵,这就需要相关操作人员在进行操作时要保障设备的安全,在检查患者疾病的同时最大程度上保护相关影响设备。熟悉的医学影像的相关理论知识与实际的设备操作进行融合,从而顺利地进行医学检查,延长影像设备的使用寿命。在当前,影响设备的进化与影像技术人员专业素质不高两个方面出现一定的矛盾,这就使得相关高级的影像,设备不能够在临床检验工作中充分的发挥经验作用,降低图像检查的准确性。因此,在接受相关学校教育的理论教学之后,医学影像技术人员还需要加强对实践应用的掌握,各级医院也应该适度地增加对影像技术人员的专业培训。

(三)现阶段医学影像技术的组织管理情况

在我国,与医学影像技术有关的专业性组织就是中华影像技术学会,该学会是中华医学会附属下的影像技术专业学会,是同中华超声学会、中华放射学会以及中华合医学学会共同组成的关于影像学科的医学与核影像技术的四大学会。中华影像技术学会下属有七个专业学组,其中就包括电子计算机断层扫描技术学组、mR技术学会以及医疗图像管理与通信系统技术学会,除此之外,还包含三个筹备的专业学组以及三个学部。在我国,每年都会在固定时间举办中华影像技术学会大会,其主要目的是进行影像技术交流,是一种具有国际性的专业学会讨论大会,参与到大会当中的人员,大都是来自于世界各国从事医学影像专业技术的高水平人员。这样的学术交流大会,能够精进医学影像技术,因此,吸引了各国的技术人员的参与。另外,在我国大多省份当中,省或市内都存在专业的影像技术学会小组,而且一些地区也建立了相关的。我国所开设的与医学影像技术有关的网络教育平台,其开设范围也惠及全国,这也帮助了许多就职员工进行再度的深度学习,从而培养出更多的医学影像技术操作人员,提高操作人员的专业水平。

二、医学影像技术学科的发展趋势

(一)医学影像学科技术发展的总方向

在当前的医学影像技术发展过程中,医学诊断过程和介入治疗的过程是分开的,但随着各项医学技术的不断创新和发展,这两者必然会在一定时期之后建立相互联系的,呈现出完整的现代影像学科系统。当前,影像技术的研究方向主要是大体形态学,主要在图像的收集以及判断上发挥作用。在未来,影像技术会随着科学技术的发展,向分子、功能代谢以及基因成像等方面发展。而且,当前的影像技术主要采用胶片收集的技术,但随着计算机技术的发展以及数字化方向的技术创新,未来的影像技术会考虑应用到数字化和电子技术,将图像收集和传输过程,以数字化现代化的形式呈现。

(二)医学影像技术的具体走向

由于一些影像技术在我国发展的时间较短,各项技术仍然不够成熟。当初学医学技术不断创新性发展,未来的医学影像技术将会呈现更加直观、更具有特征性的信息。在其他方面,现阶段对于影像的分析都是趋于定向的,在未来会转变成定量的方向发展,不仅仅会判断出疾病的诊断结果,还会给进行疾病治疗以及手术操作提供方向。

(三)医学影像技术的发展趋势

首先,要对物质波和人体组织的之间的互动规律进行的深入研究,并依据这些规律,建立相应的模型,在多次模型建立的过程中,寻找到模型变化的最优参数,并且在一定程度上优化影像提取信息的速度和质量以及数量,进而降低医学检验的误差,提高图像的准确率和分辨率。除此之外,要扩大影像设备所能探测到的信息信号,根据相关参数建立起模型,并进行数字化改善,对编码的各种形式对照相应的信号进行记录,从而避免图像信息过度失真的现象发生。另外,在进行试验研究时,还要提高图像信号传输过程的效率,增加信号的真实度。

医学影像技术的优势篇3

关键词:医院;paCS系统;应用;管理

网络化、数字化的发展使得医院经营发展中大量的使用计算机信息技术,使得运行效率得到极大提升。paCS系统的应用实现了数字化的医疗活动,能够为患者提供更加便利、安全的服务,提高医疗水平与工作效率,也使得医务工作人员有很好的平台展示自己的才华。paCS系统是当前医院信息系统中重要的内容之一。

1医院paCS系统的应用

1.1医院接诊流程

医院中应用paCS系统(picturearchivingandCommunicationSystem影像存档与通信系统)和RiS系统(RadiologyinformationSystem放射科信息系统)之后,医院的接诊也发生了一定的变化。患者需要先由门诊医生开具电子检查的申请单据,然后进行缴费,再到相应的科室进行检查。接收到检查的申请单据之后,登记处的医生需要按照iD号录入到paCS系统中,[1]使得患者的信息能够自动显示,实现分诊分流。实现资源的共享,在paCS系统中保存相关信息。对于检查的医生,可以登录paCS系统对患者的相关信息进行了解,放射科的医生可以根据患者排序的时间先后安排患者的检查顺序。做完检查之后出具报告,将图片自动传送到放射诊断的医生手中,通过paCS系统共享患者的病例,依据临床资料和图片出具放射检查报告,并转移到临床应用系统中。临床医生可以通过临床浏览程序马上调阅电子影像,这样就极大的减少了病人等候及往返临床科室及放射科的时间。

1.2paCS系统应用优势及效果分析

医院中,paCS系统已经成为十分重要的组成部分,对于医学影像的诊断价值的实现具有积极地促进作用,并且能够永久保存数字影像,实现数字影像的重复利用,并且能够传送和携带。医院的paCS系统并不会直接、间接的产生经济效益,但是其应用优势和效果是极为明显的。

首先使用paCS系统能够减少成本支出,通过数字化对图像进行储存,能够减少纸张以及胶片等成本消耗,并且不需要专门的场地、人员对胶片档案进行管理,仓储量基本上为零,通过数字化的方式对影像进行储存能够保证其真实性,并实现长期的保存。

使用paCS系统还能够使医务工作流程得以优化,促进工作效率的全面提升。能够快速准确的阅览影像信息。[2]数字化技术手段的应用能够随时随地调阅影像,不需要再花费大量的时间和精力调取病人以往的资料,通过患者的姓名及iD号可以把该患者在院内做过的所有影像检查调阅出来,便于医生综合考虑治疗,使医生工作效率提高,接诊更多的病人,进而为医院带来更多的效益。

数字化技术手段的应用能够简化医生的工作流程,使医生在诊断中投入大量的时间和精力,提高医院的医疗水平和效果。引入多样化的图像处理技术能够将一些原本不明显的病情更加清晰,为调取以往的病例提供便利,同时为医生工作提供科学的参考,保证诊断更加科学准确。数字化的储存能够为远程医疗的实现提供便利,做到信息资源的共享,加强医院间的技术交流,实现优势互补,促进双方共同进步。通过远程会诊也能够减少患者的重复检查,使患者的就诊时间缩短,减少花费,实现医院的经济以及社会效益,强化医院的整体服务和管理水平。

此外,医院paCS系统的应用还能够在一定程度上减少放射科医生、技术人员以及临床医生的工作量,使其从繁重的日常工作中解放出来,能够有精力关注患者以及科研,[3]使放射科的医生能够为患者提供更加优质的的服务,保证患者信息的完整,为教学以及收集医学资源提供便利。

2医院paCS系统的管理情况分析

paCS系统虽然有很多优势,但是也存在诸多不足,比如服务器出现异常等,这些问题会影响paCS系统的使用效果,导致科室工作效率不高,为了避免这些问题、故障的出现就需要加强paCS系统的管理。

2.1服务器出现异常

在医院应用paCS系统时,比较常见的问题就是服务器异常,主要是服务器不能正常接收和储存图像,这种问题一般是与处理软件不能正常响应有关。同时传输大量医学影像时出现堵塞。这种问题比较简单的处理方法就是不使用该软件,重新进行加载。如果通过上述处理服务器还没有恢复正常就需要重启服务器。服务器故障的处理和预防方法有很多种,医院可以根据自身的实际情况确定针对性的措施。可以使用加装分中心服务器的方式,使图像经过分中心进入到主服务器中,减少主服务器的压力,有效避免堵塞问题的出现。现在的放射设备、技术越来越先进,扫面层数等越来越多,这就需要在配置paCS服务器时,具有前瞻性,如硬盘存储容量,内存的大小等尽量考虑周详。

2.2报告端无法打开paCS

报告端有archiveServe服务和loading服务。[4]如果病毒影响archiveServer,使其不能正常启动,这时要想打开paCS,就必须要重装。loading服务中断,卸载现有的驱动,并重新安装,从而恢复正常。

2.3服务器与影像设备无法正常连接

影像设备与服务器连接是以tCp/ip网络协议为基础和前提的,因此如果连接出现故障,就需要对服务器的相关设置进行检查,如ip地址、端口号、Hostname、ae-titLe等,明确其是否正常,如果这些设置没有问题,就需要检查网络,保证网络正常使用。设备的设置也会导致连接出现异常,如果服务器设施以及网络设置都没有问题,就需要检查设备,这项工作一般是由专业的工程师进行的。

2.4无法正常调阅paCS报告图像

医院管理中,paCS系统主要是为影像科提供服务的,医务人员在检查paCS报告图像时可以借助HiS系统,通过接口程序对信息的匹配情况进行检查,从而实现图像的调阅。如果paCS报告图像无法被正常的调阅,就需要采取相应的办法进行解决。首先要做的就是明确HiSinterface程序的运行是否正常,有没有在windows启动项中加载。[5]如果接口没有异常问题,可以运行monitor程序,判断计算机名和调图种类没有问题,对于这种问题,在维护管理中需要做到及时更新HiS程序,从而使得报告图像的调阅更加高效。

3结束语

总而言之,医院paCS系统作为一种现代化的管理系统有着十分重要的作用和优势,它能够使图像储存效率更高,减少医院成本的支出。当前已经有很多医院积极引进了paCS系统,为了使paCS系统的优势作用得到充分的发挥,就需要科学设计paCS系统,并做好系统的应用以及管理工作,及时发现系统中的异常,并采取有效地措施排除故障,保证paCS系统能够更好地为医院提供服务,保证医院医疗活动的顺利、高效开展,从而获得更好的经济效益以及社会效益。

参考文献

[1]张毅,王萍萍,贾卫伟.探讨医院paCS/RiS系统的管理与维护[J].中国医学装备,2011,10:32-34.

[2]李小琴.浅谈医院paCS系统的应用和管理[J].企业技术开发,2016,05:87-88.

[3]赵阳柳.浅谈医院paCS/RiS系统的应用维护和发展[J].医疗装备,2015,07:81-82.

医学影像技术的优势篇4

1医学影像融合的必要性

1.1影像的融合是技术更新的需要随着计算机技术在医学影像学中的广泛应用,新技术逐渐替代了传统技术,图像存档和paCS的应用及远程医疗的实施,标志着在图像信息的存储及传输等技术上已经建立了新的模式。而图像后处理技术也必须同步发展,在原有的基础上不断地提高和创新,才能更好更全面地发挥影像学的优势。影像的融合将会是后处理技术的全面更新。

1.2影像的融合弥补了单项检查成像的不足目前,影像学检查手段从B超、传统X线到DSa、CR、Ct、mRi、pet、SpeCt等,可谓丰富多彩,各项检查都有自身的特点和优势,但在成像中又都存在着缺陷,有一定的局限性。例如:Ct检查的分辨率很高,但对于密度非常接近的组织的分辨有困难,同时容易产生骨性伪影,特别是颅后窝的检查,影响诊断的准确性;mRi检查虽然对软组织有超强的显示能力,但却对骨质病变及钙化病灶显示差;如果能将同一部位的两种成像融合在一起,将会全面地反映正常的组织结构和异常改变,从而弥补了其中任何一种单项检查成像的不足。

1.3影像的融合是临床的需要影像诊断最终服务于临床治疗;先进的检查手段,清晰的图像,有助于提高诊断的准确性,而融合了各种检查优势的全新的影像将会使诊断更加明确,能够更好地辅助临床诊治疾病。

2医学影像融合的可行性

2.1影像学各项检查存在着共性和互补性为影像的融合奠定了基础尽管每项检查都有不同的检查方式、成像原理及成像特征,但它们具有共同的形态学基础,都是通过影像来反映正常组织器官的形态、结构和生理功能,以及病变的解剖、病理和代谢的改变。而且,各项检查自身的缺陷和成像中的不足,都能够在其他检查中得到弥补和完善。例如:传统X线、Ct检查可以弥补对骨质成像的不足;mRi检查可以弥补对软组织和脊髓成像的不足;pet、SpeCt检查则可以弥补功能测定的不足。

2.2医学影像的数字化技术的应用为影像的融合提供了方法和手段现在,数字化技术已充分应用于影像的采集、存储、后处理、传输、再现等重要的技术环节。在首要环节即影像的采集中,应用了多种技术手段,包括:(1)同步采集数字信息,实时处理;(2)同步采集模拟信号,经模数转换装置转换成数字信号;(3)通过影像扫描仪和数码相机等手段,对某些传统检查如普通X线的胶片进行数字转换等;将所采集的普通影像转换成数字影像,并以数据文件的形式进行存储、传输,为进一步实施影像融合提供了先决条件。

3医学影像融合的关键技术

信息融合在医学图像研究上的作用一般是通过协同效应来描述的,影像融合的实施就是实现医学图像的协同;图像数据转换、图像数据相关、图像数据库和图像数据理解是融合的关键技术。(1)图像数据转换是对来自不同采集设备的图像信息的格式转换、三维方位调整、尺度变换等,以确保多源图像的像/体素表达同样大小的实际空间区域,确保多源图像对组织脏器在空间描述上的一致性。它是影像融合的基本。(2)影像融合首先要实现相关图像的对位,也就是点到点的一一对应。而图像分辨率越高,图像细节越多,实现对位就越困难。因而,在进行高分辨率图像(如Ct图像和mRi图像)的对位时,目前借助于外标记。(3)建立图像数据库用以完成典型病例、典型图像数据的存档和管理以及信息的提取。它是融合的数据支持。(4)数据理解在于综合处理和应用各种成像设备所得信息,以获得新的有助于临床诊断的信息[1]。

图像融合的方法主要有4种:(1)界标配对:界标作为两种图像相对应的融合点且决定融合的一些参数,它被广泛应用于放射治疗和立体外科学[3];(2)表面相合(SFit)法:SFit法又称头和帽法。其原理:所有融合影像上可识别的同一解剖结构表面之间的均数平方根(RmS)距离最小,其中,可用手工或半自动的边缘探测规则从每种影像的一系列图片得到的器官外部轮廓就是表面;头代表从较高分辨率影像中获得的表面模型;帽子代表从较低分辨率影像中获得表面的一系列独立的点[4];(3)空间力矩配对:协调中心点和主轴(paX),使paX惯性力距最小,融合时包括计算偏心和旋转以协调paX和比例[5];(4)交叉相关法:此法基点是两种影像的相关系数值最大(接近)。主要用于同一种显像方式影像的融合[6]。以上4种融合方法可分为两大类:(1)前瞻性融合法:在显像采集时使用特别措施(如协调器具,外部标志等);(2)回溯性融合法:在显像采集时不采取特别措施。

近年来,有学者从另外的角度将融合技术归纳为单模融合、多模融合和模板融合[2]。(1)单模融合:是指将同一种影像学的图像融合,多用于治疗前后的对比、疾病的随访观察、疾病不同状态的对比、运动伪影和设备固有伪影的校准等方面;(2)多模融合:是指将不同影像技术的图像进行融合,包括形态和功能成像两大类,多模图像融合主要是将这两类成像方法获得的图像进行融合,其意义在于克服功能成像空间分辨率和组织对比分辨率低的缺点,发扬形态学成像方法各种分辨率高、定位准确的优势,最大限度地挖掘影像学信息,直接进行不同成像方法之间的比较,多用于神经外科定位手术、制定治疗计划等方面;(3)模板融合:是指将患者的图像与模板(解剖或生理图谱等)图像融合,这种方式也适用于不同患者的图像融合,主要用于正常结构的统计测量、不同患者同一类病变的比较、监测生长发育和衰老进程等方面。

4医学影像融合的临床价值

利用计算机技术对获取的影像信息进行处理,并将其成果应用于临床已成为现代医学影像学发展的主要方向。通过影像的融合,将多项检查成像进行综合分析、处理,再现出全新的、高质量的影像,对于临床的价值主要体现在3个方面:(1)对影像诊断的帮助:融合后的影像能够清晰地显示检查部位的解剖结构及毗邻关系,有助于影像诊断医生全面了解和熟悉正常组织、器官的形态学特征;通过采用区域放大、勾画病变轮廓、增添病变区伪彩色等手段,能够增加病变与正常组织的差异,突出显示病灶,有助于诊断医生及时发现病变,尤其是早期不明显的病变和微小病变,避免漏诊;在影像中集中体现出病灶在各项检查中的典型特征,有助于诊断医生做出更加明确的定性诊断,特别在疑难疾病的鉴别诊断中,作用更为显著[7]。(2)对手术治疗的帮助:在影像的融合中,采用了图像重建和三维立体定向技术,充分显示出复杂结构的完整形态和病灶的空间位置,同时清楚地显示出病变与周围正常组织的关系;对于临床制定手术方案、实施手术以及术后观察起了重要作用[8]。(3)对科研的帮助:影像的融合集中了多项检查的特征,同时体现了解剖结构,病理特征,以及形态和功能的改变,并对影像信息做出定性、定量分析,为临床进一步研究疾病提供了较为完整的影像学资料。

5医学影像融合的应用前景

目前,图像融合主要应用于体层成像。随融合技术的不断发展,其在非体层成像方法中的应用逐渐增多。已有研究将血管内超声与二维X线血管造影图像进行融合,认为融合图像能克服超声显示冠状动脉形态的局限性、准确重建出血管的解剖结构、反映血管的真实弯曲[9]。

以医学成像技术为基础,结合影像诊断、影像导航、介入治疗和外科等学科所形成的计算机辅助科学是计算机在医学应用新的发展方向。图像融合技术有助于计算机辅助科学的成熟,特别是三维图像融合的研究与开发。

随着paCS在医院逐渐推广应用,为多种影像学技术的综合应用提供了广阔空间,加速了图像融合的发展。有人利用图像融合建立自动识别警告系统,校正paCS进行图像存储及归档的错误[10]。

远程医学是网络时代产物,是实现医学资源全球共享的方式。图像融合在远程医学中有广阔的应用前景。如进行远程手术,将多模图像融合成多参数、仿真人体模型,配准到术中真实器官上,可有效指导制定远程手术计划,有助于顺利实施手术[11]。

综上所述,医学影像的融合是利用计算机技术将多项检查成像的特征融合在一起,重新成像;影像融合既保留了原有的后处理技术,又增添了新的内容;它是信息融合技术、数字化技术、计算机技术等多项技术的综合和在医学影像学应用的深入和扩展。医学影像的融合将会带动医学影像技术的又一次更新,并将是影像医学新的发展方向。

【参考文献】

1康晓东.计算机在医疗方面的最新应用.北京:电子工业出版社,1999,46-70.

2HillDL.medicalimageregistration.physmedBiol,2001,46:R1-R45.

3LiehnJC,Loboguerreroa,peraultC,etal.Superimpositionofcomputedtomographyandsinglephotonemissiontomographyimmunoscintigraphicimagesinthepelvis:validationinpatientswithcolorectalorovariancarcinomarecurrence.eurJnuclmed,1992,19:186-194.

4turkingtontG,JaszczakRJ,pelizzariCa,etal.accuracyofregistrationofpet,SpeCt,andmRimagesofabrainphantom.Jnuclmed,1993,34:1587-1594.

5alpertnm,BradshawJF,KennedyD,etal.theprincipalaxistransformation:amethodforimageregistration.Jnuclmed,1990,31:1717-1722.

6BacharachSL,Douglasma,CarsonRe,etal.three-dimensionalregistrationofcardiacpositromemissiontomographyattenuationscans.Jnuclmed,1993,34:311-321.

7丁里,朱之庄,武绍远,等.标准化神经影像融合技术及临床应用研究.中国医学影像技术,2000,16(2):88.

8汪家旺,罗立民,舒华忠,等.Ct、mRi图像融合技术临床应用研究.中华放射学杂志,2001,35:604.

9CothrenRm,ShekharR,tuzcuem,etal.three-dimensionalreconstructionofthecoronaryarterywallbyimagefusionofintravascularultrasoundandbi-planeangiography.intJCardimaging,2000,16:69.

医学影像技术的优势篇5

转化医学(translationmedicine)是近年国内外医学领域流行的一个新概念,2003年美国国立卫生研究院正式提出“转化医学”概念。它以人的健康为本、以重大疾病为研究出发点、以促进科学发现转化成医疗实践为宗旨。其主要目的是打破基础医学与临床医学领域固有的隔阂,搭建两者间的桥梁,使日新月异的基础医学研究成果转化为改善人类健康的防治措施[3]。因此,转化医学本质上是一个双向开放、往返循环、持续向上的研究过程[4,5]。转化医学理念已逐渐成为世界医学研究领域的共识,其应用有利于推进临床医学更好、更快速地发展。

2肿瘤影像医学教学的现状

肿瘤影像学是医学专业中较为特殊的一门学科,其教学主要包括肿瘤医学影像诊断和肿瘤医学影像技术两方面。肿瘤医学影像诊断的教学模式比较成熟,主要注重临床常见肿瘤的诊断及鉴别诊断。但肿瘤医学影像技术教学则较为欠缺,尤其是对肿瘤影像新技术的研发、功能拓展、临床医学与工程技术结合及运用等方面的授教还较为薄弱。目前肿瘤影像医学教学工作主要存在以下问题:①传统的肿瘤影像医学教学授课的模式过于单一,跨学科联系较少,不利于学生创新思维的培养。②现行课程安排中有关学习方法、获取知识手段的课程较少,不利于学生综合素质的培养。③缺乏理论联系实践的教学方法,单纯从理论和阅片等教学手段难以让学生对肿瘤影像表现与临床特征之间的关系进行系统地理解。④教学内容陈旧。该学科知识更新快,教材、教案等教学内容和方法不足以满足临床工作的需求[6]。⑤学生技术研究能力的培养与临床实际应用能力脱节。肿瘤影像医学教育要求培养既会诊断又会技术研究,既有转化理念和能力又有肿瘤影像学基础知识与临床实践经验的综合型人才。因此,开展转化医学教育尤为必要,它是当前培养综合型人才最有效的途径之一。提倡“从实验桌到病床旁”的转化医学教学理念在肿瘤影像医学教学中的应用具有重要的现实意义。

3转化医学教育理念在肿瘤影像医学教学中应用的意义

3.1促进肿瘤影像医学教学多学科的合作

不同学科、不同思想、不同理念的相互碰撞有利于创新思维的产生,而一个学科的发展壮大,也需不断加强不同学科间的知识与技术合作,加强学科的交叉与融合。因此建立肿瘤影像学、基础肿瘤学、工程技术学、物理学等多学科的科研小组,让各组组员发挥各自的专业优势,形成多学科交叉研究,通力合作及协调发展,形成纵横交错的综合体系,才有望实现肿瘤影像医学的可持续发展[7]。转化医学教育强调理念的改变,它打破以往的单一学科或有限合作的教育模式。首先为学生提供一个学科交叉的开放式研究平台,鼓励将物理工程实验室发现的有意义的成果转化成能为临床提供实际应用的手段,有效将肿瘤的基础研究成果转化到临床实践中,同时也对肿瘤影像征象进行基础研究。其次,不同的影像成像手段各有优劣,将彼此的优势互相融合已成为医学影像设备研发的潮流。转化医学教育对这一潮流的发展具有重要的推动作用,从而进一步为肿瘤的诊断提供更多的成像手段,有利于肿瘤的诊断及鉴别诊断。如在既有的Ct、mRi、pet、B超等设备的基础上研发pet-Ct、pet-mRi或将几种成像设备融合的机器。多学科交叉研究的平台具有稳定而强大的效果,所形成的多学科介入机制能够满足临床及基础研究的需求。

3.2为肿瘤影像医学教学搭建理论与实践的桥梁

转化医学理念的应用一方面能增强肿瘤医学影像学专业的学生加深对临床知识的重视和理解,另一方面也为临床医技人员提供进入实验基地探索基础研究的机会。以转化医学理念为指导,重视从临床中凝练课题,可以培养医学生一切从实际出发的意识,自觉做到理论联系实践,使基础研究与临床应用相结合[8]。如肿瘤医学影像学专业的学生在临床实践过程中发现某种肿瘤具有相同的影像征象,但是纯粹的临床实践无法为其提供相应的基础理论支撑依据。转化医学理念主张临床医生与研究员密切合作,提倡由临床医生仔细观察肿瘤的影像特征,将相关信息提供给基础研究员,再由基础研究员对此进行研究,进而将科研成果反馈到临床,为临床提供有力的依据,通过探究性研究达到解决临床问题的目的,从而提高医疗总体水平。

3.3有利于培养学生的团队精神

转化医学理念的应用为肿瘤影像学专业的学生提供了多学科合作的机会,让学生在学习过程中不断提高与他人进行沟通交流的能力,并在交流过程中获得多种学习方法,从而提高自身的综合素质[9]。如肿瘤影像学专业的学生在学习X射线、Ct、mRi、pet、B超检查等的成像原理时,可与物理学专业的学生合作学习。通过观摩物理学专业学生的操作,共同探讨相关问题以获得深层次的实验体验,从根本上理解相关概念及原理,将枯燥、深奥的理论学习转化为有趣且自主参与的实验操作。另外,通过与其他学科学生的交流,可进一步培养肿瘤影像学专业学生的团队精神,培养适应学科发展所需的医学影像技术工程师,塑造能灵活将基础研究与临床实践融为一体的专业人才,构建合作融洽的专业团队。

3.4有利于培养具有转化医学理念和能力的学生

肿瘤影像医学蓬勃发展,临床应用技术不断更新,而现有的教材、教案等教学内容和教学方法却停滞不前,不利于医学生第一时间掌握肿瘤相关研究新进展及新技术。许多学生毕业后开始到临床一线工作,在实际工作中遇到相应的技术问题时,常常无法到实验室通过相关研究来解决当前技术的缺陷,不利于技术的改进与发展。转化医学的应用一方面为肿瘤医学影像技术研究人员熟悉和参与临床工作创造了条件,鼓励学生到临床进行实践,让学生在相关教材内容还未能及时更新的情况下,通过到临床实践仍能及时掌握最新的技术。另一方面,为学生参加工作后再次进入实验室进行技术研究打下铺垫,真正做到将临床影像医学的应用与工程医学授课有机结合,有利于培养具有肿瘤医学影像诊断能力和肿瘤医学影像技术研发能力的综合型人才。

4结语

医学影像技术的优势篇6

Keyword:medicalimagingtechnology;medicaldiagnosticimage;relationship

引言

医学影像是涵盖X线片、超声、Ct、核磁共振、介入等多个不同门类的一门新兴医学技术,自1895年伦琴发现X线片以来,医学影像技术得到迅速发展,在此之前,医生除解剖外,只能依靠触诊了解患者体内情况,但解剖与触诊均具有一定风险。因影像成像原理及采用的检查方法存在明显区别,检查范围也各不相同,且还突出了检查技术。因此,影像技术对于影像诊断具有较强的依赖性,逐渐从根据某一形态变化而诊断向功能、形态、代谢等改变的综合诊断体系方向演变。

一、医学影像技术与医学影像诊断的专业互补性

医学影像诊断离不开医学影像技术的支持,二者之间存在十分紧密的关心。医学影像技术水平的提升及工作层面的拓展需要影像诊断的科学指导,而医学影像诊断水平的提升同样需要高水平的医学影像技术作为保障。只有通过医学影像诊断及时将结果反馈出来,才能逐步提升医学影像技术水平。由于不同的医学影像技术的成像原理是存在差别的,并且不同的影像学技术的专业性较高,例如超声检查、Ct、mRi等方法各有特点,在临床应用过程中,对检查的结果进行分析与研究,能够发现不同的技术各有优势,但也存在一定的不足和缺陷。对于疾病的诊断,并非通过医学影像技术就能够得出最准确的结论,有时仅通过一种影像学技术就能进行诊断,而采用其他的检查方式则难以检出异常。即使不同的影像学技术都能对一些疾病进行检查,但应当出于对患者经济角度的考虑,选择最为经济且适合的检查方法。

医学影像技术和医学影像诊断在本质上是紧密联系的,并且二者之间相互依赖、相互渗透、相互制约,在相互促进的过程中促进各自的发展。随着当前医学影像技术的不断成熟与发展,医学影像诊断和医学影像及时之间的界限逐渐变得模糊。在整个医疗环境中,随着新业务、新技术、新材料以及性科学的出现及快速发展,使得医学影像诊断与医学影像技术之间实现了有效的融合,这在一定程度上缩短了患者的治疗周期,大大提升了医疗水平。

二、医学影像技术与医学影像诊断的专业独立性

在当前医学影像技术临床应用中,对于专业医师的要求较高,主要包括:第一,要求了解与掌握Ct、核磁共振、超声医学及常规放射学等方面的专业操作技能与相关理论知识;第二,了解并掌握有关电子学、基础医学及临床医学等方面的理论知识;第三,在疾病诊断过程中,对各类影像学诊断技术的应用情况及主要作用有一定的了解;第四,了解医学影像等不同专业分支的发展趋势及主要的技术。

在当前医学影像诊断应用方面,对于专业医师的要求主要有以下几个方面:第一,熟练掌握现代医学影像学、基础医学及临床医学等方面的专业性知识;第二,在对临床疾病患者的诊断过程中,对多种影像诊断技术熟练应用;第三,能够深入了解并熟悉与医学影像方面相关的临床技术及知识;第四,了解医学影像等不同专业分支的发展趋势及主要的技术。

医学影像技术主要是为临床疾病的影像学诊断提供科学的参考依据,并且能帮助专业医师获得准确可靠的影像学信息与知识,从而为疾病的诊断及治疗提供极为关键的依据。医学影像诊断工作则主要是为了对医学影像技术中提供的各方面信息作出观察与分析,并对这些信息进行归纳与总结,从而得出最为客观、公正的影像学诊断结论。

医学影像技术的优势篇7

关键词:分子影像;平台建设;pet/Ct

分子影像学(molecularimaging,mi)是医学影像技术和分子生物学、化学、物理学、放射医学、核医学以及计算机科学相结合的一门新兴学科[1]。以正电子发射断层显像/X线计算机体层成像(positronemissiontomography/Computedtomography,pet/Ct)为代表的核医学融合影像技术是现阶段临床应用最为成熟的分子成像方法,在分子影像研究领域占据主导地位,被认为最具发展和应用前景[2]。作者所在西安交通大学第一附属医院医学影像科拥有全球高端pet/Ct成像设备以及全套pet正电子药物合成系统,在pet/Ct成像的临床和基础研究方面积累一定的经验,近几年,学科也在积极探索建立基于pet/Ct成像技术的分子影像研究与发展平台,加速我院医学影像与核医学专业发展,在此过程中我们获得了一些体会和心得。

1分子影像学发展现状与趋势

分子影像学是1999年由美国哈佛大学weissleder等提出的新概念,是指应用影像学方法对活体状态下的生物过程进行细胞和分子水平的定性和定量研究,它以体内特定分子作为成像靶点,在真实、完整的人或动物体内,通过图像直接显示细胞或分子水平的生理和病理过程,在分子生物学与临床医学之间架起了相互连接的桥梁,因此被美国医学会评为未来最具有发展潜力的十个医学科学前沿领域之一,是医学影像发展和应用的方向[3]。现阶段临床上能够真正意义上实现分子水平成像且具有图像融合功能的影像学技术仅有pet/Ct和SpeCt/Ct,前者所使用的多为短半衰期正电子核素标记放射性药物,微量使用不影响人体正常生理代谢,仪器检测灵敏度和空间分辨率显著高于SpeCt/Ct,被认为最具发展和应用前景,同时也是分子影像学发展的重要方向之一[4]。基于pet/Ct成像技术构建分子影像研究平台是促进学科交叉,加速分子影像发展的有效途径。

2pet/Ct在分子影像平台建设中的作用

2.1pet/Ct带动分子影像需求日益扩大pet/Ct成像离不开正电子药物,在分子影像发展中pet正电子药物由于其独特的性能被作为分子探针的"金标准"。2010年美国国家卫生研究院统计数据显示大约有800多种分子成像放射性药物具有潜在的临床应用价值,我国食品与药品监督管理局于2006年正式批准了十余种正电子药物用于临床[5]。表1列举了常用的针对肿瘤、心、脑疾病的正电子药物名称、成像原理与临床应用范围,不同的正电子药物反映组织、器官不同生理、病理过程,具有不同成像价值,为临床和科学研究中提供更多有用信息[6]。我院医学影像科pet/Ct中心目前已能自行制备十余种正电子药物用于临床及临床前研究,通过与临床多种形式的交流与合作,使得临床科室对pet/Ct需求和依赖性不断增加,建立在正电子药物基础上的pet/Ct成像技术已经成为临床诊断与评价疾病的重要手段。

2.2pet/Ct推动其他分子成像技术发展近年来,建立在传统成像基础上的磁共振、超声以及光学分子成像研究逐渐增多,磁共振的优势在于软组织分辨率高,现阶段磁共振分子成像多集中于纳米探针构建与体内成像方面,即采用顺磁性金属纳米颗粒与抗体、多肽、寡肽片段或小分子药物进行偶联,引入体内进行磁共振靶向成像,由于这种连接缺乏准确的空间定位,有可能改变连接物质的生物学特性(如立体结构、亲和力等),体内分布亦不理想,因此仍处于实验室研究阶段[7]。光学成像与超声成像的优势在于灵敏度高、安全性好,缺陷是前者穿透力差,无法探测人体深部组织器官病变,后者空间分辨率较低,对操作者依赖性强,目前这两种技术主要用于体外、体表和小动物成像研究,距离临床应用仍较远[8,9]。而pet/Ct是现阶段应用最为成熟的分子成像方法,可成为mR、光学或超声分子影像研究从实验室向临床转化的桥梁。我院医学影像科为国家临床重点专科(培育),早在2000年就确立了分子影像研究方向,在肿瘤与心脑血管疾病磁共振、超声及光学分子成像研究方面取得了一定成绩,自2011年引入pet/Ct及正电子放射性药物合成系统后,加速了本学科分子成像研究进展,推动学科发展,成绩显著。

2.3pet/Ct为学科交叉与多学科协作搭建桥梁已pet/Ct为主的分子成像研究涉及多学科、多角度交流与合作,比如,在选择分子探针作用靶点时,就需要细胞生物学、病理生理学、免疫学、分子生物学等专业的相互协作;而在分子探针的设计、制备、表征分析与体内外成像中,就需要医学影像学、核医学、物理、化学、材料学、医学生物工程等相关学科的密切配合。作为国内知名综合大学的附属医院,我们前期曾与校内生物医学工程、核科学与技术、化学工程、材料学等诸多专业开展合作,初步取得了一些成绩。然而,由于专业划分过细,学科间缺乏有效沟通与合作的平台和机制,导致分子影像学研究进展缓慢,因此急需构建分子影像发展与研究平台,建议合作机制与模式,发挥pet/Ct桥梁作用,促进学科间交流与协作。

3基于pet/Ct构建分子影像平台几点思路

3.1建立完整的pet/Ct成像与药物制备系统pet/Ct成像离不开成像设备与正电子药物,二者均有较高的环境与配置要求,其中正电子药物的生产和使用受到国家多部委以及多项国家法律法规严格管控,为了保证药物生产、运送和使用的安全性,在建立正电子药物制备系统初期就应该严格按照规范进行场地规划、设备购置、人员配置并建立完备的药物生产与管理体系。我院医学影像科pet/Ct中心拥有全球高端pet/Ct成像仪与全套正电子药物合成系统,使用已近5年,在pet/Ct成像与正电子药物制备与研发方面积累了一定经验,也存在需要完善和改进之处:①现有药物制备系统仍有部分不符合国家现行Gmp要求,需要进一步完善场地建设、人员配置与设备购置;②在现有基础上,增加正电子药物制备种类并融入研发部分,进一步扩大pet/Ct成像应用范围;③按照现行Gmp标准完善各类省级及国家审批手续,新增加的检查醒目需要通过医院伦理学审查。

3.2完善专业队伍建设,加强人才培养。随着国内pet/Ct成像设备数量不断增加,对此方面专业人才,目前国内外此类专业人员严重缺乏,据了解,国内即使规模较大的pet/Ct中心最多也只配备3~4名专业技术人员,此外,正电子药物制备与研发涉及核物理、放射化学、药学、基础医学等多个学科,对人员综合素质要求较高,既要有扎实的理论知识,又要具备较强的实践操作能力,同时还不乏科研创新能力和职业道德素质。我院pet/Ct中心目前仅有3名技术人员,分别来自核物理、药学与计算机专业,他们不仅要完成日常正电子药物的制备、质量检验与pet/Ct扫描,还要负责各类设备的日常维护与保养,甚至还要兼顾新药研发,任务繁重,完全不能满足分子影像研究平台建设需要,由此,我们计划在短期内进一步加强对现有人员综合能力培养,做好研究生培养和人才引进工作。

3.3加快建立多学科协作模式西安交通大学是一所涵盖理、工、医、经济、管理等10余个学科门类的综合性研究型大学,作为其最大规模的一所附属医院,我们具备得天独厚的资源整合与多学科协作的条件与优势,首先需要加强与基础医学以及临床科室的沟通与交流,将分子影像研究平台转变为开放的临床医学研究与转化中心,带动需求增加;其次,争取与分子影像与探针研究相关专业如生物化学、材料学、药学、生物医学工程等专业的合作,开展多学科协作;此外,还应注重与国内外高水平单位或个人合作,借助其先进的理念和高水平的平台优势加速本单位分子影像研究与转化能力提高,缩小与其差距。

4小结

现阶段,随着我国pet/Ct成像及正电子药物制备系统数量不断增加,构建以pet/Ct成像为基础的"分子影像研究平台",以新型pet分子探针的研发为核心,整合临床与基础研究资源优势,发展学科交叉与多学科协作对于推动我国分子影像医学事业发展具有重要意义。

参考文献:

[1]weisslederR,mahmoodU.molecularimaging[J].Radiology,2001,219(2):316-333.

[2]申宝忠.无限潜能魅力彰显-分子影像学研究的回顾与展望[J].中华放射学杂志,2014(5):353-357.

[3]Greniern,Braderp.principlesandbasicconceptsofmolecularimaging[J].pediatrRadiol,2011,41(2):144-160.

[4]HessS,BlombergBa,ZhuHJ,etal.thepivotalroleofFDG-pet/Ctinmodernmedicine[J].acadRadiol.2014,21(2):232-249.

[5]张锦明,田嘉禾.国内正电子放射性药物发展现状简介[J].同位素,2006,19(4):240.

[6]川玲.正电子药物在pet-Ct显像中的应用[J].海军总医院学报,2008,21(1):36-38.

[7]滕皋军,崔莹.磁共振分子影像学研究进展[J].磁共振成像,2014,5(S1):31-36.

医学影像技术的优势篇8

【关键词】医学影像学学科建设继续医学教育

学科建设是高校的一项综合性、长远性的工作,是全面提高人才培养质量、提高学校学术水平和整体水平的根本和基础。学科建设的成败关键在于人才的培养,实现创新性人才的培养与医学重点学科建设的同步发展,是专业建设、创新教育模式在学科建设中的特色所在,实现学科建设、科学研究和人才培养三者的有机结合与循环互动,才能推动医学重点学科的可持续发展[1]。

世界名牌大学的办学理念中培养终身学习的能力是其主要内容之一,如哈佛大学教育理念包含有:“学校致力于创造培养学生自我依靠和终身学习习惯的平台”。剑桥大学的办学理念也含有“注重培养学生终身学习能力”。医学教育国际标准,即“全球医学教育最基本要求[2]”同样注重培养学生终身学习的能力。继续医学教育(continuingmedicaleducation,Cme)是医学终身教育的重要组成部分,是为适应现代医学飞速发展,为技术人员从业后获取新理论、新知识、新技术和新方法所建立的终身教育制度[3]。

1医学影像学现状与发展趋势

经过100多年的发展,放射学发展为诊断和治疗兼备的医学影像学,包括普通X线诊断学、X线计算机体层摄影(computedtomography,Ct)、磁共振成像(magneticresonanceimaging,mRi)、数字减影血管造影(digitalsubtractionangiography,DSa)、X线计算机成像(computerradiography,CR)、数字X线成像(digitalradiography,DR)、超声学、发射体层成像(emissioncomputedtomography,eCt)、正电子发射计算机断层扫描(positronemissioncomputedtomography,pet)、单光子发射计算机断层扫描(singlephotonemissioncomputedtomography,SpeCt)以及两种影像技术的融合如pet/Ct、pet/mRi、SpeCt/Ct、DSa/Ct等一次检查获得多种影像信息的成像技术和介入影像学,包括介入放射学和介入超声学等。传统X线摄片已逐步被CR、DR取代。Ct不断更新换代,如螺旋Ct(SCt)、多层Ct,现已发展到128层Ct等。mRi发展趋向于高场强、实时成像、功能mRi(fmRi)、显微结构成像、波谱分析(mRS)以及同质同性抑制技术等。Ct、mRi成像速度和分辨率均明显提高,灌注、弥散、仿真技术的应用范围越来越广。超声向超声造影、三维超声成像和介入超声学发展。核医学主流发展方向是分子核医学。

影像学诊断由大体形态学为主的阶段向生理、功能、代谢和分子/基因成像过渡,出现了分子影像学和功能影像学。图像分析由定性向定量发展。诊断模式由胶片采集图像和阅读逐步向数字采像和电子传输方向发展。信息科学的进展,促进了医学影像存档及传输系统(picturearchivingandcommunicationsystem,paCS)和远程放射学(teleradiology)的发展,网络影像学(networkimaging)以及计算机辅助诊断(computeraideddiagnosis,CaD)将成为可能[4]。介入放射学的迅速发展和临床应用,介入治疗及其与内镜、微创治疗、外科的融合发展改变了影像学实践和服务方式,影像诊治手段日益先进,影像诊治水平明显提高,使医学影像学在医疗服务体系中占有更加重要的地位。

东南大学医学影像学学科创建于1935年的国立中央大学医学院附设医院放射科。在70余年的发展过程中,随着科技的进步,紧跟学科发展,经过几代人的艰辛努力,创建了医学影像学科技创新团队,通过学科建设、医学领军人才、承担国家及省部级重大项目和发表高质量学术论文等措施,将“医学影像学与介入放射学”学科建设为江苏省135工程医学重点学科(2001年),放射科建设为江苏省临床重点专科(2002年),“医学影像学科”获准为江苏省医学影像学科质量控制中心(2004年),“影像医学与核医学”创建为江苏省重点学科(2006年)。东南大学医学影像学专业创建于1990年,当年开始培养医学影像学专业五年制本科生。经采用特色专业建设、课程体系改革、精品课程建设、教材建设、课件建设、重点实验室建设和教学名师培养等一系列教学改革措施,现已创建为江苏省普通高校特色专业(2006年)和江苏省高校成人教育特色专业建设点(2007年),分子影像与功能影像实验室获准成为江苏省重点实验室(2007年)。本专业1984年开始招收医学影像学硕士研究生,2003年成为江苏省唯一影像医学与核医学博士研究生学位授予单位。

2医学继续教育的范畴与其在重点学科建设中的重要意义

随着科技的发展,尤其是医学影像学正以前所未有的速度发展,新设备、新技术、新方法、新知识和新理论不断涌现,医学知识的更新周期越来越短,社会对从医人员的知识结构和医疗水平要求也越来越高,仅从医学院校教育获得的知识和技能已远远不能适应当前医学工作的要求。在知识经济时代到来的今天,人才培养和学科队伍建设是关键。为了使医学影像学专业医技人员在整个职业生涯中保持高尚的医德医风,不断提高自己的理论知识和工作能力,跟上医学科学发展脚步,为社会提供更好的服务[5],我们在继续医学教育工作方面采取了以下措施:

(1) 借鉴医学教育国际标准,即“全球医学教育最基本要求”,结合国情让全体教师和职工树立终身教育、自主学习的理念,即“活到老、学到老”。其特点决定了在高校从事教学、医疗和科研的教师和职工要通过不断的学习来充实自我,把终身学习作为自我提高的一种方式。

(2) 配合继续教育学院进行脱产、非脱产形式的成人学历教育,对象涉及本院医护人员与全国成人教育考生。

(3) 配合研究生院进行在职职工研究生学历教育,对象涉及本院职工与江苏省乃至全国考生。

(4) 与国外著名大学、学术团体保持密切合作,每年不定期邀请国外知名专家来院进行学术讲座和交流2~3次,对象涉及本院相关医护人员和研究生、本科生。

(5) 学科学术地位决定了继续医学教育发展的规模和速度。申报和开展部级继续医学教育项目就要求本学科及学术水平在本专业领域中处于国际或国内领先水平,在同行中具有领先地位,这样才能吸引众多的医技人员来院学习或进修。我们利用“中华医学会实用介入技术推广培训中心”基地,每年认真组织申报并开展继续医学教育项目2次以上,对象涉及本院医技人员和全国需要参加培训的各层次医技人员。在实施继续医学教育工作中,继续医学教育项目的申报和开展是学科学术地位和水平的具体体现,也是展示推广学科成果、宣传自我、扩大影响、构建学科品牌的优势,同时也是提高专业技术人员学术水平的主要体现,其社会效益和经济效益良好。

转贴于

(6) 常年接受国内各单位进修生来院学习、工作,积极鼓励、支持青年教师和职工到国内外著名大学或医院进行短期进修、考察或进一步深造。

(7) 切实加强青年教师岗前培训,执行“先培训,后上岗”制度和年轻医师五年住院医师轮转培训制度。科室每月组织一次青年医师读书报告会,以督促年轻人好学、向上。

(8) 参加学术会议、撰写学术论文是继续医学教育的重要组成部分。积极鼓励并支持教师参加国际性和中华医学会组织的高质量学术年会或专题学术会议以及省市年会,并制定了《参加学术会议及差旅费使用的规定和的奖励办法》。凡在放射学全国年会上进行大会发言的论文第一作者、在省市年会进行专题讲座或被评为大会优秀论文者,科室承担参加会议的所有费用,包括差旅费、住宿费、会务费和资料费。每年根据北京大学版“医学中文核心期刊要目”,凡在目录内期刊上所发表的论文及SCi上所发表的论文,在单位奖励的基础上,科室根据影响因子再进行不同幅度的奖励,以此鼓励教师、职工多撰写、发表高质量的学术论文。

3加强师资队伍建设,提升学科科研、教学质量

人才资源是第一资源,人才规模决定着学科和专业的发展规模,人才结构决定学科和专业的发展层次,人才梯队决定学科和专业的发展后劲,故师资队伍的建设和创新型人才的培养直接影响着学科、专业的发展和教学质量。学科建设中,师资队伍是前提,学科带头人是核心,人才队伍建设是学科建设的根本[6]。承担国家及省部级重大、重点攻关项目,既是学科水平的体现,又是学科进一步发展的契机,同时也是人才培养、梯队建设、国内外学术交流和取得高水平科技成果、确立学术地位的基础[7]。

坚持推进科技创新与培养、聚集创新人才相结合,造就拔尖创新人才与建设科技创新团队相结合。把科技创新作为提高教师创新能力的根本途径和提高人才培养质量的关键环节,将人才资源作为提高学科自主创新能力的最大优势,形成科技创新与教师队伍建设及人才培养密切结合、互相促进的良性机制。多年来,我们本着“用好现有人才,培养青年人才,引进优秀人才,储备未来人才”的原则,把师资队伍建设作为促进学科发展的根本大计来抓,并采取主动培养、积极引进、大胆使用、热情关怀等多种行之有效的措施,全面提高教师队伍的质量。

东南大学医学影像学学科具有一支政治思想素质好,学科力量雄厚,学术造诣较深,结构合理,集教学、科研和医疗为一体的专业队伍。教师队伍职称、学历、年龄结构合理,素质优良,发展趋势好,形成了具有团队意识、创新意识和奉献精神的科技创新团队。35人中正副教授/主任医师18人,博士生导师2人,硕士研究生导师11人,博士10人,硕士22人。近5年在研课题包括国家自然科学基金12项,其中国家自然科学基金重点项目1项,国际合作1项,省部级以上课题20项。获《中华医学科技进步二等奖》等科技成果奖14项;发表科研论文250余篇,其中SCi收录16篇、中华级期刊46篇;出版教材和专著16部,卫生部视听教材2部。东南大学医学影像学专业一贯注重于教学改革的研究,近5年来,主持教学改革课题14项,获教学成果奖15项。其中《面向21世纪医学影像学专业课程体系和教学内容改革的研究》和《创建特色专业,培养医学影像学创新人才》分别于2001年和2005年获江苏省高等教育教学成果一等奖。在国内核心期刊发表教改论文20余篇。

2001年以来,学校为医学影像学专业的建设投资60余万。国家教育部985工程Ⅰ期拨款400万用于我校“影像医学与核医学”江苏省重点学科建设,985工程Ⅱ期拨款800万用于我校“分子影像与功能影像”江苏省重点实验室建设,充足的经费保证对医学影像学学科建设、专业建设和发展以及医学影像学创新人才培养具有重大的促进作用。

重点学科建设带动特色专业建设,专业建设促进了创新人才的培养,形成重点学科、特色专业与人才培养的有机结合、相互支持和互相发展的良性循环互动态势,使学科步入可持续发展的轨道。

参考文献

[1]蒋健敏.建立创新教育模式,加强重点学科建设[J].中华医学科研管理杂志,2004,17(4):216,235236.

[2]万学红,张肇达,李甘地,等.“全球医学教育最基本要求”的研究与在中国的实践[J].医学教育,2005,(2):1113.

[3]王宪,周卫红,孙翠银.对综合性医院继续教育的探讨[J].继续医学教育,2005,19(6):2627.

[4]季仲友,倪系和.医学影像学发展趋势及医学影像学专业教学改革的探讨[J].医学教育,2004,(2):1314.

[5]张京萍,张超.继续医学教育管理工作六年实践体会[J].继续医学教育,2006,20(34):13.

医学影像技术的优势篇9

不同学校本科课程的主要差异体现在专业选修课程及其他选修课程的设置上,各个学校根据自身的生物医学工程领域的研究方向和研究水平特点开设一些相应的选修课程,并培养学生在相应方向上的研究探索实践能力。这是美国生物医学工程本科教育的基本特点。我国生物医学工程专业教育起步于20世纪80年代,主要发源于著名工科院校的信息技术类专业和力学专业,进而逐渐形成的生物医学工程专业教育,后来,一些医学院校在医学物理和医用计算机技术的基础上相继开展了生物医学工程专业教育,于是在我国基本上形成了这样两种类型的生物医学工程学科。上述两类院校的生物医学工程学科建设发展模式各具侧重,遵循了共同的学科基础,在培养生物医学工程专业人才的应用层面上有显著特点。相对来说,工科院校的生物医学工程培养模式注重工程技术的开发和功能拓展,医科院校则注重医学与工程结合、工程技术在医学中的综合应用。

1中国生物医学工程学科发展思路

生物医学工程是一种交叉学科,交叉的学科基础及其融合的紧密程度决定了生物医学工程学科的发展水平,交叉的学科发展推动着生物医学工程学科的发展,并且使得生物医学工程学科研究领域变得十分广泛,而且处在不断发展之中。

1、1学科发展轨迹在中国,基于电子信息工程发展而来的生物医学工程学科,主要包括生物医学仪器、生物医学信号检测与处理、生物医学信息计算分析、生物医学成像及图像处理分析、生物医学系统建模与仿真、临床治疗与康复的工程优化方法、手术规划图像仿真以及图像导引手术及放疗优化等;有基于力学发展而来的生物医学工程学科,主要包括生物流体力学、生物固体力学、运动生物力学、计算生物力学和微观尺度的细胞生物力学等;基于化学材料工程发展而来的生物医学工程学科,主要包括生物材料学、组织工程与人工器官、物理因子的生物化学效应等。

1、2学科发展特点作为交叉学科的生物医学工程学科,其发展的关键在于交叉学科间的交叉融合。构建一种良好的交叉结构,对推动交叉学科的发展具有至关重要的作用。约翰霍普金斯大学对于生物医学工程这样的交叉学科的描述有一个形象的说法:交叉学科如同在不同学科之间建立起连接桥梁,如果在河两岸没有坚实的基础,桥是无法建立好的,对于生物医学工程这样一座建立在两个不同学科之间的桥来说,它的发展要求具有坚实的交叉学科基础和交叉学科紧密融合深度。那么在生物医学工程学科构建良好的交叉结构,需要选取具有理论支撑和技术支撑的主干学科进行交叉,凝练学科方向,不能大而全,过于宽泛。目前,医学仪器和医学成像技术具有良好的应用和发展前景,应该成为生物医学工程学科的重点发展方向。医学仪器和医学成像设备能有力推动医疗产业的发展。医疗仪器和医学成像设备是现代医疗器械产业中的主流产品,在产业发展中起着主导和引领作用。其发展水平已成为一个国家综合经济技术实力与水平的重要标志之一。产业化驱动也是学科发展的一种动力,也为学生未来职业发展奠定良好的基础。基于医疗卫生健康事业的需求和生命科学发展的大趋势,生物医学工程学科应大力促进医学仪器和医学成像方法的学科建设,从而提升整个学科的发展水平。生物医学工程学科的建设离不开一流的学术研究和学术成果的应用。一流的学术研究不但能提升学科的发展水平,而且能开拓学科纵深发展,产生良好的经济效益和社会效益,进而增强学科服务社会发展的能力。学术研究的前瞻性和创新性将确保学科建设的发展动力和趋势以及学科发展的活力。交叉学科往往具有不同程度的可替代性。可替代性程度越高,交叉学科存在的必要性就越小。如何减小生物医学工程学科可替代性的程度是需要深入思考的,是需要提升学科的特异性的。生物医学工程学的学术研究主要包括应用理论研究和理论应用研究,应用理论研究主要涉及生物医学工程领域所需要解决的科学问题,开展新理论、新方法的研究。理论应用研究主要涉及生物医学工程领域所需要解决的科学和技术问题,借助理工科的相关理论和方法开展应用基础研究和应用研究。应用理论研究是理论驱动型的学术研究,理论应用研究是应用驱动型的学术研究。理论驱动型和应用驱动型是生物医学工程学科学术研究的两种主要模式。理工科大学具有良好的理论创新基础和强大的交叉的学科背景,开展理论驱动型研究具有自身优势。医学院校具有丰富的医学资源,面临着大量需要应用理工知识解决的医学问题,开展应用驱动型研究,将很好地实现与医学的应用融合,具有较好的临床应用价值,有力推进医学的进步与发展。各自的学术优势将有利于生物医学工程学科特色发展,从而增强其不可替代的程度,实现学科可持续创新发展。

1、3学科体系作为一级学科的生物医学工程,包含学科的理论体系和技术体系,且该体系离不开所交叉的学科的理论体系和技术体系的支撑,此外生物医学工程学科理论体系和技术体系既要有学科自身的特色,又要具有可持续发展和一定程度上的不可替代性,这样学科才会有旺盛的生命力。要面向医疗卫生、生物科学所涉及的重大、重要技术理论问题及基础应用开展学术研究。实现良好的学术研究定位,形成自己的理论体系和技术体系。

2大数据时代的生物医学工程学科发展

守正创新是生物医学工程学科发展的必由之路,人类已进入大数据时代,所谓大数据(bigdata),或称海量数据,是指由于数据容量太庞大和数据来源过于复杂,无法在一定时间内用常规工具软件对其内容进行获取、管理、存储、检索、共享、传输、挖掘和分析处理的数据集。大数据具有“4V”特征:①数据容量(volume)大;②数据种类(variety)多,常常具有不同的数据类型和数据来源;③动态变化(velocity)快,如各种动态数据,非平稳数据,时效性要求高;④科学价值(value)大,尽管目前利用率低,却常常蕴藏着新知识和重要特征价值或具有重要预测价值。大数据是需要新的分析处理模式才能挖掘分析出其蕴藏的重要特征信息[6]。人体生老病死的生命过程就是一个不断涌现的生物医学大数据发生源,这种源源不断的生物医学大数据的检测、处理与分析,将给生物医学工程学科的建设与发展带来新的机遇和挑战。模式识别、人工智能、数据挖掘和机器学习的发展将带动大数据处理技术的进步。

生物医学大数据广泛涉及人类医疗卫生健康相关的各个领域:临床医疗、基础医学、公共卫生、医药研发、临床工程、心里、行为与情绪、人类遗传学与组学、基因和蛋白质组学、远程医疗、健康网络信息等,可谓包罗万象,纷繁复杂。生物医学大数据中蕴藏了种种有科学价值的信息,研究有效的大数据挖掘的新理论、新技术和新方法,对生物医学大数据进行关联和融合计算分析,充分挖掘生物医学大数据中的信息关联和特征关联和数据空间映射关联,既能为疾病的预防、发生发展、诊断和治疗康复提供系统化的全新的认识,有利于深入疾病机理研究分析,开展个性化诊疗。还可以通过整合系统生物学与临床数据,更准确地预测个体患病风险和预后,有针对性地实施预防和治疗。生物医学工程学科所面临的生物医学大数据主要包括多模态医学影像数据、多种类医学信号数据以及基因和蛋白质组学的生物信息数据。生物医学大数据在生物医学工程学科领域内有着广泛深远的应用前景,从三个方面应用将推动生物医学工程学科的发展。

(1)开展多模态影像大数据计算分析。医学影像学科的发展从早期看得到,到看得清,目前的看得准,未来的趋势是看得早。只有看得准和看得早才有利于临床早期干预,提高治疗预期。医学影像大数据计算分析在影像诊断、手术计划、图像导引、远程医疗和病程跟踪将发挥越来越大的作用。建立新的医学影像大数据计算分析模型和数值计算方法,挖掘多模态影像数据的特征数据和特征关联,将会提供强有力的影像诊断分析手段,极大地推动影像技术的发展,具有重要的临床应用价值和科学价值。

(2)开展多种类医学信号大数据计算分析。医学信号大多直接产生于生理和病理过程中的信号,能在不同层面上表达生理和病理相关机制特征。融合多种医学信号的大数据计算分析,能对生理病理过程进行更好更全面的阐释,不仅能深入了解生理病理的状态特征和过程特征,而且能实现个体健康监测和管理。可以很好地开展回顾性研究和前瞻性研究,推进系统化的医学应用研究。实现强大的多种医学信号数据的特征挖掘及特征关联计算分析。大数据挖掘能够增加准确度和发现弱关联的能力,能更好地认识生理病理现象和本质。

(3)开展基因和蛋白质组学的生物信息大数据计算分析。基因组学、蛋白质组学、系统生物学和比较基因组学的不断发展涌现了海量的需要计算分析的生物信息数据,已进入计算系统生物学的时代。开展生物信息大数据计算分析,可以拓展组学研究及不同组学间的关联研究。从环境交互、个体生活方式、心里行为等暴露组学,至细胞分子水平上的基因组学、表观组学、转录组学、蛋白质组学、代谢组学、基因蛋白质调控网络,再到人类健康和疾病状态的表型组学等不同层面不同方向上实现大规模的关联计算分析,可以全面阐述生命过程机制,挖掘生命过程特征及关联特征。

3结论

医学影像技术的优势篇10

[关键词]仿真;数字化;医学影像学;实验教学;教学平台

[中图分类号]G423.06[文献标识码]C[文章编号]1673-7210(2011)04(b)-122-03

applicationresearchofdigitalsimulationsysteminmedicalimagingteaching

LianGminghui,wanGXiaodong,XiaLiding

QiqiharmedicalUniversityinstituteoftechnology,Heilongjiangprovince,Qiqihar161006,China

[abstract]objective:todiscusstheadvantagesofexperimentalplatformofdigitalinthemedicalimagingteaching.methods:theauthorsmakedthefournetworktechnologiesasmajorcarriersandthemaintool[p2pnetworkvideostreamingmediatechnology,computersupportedcollaborativework(CSCw),webservice-basedvirtualdisplaytechnology,standards-basedDiCom3.0imagetransferringandprocessingtechnology]tochangethecasefilmintodigitalformat.Coursewareofmedicalimagingtheoryandself-mademultimediaexperimentalcoursewarewerestoredontheservers,adigitalplatformforexperimentalteachingwascreated.Results:theauthorcreatedtheimagingdatabaseincludingsimulationexperimentoperations,caseretrievalandbrowsing,experimentalreport,teachers'examinationsandotherfunctions,andusedtheiebrowserclientaccesstorelevantinformationforexperimentalteaching.Conclusion:theauthorsconsiderweshouldreformpracticemodelofimaging,mobilizethestudentstoenhancepracticalabilityofstudents.thesystembearsthefollowingadvantagesaseasytooperate,intuitive,interactive,safeandreliable.tofullyusemodernmedicalimagingnetworkplatformforteachingpracticallessonscanimprovetheirpracticeefficiency.

[Keywords]Simulation;Digital;medicalimaging;experimentalteaching;teachingplatform

大型医学影像设备在21世纪发展迅速,医学影像学已成为医学领域中的重要学科之一,在临床医疗工作中离不开医学影像对疾病进行诊断。医学影像学拥有的理论体系是信息科学、物理学、医学、工程学等多学科相互交叉的学科。paCS系统的出现将医学影像学带入了数字化影像时代,把计算机网络技术应用到实践教学中,将医学影像技术以数字仿真形式传授给学生,将是未来主要的教学手段和教学改革方向。

医学影像学中影像技术是教学中的重要组成部分,医学影像学技术的核心是为临床提供含有最大信息量的图像,协助临床医生对疾病做出正确的诊断[1],基础理论知识、基本实践技能,是学生掌握不同的影像技术的坚强后盾,为他们日后充分自如地在临床工作中更好地为患者服务、为临床工作服务打下基础[2]。实验教学作为实践教育的主要组成部分之一,对于提高学生的综合素质、培养学生的创新精神与实践能力有着不可替代的作用。实验教学不仅能够理解巩固理论教学内容和增加感性认识,帮助学生感受、理解知识的产生和发展过程,而且能够学习和掌握必要的影像设备工程技术、影像成像原理、先进设备和学科的基本研究方法,培养学生的科学精神、动手能力和创新能力,是影像医学生从理论学习走向临床实践的一个过渡阶段。以计算机网络为实验环境,将X线原理实习课、Ct原理实习课、mR原理实习课,大量、系统的经病理或临床证实的病例实现影像医学资源共享。采用学生互动、师生互动的网络形式,建立高效的运行机制,激励学生自主学习,自主设计实验,创造个性化学习的环境。

1材料与方法

1.1材料

校园网主干为万兆,连接桌面信息点全部为百兆。全网采用的是锐捷产品,服务器近40台,采用2台8610交换机做核心设备,3台7606和2台57系列交换机作为汇聚设备,出口路由采用的是锐捷的npe50-40可以提供≥200万并发nat会话数量,2台1600防火墙分别放在出口和服务器群前面,保证了网络的安全。采用3台iDS设备很好的保证了对异常流量的监控,全网的GSn安全解决方式保证了用户网络的安全。客户机为30想台式计算机(CpUintelpentium4516主频2.93GHz、二级缓存1mB、800mHz前端总线、内存256mB、80GBSata硬盘、17英寸液晶显示器);操作系统为microsoftwindowsXp。

本文为全文原貌未安装pDF浏览器用户请先下载安装原版全文

1.2方法

1.2.1建立医学影像资源库

笔者主要通过附属医院和自己制作多媒体课件,共收集了200多种影像类别、300余病例、30000余幅图像和医学物理学、医学影像物理学、医用电子学、影像设备学、物理学课程教学课件。在基础实践教学有X线原理实习课、Ct原理实习课、mR原理实习课等。诊断实践教学有病例讨论课模块:神经系统病例讨论课,五官及颈部病例讨论课,呼吸系统病例讨论课,循环系统病例讨论课,消化系统病例讨论课,泌尿系统病例讨论课,生殖系统病例讨论课,骨、关节和软组织病例讨论课,乳腺、肾上腺及腹膜后肿瘤病例讨论课,介入放射学病例讨论课。教学互动形式活泼、操作方便。

1.2.2实验系统网络技术

1.2.2.1p2p网络视频流媒体技术通过直接信息交换,共享计算机资源和服务,对等计算机兼有客户机和服务器的功能,各对等计算机之间通过直接互联实现信息、处理器、存储甚至高速缓存等资源的全面共享,无需依赖集中式服务器支持,消除信息孤岛和资源孤岛。

1.2.2.2计算机协同交互技术计算机网络和多媒体环境下,一个群体协同工作完成一项共同的任务,它的目标是要设计支持各种各样的协同工作的应用系统。CSCw技术在中心实验教学中的成功应用,为在时空上分散的师生提供了一个“互视”和“同步”的协同工作仿真环境,达到了良好的教学效果。

1.2.2.3基于webService的虚拟展示技术webService是将软件做成服务,遵从相应的标准,让不同的系统可以跨平台,彼此相互兼容,具有无缝通信和数据共享的能力。webService技术通过结构化的XmL文档,采用标准网络协议,能够方便快捷准确地传递信息、交换数据,实现信息资源的有效整合。基于webService的虚拟展示技术在中心实验教学中的应用,为学生提供了丰富的数字仿真医学影像知识,丰富的教学手段与内容。

1.2.2.4基于DiCom3.0标准的影像传输与处理技术DiCom3.0是一个通用的标准,是允许医学图像在检查仪器、电脑和医院之间进行交换的一组规则,能满足高速传输图像、文字、表格、数据、动态图像以及声音的需要[3-5]。所有病例图像在其存储、传输以及显示的过程中都是完全遵循DiCom3.0标准,可以达到完美的无失真效果,并能在客户端实现对图像进行自如的数字化操作。

2结果

2.1数字化实验系统平台组件

系统组件包括2个服务器房,多媒体电子阅片室(共30台计算机)。软件系统部署在服务器上,具备图像上传、图像管理、图像检索与浏览、实验报告提交、教师批阅等功能。实验课程以及与实验课程相关的《医学影像学》网络课件、医学影像学教学网站、医学影像网络教学资源库、自己制作的多媒体课件等均以数字信息的形式在网上。实验教学图像资源按设备分X线、Ct、mRi、核医学、超声5个大类,各大类按人体系统分呼吸、循环、消化、泌尿、生殖、骨关节、中枢神经、五官、内分泌9个部分;数据库内录入了3万多图像及文本资料。客户端通过ie浏览器访问服务器,实行内网完全开放、外网授权开放的管理办法,方便学生上网实验,该系统还具备其他多媒体教学系统、资源库的共同优点[6]。

2.2数字化实验系统在教学中的应用

2.2.1基础实验教学

学生在数字化实验系统教学平台进行基础实验时,操作简便,会使用计算机就会使用本系统,实现了培养动手能力,学习实验技能,深化物理知识的目的,实验中待测的物理量可以随机产生,以适应同时实验的不同学生和同一学生的不同次操作,见图1。对实验误差也进行了模拟,以评价实验质量的优劣,见图2。

图1仿真实验仪器连接操作

2.2.2临床实践教学

系统平台临床实践部分由12个模块组成,涵盖了医学影像的各个范畴,收集了300余病例、30000余幅图像里都是经过精选并经病理学检查证实的病例,重点以常见病多发病为主,罕少见病及误诊病例亦属重要组成部分,具有全文查找功能,分类索引功能和标题分类进行内容检索,见图3。以同病异影,异病同影,同病不同的检查手段,各自的影像特点,诊断与鉴别诊断要点加以描述比较,以图为主,描述为辅,以求达到图文并茂,简捷明了。在网上不但可自主实验,还可在学生与学生之间展开合作实验,如多名学生可远程共同完成某个病例的报告书写,而且学生与学生同时还可有老师参与的情况下开展一些探索性的实验,如总结某个病种的发病规律及影像学特点,见图4。

3讨论

为实现教育部提倡的“自主型学习、创新型学习”宗旨,利用医学影像存档与通讯系统(picturearchiveandCommunicationSystem,paCS)进行医学影像学教学也成为医学影像学教学方法改革和创新的一种新的趋势[3,6]。笔者确立了“以医工结合为基础,以计算机网络为实验教学平台,将医学影像知识以数字仿真的形式传给学生”的教学改革新思路。通过计算机把实验设备、教学内容、教师指导和学生的操作有机地融合为一体,通过对实验环境的模拟,加强学生对实验的物理思想和方法、仪器的结构及原理的理解,并加强对仪器功能和使用方法的训练,培养设计思考能力和比较判断能力,可以达到实际实验难以实现的效果,对不同年级不同专业的医学生有不同的实验方案与实验项目,同时学生还可在网上开展实验,实施个性化实验教学,对启迪学生科学思维和培养创新意识有积极的意义。该系统还具备其他多媒体教学系统、资源库的共同优点[7-8]。数字化实验系统充分发挥了学生为学习主体的功能,数字化仿真实验系统具有很强的实践性,将以前的学生跟着学校走的教学模式转换成学校跟着学生走的新模式,是将医学影像知识以数字化仿真的形式传给学生的教学改革新思路,通过这种形式,学生的影像知识得到了逐步提高。

[参考文献]

[1]李昆成.paCS在临床及教学工作中的应用[J].医疗设备信息,2005,2:1-4.

[2]唐艳隆.医学影像学实验教学改革探讨[J].中华现代影像学杂志,2007,4(8):764-765.

[3]魏渝清,童娟,宋玲玲,等.利用医学影像存档与通讯系统进行医学影像学教学[J].贵阳医学院学报,2002,27(4):367-369.

[4]吴政光,浩纯,欧景才,等.基于paCS的交互式CR影像教学系统的创建与应用研究[J].中国Ct和mRi杂志,2007,5(3):35-37.

[5]孙勇,夏晓玲,濮进敏,等.昆明医学院临床医学本科实习生医学影像学局域网教学[J].昆明医学院学报,2007,28(3B):43-45.

[6]刘红梅,吴凤林,李颖嘉,等.医学影像学专业教学中paCS的应用与优势[J].西北医学教育,2008,16(1):189-190.

[7]黄祥国,徐芳.医学影像学教学科研图像资源库的构建策略[J].卫生职业教育,2006,24(8):34-36.

[8]吴政光,浩纯,欧景才,等.基于paCS的交互式CR影像教学系统的创建与应用研究[J].中国Ct和mRi杂志,2007,5(3)35-37.