首页范文重金属污染的影响十篇重金属污染的影响十篇

重金属污染的影响十篇

发布时间:2024-04-26 00:38:11

重金属污染的影响篇1

关键词:重金属污染环境影响治理

中图分类号:te08文献标识码:a

重金属污染时指由重金属及其化合物引起的环境污染,主要由采矿、废气排放、污水灌溉和使用重金属制品等人为因素所致。重金属的污染主要来源工业污染,其次是交通污染和生活垃圾污染。工业污染大多通过废渣、废水、废气排入环境,在人和动物、植物中富集,从而对环境和人的健康造成很大的危害。

重金属污染物是一类典型的优先控制污染物。环境中的重金属污染与危害决定于重金属在环境中的含量分布、化学特征、环境化学行为、迁移转化及重金属对生物的毒性。重金属污染与其他有机化合物的污染不同,不少有机化合物可以通过自然界本身物理的、化学的或生物的净化,使有害性降低或解除。而重金属具有富集性,很难在环境中降解。目前中国由于在重金属的开采、冶炼、加工过程中,造成不少重金属如铅、汞、镉、钴等进入大气、水、土壤引起严重的环境污染。对人体毒害最大的重金属有5种:铅、汞、砷、镉、铭。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物。以各种化学状态或化学形态存在的重金属,在进入环境或生态系统后就会存留、积累和迁移,造成危害。如随废水排出的重金属,即使浓度小,也可在藻类和底泥中积累,被鱼和贝的体表吸附,产生食物链浓缩,从而造成公害。如日本的水俣病,就是因为烧碱制造工业排放的废水中含有汞,在经生物作用变成有机汞后造成的;又如痛痛病,是由炼锌工业和镉电镀工业所排放的镉所致。汽车尾气排放的铅经大气扩散等过程进入环境中,造成目前地表铅的浓度已有显著提高,致使近代人体内铅的吸收量比原始人增加了约100倍,损害了人体健康。

重金属污染在环境中难以降解,能在动物和植物体内积累,通过食物链逐步富集,浓度成千上万甚至上百万倍的增加,最后进入人体造成危害,是危害人类最大的污染物之一。国际上,许多废弃物都因含有重金属元素被列到国家危险废物名录,近些年随着我国工农业生产的快速发展,我国出现了重金属污染频发、常发的状况。2010年4月至6月,浙江省政协组织成立调研组,通过召集省有关单位负责人座谈,向社会公众征集意见建议,并赴杭州、台州及所辖的路桥、温岭等部分县(市、区)进行实地调研,全面了解食品药品安全情况。调研结果显示,在浙北、浙中、浙东沿海三个区域中,城郊传统的蔬菜基地、部分基本农田都受到了较严重的影响。工业“三废”及城市生活污染物排放,引起重金属污染农田。调研组有关负责人表示,这些城郊重金属对土壤的污染,主要是近十多年造成的,主要是人为的污染,这会直接威胁到百姓的生命健康。2011年3月中旬,在浙江台州市路桥区峰江街道,一座建在居民区中央的“台州市速起蓄电池有限公司”(以下简称“速起蓄电池公司”)被曝出其引起的铅污染已致使当地168名村民血铅超标。由于重金属污染事件在我国频繁发生,使得我国开始重视重金属污染的治理。

常见的重金属土壤治理的方法包括化学法、生物法、物理法、热力学方法等,每种方法又包含不同的技术,每种技术又可以采用不同的施工方案实施。化学法主要通过将重金属污染土壤与化学稳定剂混合来实现重金属的稳定化,而石灰等稳定剂通常不能有长期的治理效果,分子键合是目前业界关注的一种以长期稳定性为特点的修复药剂。生物法一般有植物修复和微生物修复等。植物修复通过超积累植物吸收土壤中的重金属,比较安全但是修复周期长;微生物修复通过土壤中微生物降解重金属,但是影响修复效果的因素较多,目前应用较少。热力学方法可以通过高温来使重金属玻璃化,但是成本很高。

重金属污染的影响篇2

[关键词]重金属;学龄儿童;体格发育

[中图分类号]R179[文献标识码]a[文章编号]1673-7210(2010)06(c)-135-02

theinfluenceoftheheavymetalpollutiononphysicalgrowthofschool-agechildren

HUanGQinghua

(ChildrenHospitalinZhengzhouCity,Zhengzhou450053,China)

[abstract]objective:toexplorethechildren'sphysicaldevelopmentstatuswiththerelationshipbetweenthebodyofheavymetals.methods:Children'sfingerstraceofbloodcollected(20μl)samplestestedtograspthecontentofheavymetalsinchildren;clickphysicalsurveyofChinesestudentsguideprovidedaunifiedmethodofmeasuringchildren'sheight,weight.Results:18.6%ofschool-agechildrenbodyleadcontentexceeding7.71%ofschool-agechildrencadmiumcontentexceedingthebody,thebodyofzinccontentinschool-agechildrenexceedingrateof68.5%.therewasnosignificantdifferencecomparingtherateofslowgrowthamongdiffeventcontentofcadmium,leadandzine.Conclusion:theheavymetalsinchildrenisnotthesignificantfactoraboutgrowthretardationandlowbirthweight.

[Keywords]Heavymetal;Schoolagechildren;physicalgrowth

重金属污染物通过饮水直接进入人体,并通过各种途径进入农作物或动物体内,再通过食物链进入人体[1]。儿童对重金属的易感性强,代谢具有吸收多、分布流动性大以及排泄量少的特点[2-3],因此儿童成为重金属污染的易感人群。

1对象与方法

1.1对象

调查对象为郑州市区中、小学校的学龄儿童562人,剔除不合格问卷13份,有效问卷共549份,有效率为97.6%。纳入及排除标准:年龄为8~18岁的学龄儿童,并排除在当地居住时间低于5年者,排除患有脑器质性病变疾病以及有精神病家族史的儿童。

1.2方法

考察体格发育指标为年龄与身高、体重的关系(HaZ)。调查前向学校、家长及学生说明调查的目的和意义,在班主任老师及校医的配合下,集中发放调查问卷,并由学生家长按照问卷指导的要求如实逐项填写后统一收回。学生按顺序进行体格检查、采集头发样品,其中头发样品收集好后保存,待体格检查、问卷调查结束后再进行统一的实验室检测。

1.3统计学方法

所有数据用SpSS11.0软件包进行统计学分析。各组数据采用χ2检验,以p

2结果

本次有效问卷共549例,18.6%的学龄儿童体内铅含量超标,7.7%的学龄儿童体内镉含量超标,学龄儿童体内锌含量的超标率达到68.5%。

分析儿童体内重金属元素等级情况同HaZ的关系,体内铅含量、镉含量、锌含量不同的儿童生长迟缓率之间差异无统计学意义(p>0.05)。见表1。

表1学龄儿童年龄、身高同体内重金属含量的关系

3结论

当地学龄儿童体内铅、镉、锌、的含量已经达到了危害健康的程度,部分儿童体内的重金属元素含量严重超标,但儿童体内重金属(铅、镉、锌、锰)元素含量不是生长迟缓的主要影响因素,仍建议有关部门在不断探索生态治理的同时,应当及时开展疾病的预防与控制工作[4-6]。

[参考文献]

[1]张宜明,朱圣陶.低水平铅暴露对儿童智力发育影响的研究进展[J].中国公共卫生,2003,19(1):97-98.

[2]宋华琴,刘建荣.铅的总接触量对儿童健康危害的研究[J].中华预防医学杂志,1993,27(2):91-93.

[3]付善明,周永章,赵宇.广东大宝山铁多金属矿废水对河流沿岸土壤的重金属污染[J].环境科学,2007,28(4):805-816.

[4]赵江霞,刘继文,陈艳.乌鲁木齐市1513名儿童血铅、镉水平调查分析[J].新疆医科大学学报,2006,29(11):319.

[5]张英,周长民.重金属铅污染对人体的危害[J].辽宁化工,2007,12(6):395-397.

[6]李海鹰,张建娜,李佩华.儿童血铅水平6063例分析[J].中国儿童保健杂志,2007,41(1):84-86.

重金属污染的影响篇3

【关键词】土壤重金属污染特点评价方法危害与治理

重金属具有不易分解、易积聚的特点。如何科学地对土壤重金属污染进行评价,是污染治理的重要前提,以下就土壤重金属的污染及其评价方法进行分析。

一、土壤重金属污染的成因及特点

土壤是人类社会赖以存在和发展的根本前提,是最重要的基础资源。随着近现代工业的飞速发展,土壤中沉积了越来越多的废弃污染物。工业生产、居民生活垃圾的不合理处置以及矿产开采等,都会带来土壤重金属污染。从化学理论角度来讲,98%以上的金属都属于重金属,从环境保护学领域来讲,土壤重金属污染中的重金属主要包括汞、铅、锌、砷和镍等。

1、土壤重金属污染的成因。(1)自然原因。土壤重金属的形成不是单方面作用的结果,而是受多方面因素影响,在不同时期,其主要影响因素又不同。土壤形成初始时期,其重金属含量受成土母质的影响较大,母质中的重金属含量及组成直接决定了土壤重金属的值。随着土壤的发育,母质对其重金属值的影响逐渐减弱。与此同时,生物残落物的影响逐渐增强,受生物个体差异影响,其残落物也呈现出多样化的特点,对土壤重金属组成的影响程度也各不相同。大气沉降,如火山爆发、森林火灾等可能使许多重金属漂浮于空中,其中一些被植物叶片吸收,进而被微生物分解进入土壤,从而改变土壤的重金属含量与构成。(2)人为原因。研究人员对近30年的土壤重金属污染原因进行统计,分析发现随着工业化程度的不断加深,人类活动已经逐渐上升成为土壤重金属污染的主要来源。具体来讲,人类活动又突出表现在以下几个方面:首先废气、烟尘等大气污染。城市化进程的加快在反映国民物质生活水平提升的同时也带来一系列环境问题,城市交通、工业生产等向大气排放大量废气、烟尘,造成大气污染,通过大气沉降,这些物质进入土壤,造成土壤重金属污染。经调查研究发现,工矿生产集中区域、城市道路、铁路周围,土壤重金属污染往往格外严重。其次化肥农药在农业生产中的使用。为了缩短农作物生长周期,现代农业生产常会选择使用化肥农药,大量化肥与农药的使用在带来生产效益的同时,也将其中所含的重金属物质带入了农作物与土壤,造成土壤重金属污染,影响人体健康。再次水体污染。受水资源分布不均因素影响,在部分地区,农田灌溉需要引入工业废水和生活污水,这些未经合理处置的污水进入到农田,造成土壤重金属污染,由于污染水体中含有大量重金属物质,通过污水灌溉产生的土壤重金属危害破坏性更大,极易造成循环性水土污染。最后其他活动。含重金属的工业废弃物,城市居民生活垃圾的堆放,金属矿山酸性废水的排放等也会造成土壤的重金属污染。

2、土壤重金属污染的特点。依据化学金属元素相关理论,重金属性质稳定,极难被微生物降解,一旦进入土壤造成重金属污染,势必对农作物的品质和产量产生较大影响,加之其潜伏周期长,通过食物链的“生物富集效应”严重影响动物和人体的健康。有研究表明,低浓度的汞在小麦萌发初期能起到促进生长作用,但随着时间的延长,最终表现为抑制作用;砷有剧毒,可致癌;镉会危害人体的心脑血管。归纳起来,重金属污染有以下几个特点:(1)潜伏周期长,污染具有隐蔽性;(2)性质稳定,污染具有难降解性;(3)相互作用,污染具有协同性、扩散性。因此,重金属污染又有“化学定时炸弹”之称。

三、土壤重金属污染的评价方法

1、单因子指数法。借助综合指数法,可以对受测区域的重金属污染情况进行分级,指出土壤中污染最大的因素,但无法判定出不同元素对土壤污染的影响差别。根据这一方法计算出来的污染指数只能反映各种重金属元素对土壤的污染程度,而无法精确反映污染的质变特征。

2、污染负荷指数法。该指数是由评价区域所包含的主要重金属元素构成,它能够直观地反映各个重金属对污染的贡献程度,以及金属在时间,空间上的变化趋势.由tomlinson等人提出污染负荷指数的同时提出了污染负荷指数的等级划分标准和指数与污染程度之间的关系,通过计算得打各重金属的污染负荷指数及可以得到各个功能区和该市的污染程度.

3、潜在生态危害指数分析。重金属元素是具有潜在危害的重要污染物,潜在生态危害指数法作为土壤重金属污染评价的方法之一,它不仅考虑土壤重金属含量,还将重金属的生态效应、环境效应与毒理学联系在一起,是土壤重金属评价领域广泛应用的科学方法

4、GiS技术在土壤重金属污染评价中的运用。GiS是由计算机硬件、软件及不同方法组成的系统,通过该系统,能够实现空间数据的采集、管理、处理、分析与建模,以解决复杂的规划和管理类问题。通过GiS技术,将不同类型的数据进行处理变换,根据客观需求对其进行空间分析和统计,最终建立各种应用模型,以便为研究决策提供依据。在对土壤重金属污染进行研究时,常利用GiS技术的计算与图形显示功能,对受测区域指定采样点进行插值分析,实现土壤图数字化,建立空间与属性数据库,最终绘出污染物空间分布图,为土壤污染治理提供参考依据。

三、重金属污染土壤的危害与治理

土壤是人类赖以生存的最基本的自然资源之一,但现阶段严重的土壤污染,通过多种途径直接或间接地威胁人类安全和健康,开展城市环境质量评价,日益成为人类关注的焦点。

当土壤中的重金属含量达到一定程度,不仅会导致土壤污染、农业生产收益下降,通过径流,还会对水体(地表水、地下水)产生淋失作用,污染水资源、破坏水文环境;借助大气沉降,极易形成大气污染与水污染、土壤污染的“死循环”,进而影响人体健康。

根据重金属污染的隐蔽性、不可逆性及长期性等特点,与大气污染、水污染等环境问题相比,土壤污染的治理难度更大。现行的重金属污染土壤治理主要有生物法、化学法、工程治理法等方法,就目前科学技术发展形势来看,在治理方案设计上尚未形成统一标准,在实际操作中,不同的地理环境在方法的选用上存在区别,使用的技术也多种多样。从总体上来讲,治理污染土壤首先应查明污染成因,以《土壤环境监测技术规范》为指导,对污染区域进行实地分层采样调查,一般将受污染区域分为“污染源区”、“保护区”和“超标污染区”三个区域。无论采用何种方式,在对土壤污染进行治理时,应注意因地制宜,结合受污染区域的土质情况、土地使用性质与功能、重金属污染物含量与构成等特点,对治理效果、时间、经费等作出合理预期和科学规划,选择最佳方案。

结束语

随着社会发展,各行各业对重金属资源的需求与日俱增,与此同时,由生产而产生的重金属废弃物也逐渐增多,这些未能及时处理的废弃物作用于土壤,一旦其重金属含量超标,就会对土壤造成严重污染,进而破坏生态平衡。

参考文献:

[1]范拴喜等.土壤重金属污染评价方法进展[J].中国农学通报,2010

重金属污染的影响篇4

土壤微生物重金属污染

0引言

所谓土壤重金属污染是指由于人类活动,使重金属含量明显高于原有含量,并造成环境质量恶化的现象。面对土壤重金属污染的加剧,迫切需要监测和防治重金属污染的有效措施。近几年兴起的微生物修复,引起人们越来越多的关注。

1重金属对土壤微生物生物量的影响

土壤微生物生物量在一定程度上能代表参与调控土壤中能量和养分循环以及有机质转化的对应微生物的数量。Dar研究指出砂壤土、壤土和粘土中施用0.75%的污泥,土壤微生物生物量碳增加7%-18%左右,砂壤土中增加较明显,壤土和粘土中则较少。Khan等试验研究了镉和铅对红壤中微生物的影响,当其浓度分别为30ng/g和150ag/g时导致生物量显著下降。

2重金属对微生物活性的影响

2.1重金属污染对土壤基础呼吸的影响

土壤呼吸是土壤与大气交换Co2的过程,是土壤碳素同化和异化平衡的结果。Fliebbach等报道在土壤中施人含低浓度重金属和高浓度重金属的淤泥时,其土壤呼吸强度会随着重金属浓度的增加而上升。Chander等研究认为,含高浓度重金属的土壤中微生物利用有机碳更多地作为能量代谢,以Co2的形式释放,而低浓度重金属的土壤中微生物能更有效地利用有机碳转化为生物量碳。

2.2重金属污染对土壤酶的影响

酶是一种生物催化剂,土壤中进行的各种生物化学过程,都是在酶的参与下实现的。marzador等研究指出,在pb污染土壤中脱氢酶活性的大小明显地受土壤水分含量的影响,但土壤水分变化对磷酸酶活性的影响不十分明显。因此,磷酸酶活性被认为是评价pb污染土壤的一种较为合适的指标。

2.3重金属污染对土壤生化作用过程的影响

通常把土壤生化作用强度作为土壤微生物活性的综合指标之一。wilke研究了几种重金属和非重金属污染物(如Cd、Cr、pb)如对氮素转化的长期影响,发现除Se和Sn外,其它污染物均能抑制有机氮素的矿化作用。重金属污染引起微生物体内代谢过程的紊乱,也影响微生物的代谢功能,而微生物生理生化反应必然影响到土壤的生化过程,改变了土壤的质量状况。

3土壤重金属污染的微生物修复

微生物本身及其产物都能吸附和转化重金属。微生物还可以通过直接、间接的代谢活动溶解重金属离子。代谢产生的有机酸和氨基酸可溶解重金属及含重金属的矿物,也可以加速重金属元素从风化壳中的释放。

鉴于土壤微生物本身对重金属的吸附和转化,国内外已经开展了对微生物的金属抗性和生物修复的可行性研究,并将此技术应用于实践。这必将缓解土壤重金属污染的严重局面,带来健康的环境。充分利用微生物在土壤修复方面的特性,加强微生物修复的综合技术的研究,是治理不同重金属污染土壤的有效措施。

参考文献:

[1]陈怀满.土壤-植物系统中的重金属污染[m].北京:科学出版社,1996.

[2]蒋先军,骆永明,赵其国.重金属污染土壤的微生物学评价[J].土壤,2000,32,(3):130-134.

[3]王嘉,王仁卿,郭卫华.重金属污染对土壤微生物学影响的研究进展[J].山东农业科学,2006,1:101-104.

[4]DarGH.impactofleadandsewagesludgeonsoilmicrobialbiomassandcarbonandnitrogenmineralization.environmentalContaminationtoxicology,1997,58:234-240.

[5]KhanKS.effectofcadmium,leadonsizeofmicrobialbio-mass[J].pedosphere,1998,8:27-32.

[6]Fliebbacha.,martensR.,ReberH.Soilmicrobialbiomassandactivityinsoilstreatedwithheavymetalcontaminatedsewagesludge.SoilBiologyandBiochemistry,1994,26:1201-1205.

[7]ChanderK.,BrookespC.Synthesisofmicrobialbiomassfromaddedglucoseinmetal-contaminatedandnon-contaminatedsoilsfollowingrepeatedfumigation.SoilBiologyandBiochemistry,1992,24:613-614.

重金属污染的影响篇5

关键词:公路;蔬菜;重金属;特征;因素

中图分类号:X53文献标识码:a文章编号:0439-8114(2015)05-1186-04

Doi:10.14088/ki.issn0439-8114.2015.05.040

abstract:BasedsurveyingpbincabbageinJanuary2014andenvironmentalfactorsinthefarmlandalongthehighwayinJiangxiprovince,pbdistributioninsoilandvegetablesanditsrelationshipwiththetrafficflowofhighwaywasstudied.theresultsshowedthatpbcontentofnationalroadandthehighwayabovenationallevelwerehigherthanthatoflocalsoilbackgroundvalues.theseareaswereclassifiedintothecontaminatedarea.pbcontentofvegetablesneartheroadwasinthestate-controlledrange.indexofthesinglefactorpollutionwashigherthan1,withcertainpotentiallyharmful.theaveragecontentofpbinsuburbsoilwasbelowthebackgroundvalueandclassifiedintothepollution-freearea.thecontentofpbinsuburbvegetableswasverylow.Roadtrafficenvironmentwasanimportantfactoraffectingsoilpropertiesandthedistributionofheavymetalsinvegetables.trafficflowandthecontentofpbinsoilsandvegetableswassignificantlypositivecorrelated.

Keywords:highway;vegetables;heavymetals;characteristic;factors

以往,人们主要关注蔬菜、瓜果的农药残留与控制等问题,这是因为某些农药对人体的危害表现为急性中毒。但重金属残留是一种慢性中毒,不容易被察觉,一旦发现则难以治疗[1]。城市化、工业化进程中矿山开采、金属冶炼、工业废水、化石燃料的燃烧、施用农药化肥、生活垃圾等人为因素和地质侵蚀、风化等天然因素均能引起重金属的污染[2]。

公路作为人类赖以生存的依托条件,是人类生活必不可少的资源,中国人口大部分在公路沿线密布,公路对居民的影响至关重要。高速公路作为交通干线主要组成部分,连接了国家90%以上的大中型城市。公路重金属污染属于线源式污染,短时间内毒性强,污染严重。长期会在周围环境中逐渐富集,潜在危害性强[3],线源式污染比点源式污染流动性强,难以控制。公路沿线农业发达,蔬菜种植面广,分布零散,但蔬菜的种植并不像大棚种植那样严格控制生长条件和营养条件,易受到周围环境因素的影响,而这些因素恰恰被老百姓所忽视,长此以往会严重危害食用者的身体健康[4]。近年来关于不同土壤蔬菜中重金属的污染和公路旁土壤重金属的污染已有较深入的研究,孙清斌等[5]通过研究大冶矿区土壤-蔬菜重金属污染特征得出矿区土壤不同重金属污染程度及对人体健康的潜在危害风险。李仰征等[6]研究了公路旁土壤重金属空间分布及其与理化性质的关系,指出土壤重金属水平方向分布总体表现为公路临近区域积累较强。公路重金属污染以pb为主[7],大量研究表明叶菜中pb含量最大,本研究以公路临近区域大白菜及土壤中重金属为研究对象,得出其变化特征及影响因素,为解决临近公路蔬菜安全利用和污染防治及当地居民饮食健康问题提供一定的参考依据。

1材料与方法

1.1样品采集

1.1.1采样点的设置在江西境内4条颇具代表性的交通道路及2个背景区域(郊区)进行调查采样,距离路基10m内,采集农田土壤和大白菜。采样点为沪昆高速、德昌高速、乐平206国道、玉山320国道、乐平郊区和新余郊区。

1.1.2采集方法蔬菜用多点混合法[8]采集,每个采样区域采集蔬菜样品6个,共获取蔬菜样品36个。农田土壤样品采于蔬菜生长的根区土壤,即采集农作物生长的耕作层(0~20cm)作为土壤样品[9]。每个样品在10m×10m正方形4个顶点和中心共5处各采集1kg土壤,将5处土壤充分混匀后以四分法保留1kg土壤作为该点样品,每个采样区域采集土壤样品3个,共获取土壤综合样18个。土样经自然风干后剔除碎石、植物根系、有机残渣等杂物,磨碎后,过20目尼龙筛,混匀备用[10]。

1.2样品处理和分析

1.2.1样品预处理土壤样品采用高压密闭消解法[11],蔬菜样品的预处理选择湿式消解法[12]。

1.2.2样品测定pb的测定选用石墨炉原子吸收光谱法[13]。

1.2.3分析方法单因子指数法可用于分析土壤和蔬菜中重金属的污染程度,计算公式如下:

pi=Ci/Si(1)

式中,pi为污染物单因子指数;Ci为实测浓度,mg/kg;Si为土壤环境质量标准或蔬菜国家限量值,mg/kg。pi>1表示受到污染,pi

2结果与分析

2.1公路临近区域土壤中pb含量的分布特征

不同公路段土壤重金属pb的统计结果见表2。高速及国道临近公路土壤中pb含量高于远离公路的郊区土壤。临近公路蔬菜中pb含量呈现为高速路高于国道,国道高于郊区。

以江西土壤自然背景值32mg/kg为标准,沪昆高速和昌德高速临近土壤重金属pb平均超标分别是1.62和1.06倍,最高超标为2.32和1.34倍,存在明显的累积现象;乐平206国道临近土壤重金属pb平均值未超过当地土壤背景值,积累较弱;玉山320国道土壤pb的平均值是当地背景值的1.24倍,最高值是土壤背景值的1.39倍,存在较明显的累积现象;乐平郊区、新余郊区土壤中pb的最高值虽然超过了当地的土壤背景值,但是其平均值均未超出当地的土壤背景值,不存在pb累积现象。

2.2邻近公路蔬菜中pb含量特征

我国蔬菜重金属的主要评价标准如表3所示,1~4级可视为无公害绿色蔬菜,5级为国家食品安全限量标准。沪昆高速和德昌高速公路临近区域蔬菜中pb含量的平均值均超过了国家食品安全标准,其中超过国家限量的样品分别占69.0%、78.0%,不宜食用;乐平206国道和玉山320国道蔬菜中pb含量的平均值均大于0.2mg/kg,超过了绿色蔬菜范畴但未超过安全标准,其中3~4级之间的样品分别占47.6%、50.5%,说明样品区属于中度或者轻度的污染区,存在较小的风险;乐平郊区和新余郊区蔬菜中重金属pb含量的平均值均小于0.2mg/kg,其中在3级以下的分别占60.0%、49.3%,属于无公害绿色蔬菜,适于广大居民的食用。

2.3不同公路段蔬菜和土壤中pb的差异

临近高速公路和国道蔬菜中pb的单因子污染指数均大于1,而远离公路的郊区蔬菜中pb的单因子污染指数均小于1;临近公路蔬菜中pb的单因子污染指数大于相应土壤中pb的单因子污染指数,而郊区蔬菜中pb的单因子污染指数小于相应土壤中pb的单因子污染指数(表4)。蔬菜中pb变异系数的平均值远大于土壤中pb变异系数的平均值,以沪昆和德昌高速附近蔬菜表现最明显,说明蔬菜对pb的富集作用比土壤对pb的富集作用更复杂,公路对蔬菜中pb的迁移具有很大的影响(表5)。

2.4交通对蔬菜重金属pb的影响

蔬菜种植受到土壤、水体灌溉、施肥等诸多因素的影响,临近公路的蔬菜种植受交通源的影响,不同公路段临近蔬菜中pb含量具有差异性,公路源中的车流量是污染蔬菜的主体因素。从本研究的结果来看,首先,临近公路蔬菜受到不同程度的重金属pb的影响,其中沪昆高速公路沿线蔬菜中pb含量最高,污染最严重,公路样本区蔬菜中的pb含量均超过了无公害蔬菜的限值,说明临近公路蔬菜中pb污染具有一定的普遍性,这可能与交通污染源有关,交通环境重金属的来源主要有机动车尾气的排放、燃油的蒸发、油料泄漏、汽车金属部件和轮胎的磨檫磨损、沥青或路面的磨损老化、融雪(冰)剂等道路维护化学物质[16,17]。其次不同公路源对pb的污染程度不同,如表4,根据单因子污染指数,蔬菜中pb的污染程度表现为德昌高速>沪昆高速>乐平206国道>玉山320国道>新余郊区>乐平郊区,总体而言公路>郊区,高速、国道与乡道最大的差异是交通量的不同,因此,蔬菜中pb含量受交通量的影响,钱鹏等[18]的研究表明大气颗粒物中pb浓度随车流量的增加而增加,证明了交通活动是pb等重金属的主要来源,这与本研究的结果一致。

交通源可以通过影响土壤的中pb含量和理化性质间接影响蔬菜中pb的含量,也可以以大气沉降和漂移等途径直接影响蔬菜中pb的含量,公路源产生的重金属pb对蔬菜的污染程度高于对土壤的污染。大量的研究结果表明,公路源污染可以改变土壤的pH、有机质、盐度等理化性质和重金属的含量及其pb的存在形态,进而影响蔬菜等农作物对营养物质的吸收和重金属在蔬菜等植物体内的富集[19-20]。本研究结果表明,一方面,高速路和国道采样区蔬菜中pb的变异系数>土壤中pb的变异系数,说明蔬菜对pb的富集和迁移作用明显,同时也表明土壤并不是蔬菜中pb的唯一来源,蔬菜中pb一部分来自于机动车辆尾气的大气颗粒物沉降和地面扬尘的溅射,方凤满等[21]的研究表明芜湖市三山区蔬菜中重金属的积累并不完全决定于土壤重金属的全量,这与本研究临近公路蔬菜中pb的污染特征具有相似性。另一方面,根据单因子污染指数,高速公路pb的污染程度大于相应土壤中污染程度,高速公路设有排水沟、防护林可以有效地减缓雨水冲涮和径流带来的污染[6],可以近似认为土壤pb来自于含pb颗粒物的大气沉降,由于土壤面积大,土壤比表面积小,雨水稀释度高,而蔬菜承载降水量较小,比表面积大,并且蔬菜可以从土壤中吸收pb,所以在相应的土壤背景值和蔬菜标准值一定的条件下,蔬菜中的pb污染程度高于土壤中pb的污染。

公路交通量不仅是构成交通环境的主要因素,还是影响邻近公路土壤和蔬菜中重金属含量特征的主导因素,即交通量越发达、交通流量越大,其沿线土壤和蔬菜重金属污染越严重,随交通环境的变化,土壤和蔬菜中重金属pb的含量有显著的相关关系,呈现一定的线性关系。本研究结果表明,首先,不同的公路重金属含量表现出明显的不同,对土壤而言沪昆高速>玉山320国道>德昌高速>乐平206国道>乐平郊区>新余郊区,对蔬菜而言德昌高速>沪昆高速>乐平206国道>玉山320国道>新余郊区>乐平郊区,整体而言临近高速公路蔬菜中pb含量>临近一般公路蔬菜中pb含量>郊区蔬菜中的pb含量,表明交通流量大的区域土壤和蔬菜中重金属pb含量高,陈长林等[22]的研究表明土壤两侧重金属污染随着运营时间的延长和交通流量的增加而越来越强,这与本研究的蔬菜中的pb含量的变化和污染具有相似性。其次,根据对这几条公路交通流量的跟踪调查,做出交通量与邻近公路土壤和蔬菜中重金属pb的散点图,添加变化趋势曲线,如图1和图2所示。

邻近公路土壤中的重金属pb和蔬菜中的pb含量与交通量的线性关系非常好,R2值分别为0.9060和0.8207,呈现显著的正相关关系。

3小结与结论

1)蔬菜种植受到临近公路的影响,不同的交通源对蔬菜中重金属含量的影响存在着显著差异,国道及其国道级以上的公路临近蔬菜中的pb平均含量均超过了国家无公害绿色蔬菜的限值,属于污染蔬菜,而郊区等远离公路的地区蔬菜中pb平均含量的平均值小于0.2mg/kg,在无公害蔬菜范畴之内。

2)推测交通源运营过程中机动车辆尾气、路面沥青、油料泄漏等污染源产生的pb可以通过影响土壤中的pb含量和理化性质间接影响蔬菜中pb的含量,也可以通过大气沉降和漂移等途径直接影响蔬菜中pb的含量,公路源对蔬菜的污染程度高于对相应土壤的污染程度。

3)交通流量构成的交通环境对于公路沿线土壤和蔬菜的重金属污染有非常密切的正相关关系,交通越发达、交通流量越大,其沿线土壤和蔬菜受重金属污染越严重。土壤和蔬菜中重金属pb的含量和污染分布规律为:高速公路>一般公路>郊区。

参考文献:

[1]黄国勤.江西省土壤重金属污染研究[a].中国环境科学学会.2011中国环境科学学会学术年会论文集(第二卷)[C].乌鲁木齐:中国环境科学学会,2011.

[2]CYRUSJ,StoLem,HeinRiCHJ,etal.elementalcompositionandsourcesoffineandultrafineambientparticlesinFurthest,Germany[J].Scienceofthetotalenvironment,2003,305(1-3):143-156.

[3]王其枫,王富华,孙芳芳,等.广东韶关主要矿区周边农田土壤铅、镉的形态分布及生物有效性研究[J].农业环境科学学报,2012,31(6):1097-1103.

[4]wanGXL,Catot,DinGBS,etal.Healthrisksofheavymetalstothegeneralpublicintianjin,Chinaviaconsumptionofvegetablesandfish[J].Scienceofthetotalenvironment,2005,350(1-3):28-37.

[5]孙清斌,尹春芹,邓金锋,等.大冶矿区土壤-蔬菜重金属污染特征及健康风险评价[J].环境化学,2013,32(4):671-672.

[6]李仰征,莫世江,马建华.公路旁土壤重金属空间分布及其与理化性质的关系[J].湖北农业科学,2014,53(3):528-529.

[7]李吉锋.关中公路土壤重金属污染及潜在生态危害分析[J].土壤通报,2013,44(3):744-745.

[8]王学锋,姚远鹰.107国道两侧土壤重金属分布及潜在生态危害研究[J].土壤通报,2011,42(1):175-177.

[9]邵莉,肖化云,李南,等.高速公路沿线路面灰尘及土壤中重金属污染特征研究[J].地球与环境,2013,41(6):666-667.

[10]赵金璇,李玉锋,梁佳,等.贵阳和万山地区部分蔬菜中的重金属含量及其健康风险[J].生态毒理学报,2009,4(3):392-398.

[11]李静,常勇.土壤重金属污染评价方法的研究[J].农业灾害研究,2012,20(4):50-52.

[12]林小红,张立平,魏长金.湿式消解法测定茶叶中铜、铅、锌、铁含量[J].预防医学论坛,2008,14(4):324-327.

[13]安代志,王莉莉,岳丽君,等.塞曼火焰原子吸收与石墨炉原子吸收法测定明胶空心胶囊壳中铬的方法比较[J].药物分析杂志,2012,32(8):138-142.

[14]徐光炎,何纪力,郭依勤,等.江西省地区土壤环境质量评价标准[J].中国环境监测,1992,8(3):6-7.

[15]GB2762-2012,食品安全国家标准[S].

[16]BJoRKK,GeRDw.HeavymetalpatternandsoluteconcentrationinsoilsalongtheoldesthighwayoftheworldCtheaVUSautobahnenviousmonitassess[J].environmentmonitassess,2012,184(11):6469C6481.

[17]DanieLp,LoFtS,KoCHaBa,etal.oxidationdamagetoDnaandrepairinducedbynorwegianwoodsmokeparticlesinhumana549andtHp-1celllines[J].mutatRes,2009,674(1-2):116-122.

[18]钱鹏,郑祥民,周立F,等.312国道沿线土壤、灰尘重金属污染现状及影响因素[J].环境化学,2010,29(6):1141-1145.

[19]GiLDaR,CataLinR,ioneLi,etal.airpollutionparticlespm10,pm2.5andtheapostropheozoneeffectsonHumanhealth[J].proceed-SocialandBehavioralSciences,2013,92:826-831.

[20]张辉,马东升.公路重金属污染的形态特征及其解吸、吸持能力探讨[J].环境化学,1998,17(6):564-568.

重金属污染的影响篇6

关键词:重金属污染;环境监管;问题分析;防治措施

1概述

重金属污染造成的环境污染以及危害人民生活的问题,使社会愈来愈重视重金属污染的监管工作。且在环境监管方面,我国对重金属污染防治的研究比较少,从而导致了政府在整个监管过程中,出现了各种各样的难题,包括企业中重金属污染规划结构较分散,因此妨碍了企业对污染物的集中处理;缺乏长期有效的监管体制;不完善的重金属污染控制审批权限机制,导致了建设项目中估算不平衡;数据信息量庞大,其管理机制和技术手段不完善等。因此,重金属污染的环境监管是每个企业迫在眉睫要解决的问题。

2我国重金属污染环境监管的现状

目前,我国采用的主要是直接监管的方式对重金属污染进行监管,即为遏制工业企业的重金属污染物的排放,采取收费政策;其次,在监管工作中的自我监管和刺激性监管将会起到辅助效果,尤其是刺激性监管方法,不健全的排污收费市场机制就会造成市场在重金属污染处理中的影响不足。

3重金属污染监管工作的问题

3.1企业分布格局较为分散

就我国当下情况而言,与重金属污染相关的企业在分布格局方面普遍较为分散,这样,一方面为集中管理重金属污染造成了困难,线性地扩大了重金属污染对土地、水体等自然环境的影响范围,从而直接增加了企业对于重金属的污染防治的成本;另一方面,使得环境风险在时间和空间上大幅增加。企业想做到防治重金属污染工作的高效,就要保证环境监管的实用效果和能力,必须做好企业布局的合理规划。

3.2项目环境管理失衡

与重金属污染相关的建设项目,其环境审批权限在我国体制下并没有得到充分的重视。且在该种类型的环境评价方面,而在不同项目中,关于重金属的污染防治、监测、控制以及风险防范等内容的分析都出现了不平衡的现象,从而导致了环境影响报告书的质量高低不等。且在现有的环境影响报告中,污染防治的可行性、监测和计划以及设备规范管理等相关措施内容还没有得到企业的重视。并且,对于缺少针对和可操作性的重金属污染的不同规模建设项目,给环境审批部门提供的决策是无用的。

3.3竣工环保验收难度大

在建设项目实施过程中,会有很多方面都牵涉到重金属污染问题,类似于一些危险废物的处理、废水和污泥、工业废气等。但是对于涉及重金属等污染物的竣工验收方案,其相关体制并未明显地与别的污染物区别开。而对于不能验收大气环境防护距离、卫生防护距离以及检测计划等重要内容,不能及时排查生产过程中所积累的环境风险和污染问题,因此目前只是对其防治设施的状态进行验收,而不能完全把握环境问题。

3.4日常监管工作困难多

重金属污染防治的主要内容是长效监管设计工作,特别是监管其项目中的废物、废气和废水等,从而做到有效的防治管理工作,同时也保证了企业自身监测工作的效率。然而,在当前的企业中,有将近90%的企业没有重金属监测的能力,而且监测频率低、监测点位分布少,在大部分企业中,污染处理设施的运营管理记录都不是很规范,所以相关的源强和设施处理效果的数据质量在污染源的普查和动态更新工作中遭到了非常严重的影响,大部分地区的人都处于一种环境污染风险失控的状态。

4环境监管在防治重金属污染中的具体措施

4.1合理规划企业布局

企业要想达到重金属污染的有效防治目的,就要合理的进行企业布局。在整体规划过程中,要及时的将环境影响评价工作加入其中。结合风向、区位、交通和地理环境等条件,根据等级来规划企业不适宜、基本适宜和适宜区域的布局,而对于重金属污染管理要采用集中式的方法,降低污染对自然环境和人文环节的风险程度,进而减小污染对土壤和大气等环境的影响,和重金属污染防治管理工作所花费的成本。

在社会经济发展的背景下,环境影响评价要根据不同地区的差异性,来进行针对性的布局指导工作,从而降低重金属扩散和迁移的风险。并且对于调整城市规划有极大的影响力,实现资源的最优配置,能够为城市整体规划工作提供了依据。

4.2整合污染环节监管的工具

在环境污染的市场竞争中,对于监管工具需要进行灵活的使用和整理,譬如由具有重金属污染治理专业资质的企业来实现治理服务的提供,完成治理重金属污染的专业市场的培育。在这种市场模式下,一方面,对企业为降低治污费用成本而进行绿色生产起到了促进作用;另一方面,为重金属污染的治理赢得了大量的社会资金。同时,可以通过政府补助政策等方式,将通过污染治理得到的税收和收益补偿给治污企业,而在整个实施过程中,政府一定要严格发挥其监管作用。

4.3实行产品税和补偿制度

为了控制产品中的重金属污染物,企业可以运用押金-补偿制度。其制度是指消费者在购买产品时,需要交一定的押金,而押金能够在使用回收完成后取回。电子产品中含有锌、镍等重金属,押金-补偿制度的确立,能保证降低电子产品的污染物进入水体、土壤的风险,从而完成末端回收工作,同时将补偿制度和产品税制度相互结合,对重金属物质的产生和污染起到了有效的控制作用。

4.4引入环境风险评价和生命周期评价

在重金属污染监管工作中,可以将环境风险评价手段与生命周期评价方法相结合,从而及时地监测到重金属在产品中的含量,按照标准,对重金属的浓度进行严格控制,从而完成绿色生产的目的;同时,在最终阶段中还能回收再利用,从而大大的降低了其参与到地球化学循环过程中,进而减小了重金属物质对人体伤害的风险,这样就使重金属污染的产生在源头上得到了控制。此外,企业可以建立重金属污染预警系统,以及应急方案。

4.5实现跨部门、区域合作

在重金属污染的防治过程中,因相关部门较多,因此就容易造成沟通困难的现象,从而增加了费用。所以,政府可以在每个部门中派出代表,组成一个专业机构,用于协调治理工作,并对治理情况做出及时的汇报。与此同时,还可以在绩效考核和管理目标中纳入环境健康风险的预防和治理,加强各部门的沟通与交流,优化环境执法绩效。

4.6信息公开化

在重金属污染物防治和治理工作中,媒体所占的份额愈来愈大。信息的公开化能够让企业形成有效的管理体制,同时也促进了企业的自觉减排行动力,提高了其监管的能力和工作效率。因此政府要重视媒体在此工作中的影响力。及时的向媒体公开企业污染信息,对公众信息及时进行调整,帮助企业建立信用制度,以及开展环境风险评价和生命周期评价工作,从而完善企业在实施过程中,政府监管工作所发挥的作用。

5结束语

文章针对当前我国重金属污染环境监管的实际情况,并对其工作中存在的问题进行了研究和分析,主要现象为:企业布局分散、环境保护管理失衡、环保设施验收难度大等,并具有针对性的对问题的解决提出了相关的任务以及措施。

参考文献

[1]刘静,黄标,孙维侠,等.基于污染损失率法的土壤重金属污染评价及经济损失估算[J].农业环境科学学报,2011,30(6):1087-1093.

[2]李永华,杨林生,王丽珍,等.基于BCR和HG-iCp-aeS的矿区土壤重金属污染特征分析[J].光谱学与光谱分析,2007,27(9):1834-183.

重金属污染的影响篇7

关键词:土壤;城市:污染;重金属元素

土壤中的重金属污染已经成为当今环境科学中重要的研究内容,尤其是城市的土壤重金属污染越来越多的被人们关注。城市作为人们生活和生产高度聚集的场所,人口相对集中,种种人类活动都非常容易造成城市的污染。本文针对土壤重金属污染的来源及危害加以阐述,增加读者对土壤污染的重视。

1土壤重金属污染概况

重金属指的是密度大于5.0g/cm3的45种化学元素,但是因为每一种重金属元素在土壤中的毒性区别很大,所以在环境科学中通常关注锌、铜、锡、钒、汞、镉、钴、镍、铅、铬、钴等。硒和砷两种非金属元素它们的毒性及某些性质与重金属相似,因此也将硒元素和砷元素列入重金属污染物的范围内[1]。由于土壤中本身含有的铁和锰含量较高,因而一般不太注意它们的污染问题,但在某些强还原条件下,铁和锰所引起的毒害却不能被忽视[2]。

中国作为发展中国家,工业科学上的发展越来越重要,但是由此造成的污染也在加剧。城市作为人口密集的区域,汽车尾气的排放成为了土壤中重金属污染的主要来源。吴学丽[3]等人运用地累积指数法研究了沈阳地区浑河、细河及周边农田的土壤中重金属污染状况,发现这些地区土壤中汞元素和锌元素含量较高。兰砥中[4]等人研究湘南某铅锌矿区事故之后导致周围土壤的重金属污染情况,运用单因子指数和潜在生态风险指数评价土壤污染状况,发现该地区土壤中铅、锌、铜、镉等重金属污染严重,其中镉的污染指数最高。

国外学者早在20世纪末就针对城市中土壤中重金属污染进行研究,在英国的几大城市中对土壤中的汞、铅等重金属元素进行调查,他们观察到这几个城市中的土壤重金属污染与英国的工业发展活动与周围居民区的繁荣与否有着直接的关系。世界各个国家正逐步开展城市中土壤中重金属污染的研究。在对葡萄牙、苏格兰、斯洛文尼亚、西班牙、意大利和瑞典这6个欧洲国家城市土壤中的重金属总浓度进行调查研究,发现葡萄牙地区中汞的浓度比苏格兰低,可能是由于燃煤发电和取暖导致的[5]。

2土壤中重金属元素的污染来源

一般来说,城市中土壤重金属污染来源主要有两类:自然因素和人为外源输入。

2.1自然因素:某些地区的土壤由于地壳运动导致本身就含有很多的重金属元素,成土母质是造成城市土壤中重金属含量高的重要原因。如陈雪龙[6]等对大庆龙凤湿地土壤中重金属元素的空间分布特征进行了研究,发现土壤中的铅和锌随着土壤深度的增加而增加,表明重金属在土壤中的含量与土壤的理化性质、成母土质和岩石风化有着极大的关系。

2.2人为外源输入:这类污染为土壤中重金属元素污染的主要来源,包含三大类

2.2.1工业污染源:为了提高经济水平,现代工业的开发越来越广泛,加上环保理念没有普及,金属冶金厂、化工厂、油漆厂的三废没有达到排放标准就流入到环境中,造成土壤中重金属元素的污染。

2.2.2农业污染源:如今科学的发展,人们在种植农作物的时候为了提高庄稼的产量,施用了大量含有重金属的化肥,这些污染直接的作用到土壤中。

2.2.3生活污染源:城市中交通高度发达,虽然给人们带来的便利,但是交通工具的尾气排放却给土壤中带来的很多的重金属元素[7]。另外,城市中人们的生活垃圾中常常含有各种重金属元素,加上固体废弃物处置不完善,这些垃圾也会流入到城市土壤中。

3土壤中重金属污染的危害

3.1土壤中重金属污染引起的直接危害

3.1.1对土壤中的生态环境系统的稳定性造成破坏

土壤环境是一个很复杂的生态环境,其中包含这许多种类的微生物群落与蠕虫类动物,这些生物的存在保持了土壤环境的稳定也保证了土壤的活性,但是当过量的重金属被引入到土壤中时,会对这些生物带来毒害,大量研究证明:重金属污染的土壤中土壤微生物群落的多样性被严重减少[8]。

3.1.2影响植物代谢循环和生长

据研究表明,重金属对植物形态、生殖、繁衍各方面都有影响。吸收到植物体内的重金属能诱导其产生某些对酶和代谢都有毒害作用和不利影响的物质,引起植物伤害。某些重金属在胁迫作用下有时会引起大量营养元素的缺失和有效性的降低,较高浓度的重金属含量有抑制植物体对镁元素的吸收和转运的能力。

3.2土壤中重金属污染带来的间接危害

3.2.1促使水体污染

土壤环境中遭受重金属污染时,污染浓度较高的表层土壤能在地表或地下径流作用下,进入水体环境,导致地下水的重金属污染。

3.2.2导致大气环境污染加重

由于土壤环境与空气环境有着直接的联系,通过空气中的湍流交换作用,土壤颗粒能够被带入到大气中,使得空气中的污染物变得复杂,当土壤中含有重金属元素时,则可能导致大气污染和生态系统退化等等的环境问题[9]。

3.2.3对人体和动物的健康影响

土壤中重金属元素通过植物由食物链逐级传递到人体中,城区内部种植的观赏和净化空气用的花草树木也能累积一定的重金属污染物,人们居住在这种环境中,经过皮肤接触和无意由口摄入这些被污染的土壤[10]。

结束语

土壤重金属污染逐渐被各个国家的环境科学工作者重视,由于土壤中含量复杂,修复将是一个复杂的系统工程,传统修复技术很难达到理想的预期效果,针对工业迅速发展,环保部门的管理力度也应该加强,从根本上减少重金属污染物的来源才是修复土壤的最有力的手段。■

参考文献

[1]贾广宁.重金属污染的危害与防治[J].有色矿冶,2004,1:39-42.

[2]刘昌岭,宋苏顷,夏宁,李学刚,林学辉,张红,张经,于志刚.青岛市区大气颗粒物中重金属的浓度及其来源研究[J].青岛大学学报(自然科学版),1998,03:44-48.

[3]吴学丽,杨永亮,徐清,黄园英,路国慧,何俊,刘晓端.沈阳地区河流灌渠沿岸农田表层土壤中重金属的污染现状评价[J].农业环境科学学报,2011,2:282-288.

[4]兰砥中,雷鸣,周爽,彭亮,廖柏寒,沈跃.湘南某铅锌矿区周围农业土壤中重金属污染及其潜在风险评价[J].环境化学,2014,8:1307-1313.

重金属污染的影响篇8

(江西省蚕桑茶叶研究所,南昌330203)

摘要:重金属污染修复已成为当前国际环境科学研究的热点问题,利用桑树修复土壤重金属污染也是一种有效的植物修复技术。笔者简单介绍了土壤重金属与植物修复技术的概念,并阐述了桑树的生长特性,桑树生长与土壤中镉、铅、锌、砷等重金属元素的关系,并结合江西省土壤重金属污染的形势,探讨了桑树作为江西省土壤重金属污染修复树种的潜力。

关键词:桑树;土壤重金属;污染;植物修复;江西

中图分类号:X-1文献标志码:a论文编号:2014-0350

ResearchprogressofRemedyingtheHeavymetalContaminatedSoilswithmulberry

Xuning,YuYanfang,maopingsheng,DuXianming,pengXiaohong,ShiXuping

(JiangxiSericultureandteaResearchinstitute,nanchang330203,Jiangxi,China)

abstract:Remediationofheavymetalshasbecomeahottopicofinternationalenvironmentalscience,andremedyingtheheavymetalcontaminatedsoilswithmulberrywasaneffectivephytoremediationtechnology.thispaperbrieflyintroducedtheconceptofheavymetalsinsoilandphytoremediationtechnology,describedthegrowthcharacteristicsofmulberry,andmulberrygrowingrelationshipwithCd,pb,Zn,asandotherheavymetalspollution.CombinedwiththeheavymetalspollutionsituationinJiangxiprovince,anddiscussedthepotentialofrepairtreeinsoilheavymetalpollutionwithmulberry.

Keywords:mulberry;theHeavymetalSoils;Contamination;phytoremediation;Jiangxi

0引言

江西省拥有全国最好的生态环境,具备大力发展绿色农业的潜力,但矿山开发、资源消耗、农用化学品投入等给江西留下较大的重金属污染区域,成为江西绿色崛起进程中绕不过的坎。江西作为绿色资源大省,在生态环境良好的条件下,坚持以人为本,在经济发展的同时,将重金属污染治理作为民生工程的一件大事来抓,并积极探索重金属污染区域环境修复新路,切实保护好江西的一草一木,让全省人民都能享受到一流的生态环境,让青山绿水永存。笔者以近年来桑树用于修复土壤重金属领域的研究报道为基础,系统总结了重金属元素镉、铅、锌、砷与桑树生长关系的研究现状,并分析了利用桑树进行土壤重金属污染修复的潜力以及可行性,以期为未来该领域的研究提供参考。

1土壤重金属污染与植物修复

土壤重金属污染是指由于人类活动,导致土壤中的重金属含量过高,通常是密度大于5g/m3,并对生态环境质量产生不良的影响[1-2]。常见对土壤造成污染的重金属包括铅、锌、镍、铜、铬、镉、汞等元素[3-6]。重金属污染具有隐蔽性、不可逆性、长期性和后果严重性的特点。植物修复技术是指通过超富集植物的根系部分吸收固定重金属元素,并转移到地面部分,然后采用收割植物的方式去除土壤中重金属元素[7-8]。植物修复技术是一种环境亲和性修复技术,以其有效、非破坏、经济等特点,正成为土壤重金属污染修复的主要手段之一[9]。

2桑树的特性

桑,桑科桑属,落叶乔木或灌木,属速生木本植物。桑树的生命力极其旺盛,适应性很强,分布范围广泛。桑树能在-35~40℃的温度范围内存活。桑树喜欢深厚、疏松、肥沃的土壤,同时也能适应土层瘠薄、养分贫乏的土地[10-11]。桑树在pH4.5~8.5、土壤含盐量0.2%的条件下都能正常生长[10,12],可以看出桑树对土壤酸碱度的适应性较强。

桑树生长迅速,生物产量高,有固碳放氧,净化大气的功效。桑林1年吸收固定Co2的量为4929117kg/hm2,折合成纯碳为1346717kg/hm2,1年释放的o2为3628814kg/hm2[11]。桑树还可以对有害气体如硫化物、氟化氢等进行部分吸收,对粉尘也有阻挡、过滤和吸附作用[13-15]。

桑树的根系极其发达,桑树的根垂直分布可达4m以上,根系水平分布达7m2,其地下根系分布的面积通常为树冠投影面积的4~5倍,有的甚至高达10倍以上,桑树根系分布近地面部分是水平根,深土层是垂直根,水平根和垂直根构成一个贮水功能极强的立体交叉的吸水贮水网络,具有强大的吸水固土能力[12],可以改变土壤的理化性状和土壤结构,提高土壤肥力和保持水土,减少土壤侵蚀,有极强的抗干旱、遏制风沙能力。

桑树极其发达的根系利于吸收土壤的营养成分,同时在一定程度上也能促进土壤中重金属元素的吸收。桑树对镉、铅、铅、锌、砷等有一定的耐受性,桑树吸收的重金属离子会有一定的量被运输并积累于茎干和叶片中,而后通过伐条可以移除,起到去除土壤重金属的作用。

3土壤重金属污染与桑树生长关系

3.1土壤镉污染与桑树生长

镉是一种有毒的重金属,也是自然界的一种主要污染源,镉胁迫严重影响植物的生长发育,降低作物的产量和质量[16]。镉元素对桑树的影响已有比较深入的研究,桑树对镉有比较强的耐性和富集转运能力[16-21]。陈朝明[17,20]对桑树Cd耐受性的试验研究表明,当土壤Cd浓度小于22.3mg/kg时,桑叶产量、可溶性糖和含氯化合物含量都高于或接近对照处理;当土壤Cd浓度大于22.3mg/kg时,Cd对桑叶产量、营养物质含量、生理生化作用的影响明显,并表现其毒害作用,当浓度高于145mg/kg时,分支较少而纤细,叶黄而小,接近死亡状态;而桑树根部当Cd浓度达到75mg/kg时,才出现大小不等的瘤状结节和菌丝状绒毛,根表皮皱裂,根尖分叉,并有明显的木质。土壤Cd浓度为8.49~75.8mg/kg时,桑树各器官对土壤Cd均有富集作用,各器官Cd含量大小顺序为:须根>主根>主茎>叶片>分支。桑树根部对镉有较高的富集能力,约40%的镉富集在根部,须根的Cd含量是其他器官Cd含量的1.63~4.6倍,主根的Cd含量是其他器官(除须根外)Cd含量的1.41~49.7倍。转到桑树主茎和分枝的量约占总累积量的41%,而运转到叶片的镉量相对较少,约占总累积量的16%,这对利用镉污染土壤栽桑养蚕具有实际意义。万飞[21]认为桑树是具有一定耐Cd性的经济作物之一,在一定的Cd浓度下不会影响家蚕的生长发育和蚕茧的质量。当土壤Cd含量为8.48mg/kg时,不会影响桑树的生长发育和桑叶的产量,反而会有一定的刺激作用,当土壤含Cd量在20~50mg/kg之间时,桑叶的产出量降低10%~30%;当土壤含Cd量超过140mg/kg时,桑树的生长发育受到不良影响,叶片小黄,养分和水分的吸收受到阻碍,1~2年后整株桑树死亡;另外,Cd含量主要集中在桑树的根系部分,其次是茎杆部分,最后进入叶片的Cd含量很少,当土壤中的含Cd量达到145mg/kg时,即桑树致死浓度,桑叶中的含Cd量并没有超过2.5mg/kg。

3.2土壤铅污染与桑树生长

近年来,由于工业“三废”的乱排和大量机动车辆的使用,使用污水灌溉农田以及滥用农药、除草剂和化肥,已严重地污染了土壤、水体和大气的质量,导致环境中pb的含量明显增加[22]。任立研等[23]研究了土壤不同浓度铅污染对桑树生长及桑叶品质的影响,结果表明在50~600mg/kg试验范围内,低浓度铅[<200mg/(kg·干土)]处理使桑树的株高呈现上升趋势,中、高浓度铅[>300mg/(kg·干土)]处理使桑树的株高呈现下降趋势;而桑叶中叶绿素总量、可溶性糖含量、淀粉含量均随着外加铅浓度梯度的增加呈先上升后下降的趋势,转折点为200mg/(kg·干土)(土壤一级标准)。土壤中的铅浓度超过200mg/(kg·干土)后,桑树生长及桑叶品质开始受到明显胁迫。在含pb50、125、250、500mg/kg的土壤中生长的桑树植株生长缓慢、叶柄下垂、叶片失绿,有的叶片上出现褐色斑,这些情况随着土壤中金属含量的增加而趋于严重[24]。桑叶的叶绿素含量和单位面积重量与土壤中pb的含量呈显著负相关,在高pb含量土壤,桑叶pb含量随土壤pb浓度的增大而显著增大,在低pb含量土壤中嫩桑叶吸收pb优于老桑叶。覃勇荣等[25]研究表明,在相同的重金属pb2+胁迫背景下,加入0.55mmol/LeDta的桑树对pb2+的吸收量比不添加eDta的对照组明显增高。桑树具有较强的重金属pb耐性,可作为修复植物应用于重金属污染地区。

3.3土壤砷污染与桑树生长

砷虽不属于重金属,但因其来源以及危害都与重金属相似,故通常列入重金属。被as污染的农田土壤生态系统,不仅作物产量降低,质量变差,而且会通过食物链危害人体健康。吴浩东等[26]运用盆栽试验和实验分析的方法,研究了土壤砷污染对桑树品质的影响,结果表明,在一定的含量范围内(≤300mg/kg),随着砷质量浓度增加,桑叶叶绿素含量先降后升,影响不明显,而可溶性糖含量先上升后下降,砷含量>160mg/kg时桑树可溶性糖含量显著下降。

3.4土壤重金属复合污染与桑树生长

桑树对土壤重金属复合污染金属也有很强的耐性。谭勇壁[27]调查了广西环江受尾矿污染的桑园情况,明显看出,桑树在pb、Zn、as含量分别高达734、1194、53mg/kg的污染土壤上仍然可以正常生长发育,并且在外观上没有表现出明显的受胁迫现象[28]。桑叶Zn、as的积累量随桑叶生长周期的延长而增加。张兴等[29]在湖南浏阳七宝山矿区污染土壤上Cu(593.56mg/kg)、pb(825.41mg/kg)、Cd(8.11mg/kg)、Zn(705.41mg/kg),以‘湖桑一号’为试验材料,分别测定植物各部分和土壤中Cu、pb、Cd、Zn4种重金属元素的含量。结果表明:桑树总体生长情况为第3季(5个月)>第2季(3个月)>第1季(1个月)。桑树各部位单位重量中Cu的含量的趋势为根(33.13mg/kg)>叶(13.38mg/kg)>皮(7.51mg/kg)>骨(4.93mg/kg),pb的含量的趋势为根(33.13mg/kg)>叶(10.32mg/kg)>皮(3.35mg/kg)>骨(1.73mg/kg),Cd的含量的趋势为根(4.53mg/kg)>叶(1.90mg/kg)>皮(1.57mg/kg)>骨(1.03mg/kg),Zn的含量的趋势为根(317.72mg/kg)>叶(186.53mg/kg)>皮(105.07mg/kg)>骨(89.16mg/kg)。每平方米耕作层土壤上桑树对Cu的修复年限为2.01年,迁移总量为12116.1mg,对pb的修复年限为15.45年,迁移总量为7409.83mg,对Cd的修复年限为1.26年,迁移总量为2056.4mg,对Zn的修复年限为0.39年,迁移总量为254532.8mg。唐翠明等[30]对广东韶关市大宝山矿区周边重金属污染农田桑园进行了调查,调查结果表明,土壤中铅、锌、铜、镉及砷的含量远远超过了土壤环境二级标准值,但是桑树的生长不受影响,桑叶产量也能达到正常水平。

4桑树应用于土壤重金属污染修复的潜力

重金属污染土壤植物修复技术的关键是修复植物的选择。已知的重金属超积累植物绝大多数为野生型稀有植物,分布具有较强的区域性,且生物量小,生长缓慢,根圈范围有限,只能对浅层土壤起到修复作用,修复速率较缓慢;超富集植物往往只能富集某种重金属,而土壤重金属污染大多是复合污染,修复周期较长,很难实际应用[31-32]。桑树耐重金属复合污染,而且栽培技术成熟,对土壤和环境适应性强、生长快、根系发达、生物量大、耐剪伐,相对于目前使用的修复植物具有明显优势。

江西省具有丰富的矿产资源,如赣南钨矿、稀土矿、赣西北铜金矿、赣东北铜业及多金属开发区,以及煤矿、瓷土矿等,矿山的开发给社会经济发展做出了巨大贡献,但同时带来的矿产废弃物造成矿区周围土壤Cu、Cd、pb、Zn、as等重金属富集污染,大片田地荒芜,生态环境恶劣,而且随着社会经济的发展,重金属污染有加重的趋势,防治土壤重金属污染的形势十分严峻。以重金属污染严重的赣州市大余县为例,其土壤中Cd、pb、Cu、Zn、as分别超过污染起始值的3.78、3.04、2.95、1.16和8.66倍[33],桑树在这些土壤重金属毒性剂量范围之内,可以正常生长,而且桑树适应性强,在矿区土壤修复上有其独特的优势。栽植桑树能在保持水土、防风固沙、绿化荒山、净化空气、美化环境等方面起到良好的作用,对构建生态景观、改善生活环境具有较高的实用价值[34]。王凯荣等[35]也表示种桑养蚕是治理镉污染农田的一种成功的经济生态模式。因此,将桑树应用于重金属污染土壤的修复具有广阔的前景。

5展望

重金属污染土壤修复方法的选择需要考虑到土壤现状、修复成本,以及修复技术成熟可靠等因素,需要对不同类型的土壤进行实验,确定处置工艺和参数,以达到污染土壤修复到目标值。从目前的研究成果来看,桑树作为修复树种,相对于目前所使用的修复植物,具有明显的优势,但是也存在一些问题,主要表现为以下几个方面:(1)采用桑树修复中度污染土壤3~5年可达到复耕标准或稍微超标,所需费用大致在1万元每亩左右,需要时间较长,经济负担较大。(2)由于受劳动力紧缺和蚕桑产业整体发展趋势影响,栽桑不一定会用于养蚕,桑树经济效益得不到有效实现。(3)桑树本身对土壤重金属并没有修复去除的功能,积累重金属的桑树如果处理不当会造成“二次污染”,目前也没有简便有效的处理技术,应当寻求一种高效的植物产后处理技术,在污染桑树剪伐后,以及采用栽桑养蚕方法治理重金属污染土壤时,合理处理养蚕过程中含重金属的蚕沙及蚕蛹,真正将污染物永久去除,真正实现“变废为宝”的目的。(4)目前关于桑树修复重金属土壤研究大都停留在试验阶段,在野外示范时受气候地理环境以及外界持续的污染源等因素影响,修复效果与实验室试验研究结果会有较大差距。(5)在栽植桑树方面,要充分考虑当地的地貌及土壤特征,尽量推广种植适生型桑树品种,以提高桑树的成活率,并以植被恢复、修复土壤为主要任务,合理选择桑树品种,在今后的育种工作中,对桑树品种进行筛选,筛选生物量大、生长效率快、生长周期短、抗性强并能对某一种或几种重金属污染物具有超级吸附潜力的桑树,以更大地实现桑树的生态价值。

参考文献

[1]赵春雨.植物在当前建设低碳社会中所起作用的研究[a].中国环境科学学会学术年会论文集[C].2011:2160-2163.

[2]程国玲,王大业.重金属污染土壤植物修复技术研究[J].中国科技财富,2009(6):77.

[3]何舞,王富华,杜应琼,等.东莞市土壤重金属污染现状、污染来源及防治措施[J].广东农业科学,2010(4):211-213.

[4]朱兰,保盛蒂.重金属污染土壤生物修复技术研究进展[J].工业安全与环保,2011,37(2):20-21.

[5]封功能,陈爱辉,刘汉文,等.土壤中重金属污染的植物修复研究进展[J].江西农业学报,2008,20(12):70-73.

[6]桑爱云,张黎明,曹启民,等.土壤重金属污染的植物修复研究现状与发展前景[J].热带农业科学,2006,26(1):75-79.

[7]李元,魏巧,祖艳群.氮肥对小花南芥生理和pb、Zn累积特征的影响[J].农业环境科学学报,2013,32(8):1507-1513.

[8]李元,魏巧,祖艳群.氮肥对小花南芥生物量、生理和pb、Zn累积特征的影响[a].农业环境与生态安全——第五届全国农业环境科学学术研讨会论文集[C].2013:42-49.

[9]谢志宜,陈能场.缓释微胶囊eDta强化玉米提取土壤中铅铜的效应研究[J].生态环境学报,2012,21(6):1125-1130.

[10]韩世玉.桑树的生态价值及其在贵州“东桑西移”中的生态栽培[J].贵州农业科学,2007,35(5):140142.

[11]刘芸.桑树在三峡库区植被恢复中的应用前景[J].蚕业科学,2011,37(1):0093-0097.

[12]戴玉伟,朱弘,杜宏志,等.论桑树资源经济价值和生态功能[J].防护林科技,2009(1):78-80.

[13]姚芳,倪吾钟,杨肖娥.桑树的种质资源、生态适应性及其应用前景[J].科技通报,2004,20(4):289-297.

[14]徐和保,刘绍考,王静江,等.对桑树氟污染有关规律的研究[J].江苏蚕业,1991,13(3):12-15.

[15]顾晓山.不同桑品种吸氟性能的比较[J].江苏蚕业,1991,13(1):52-53.

[16]nadae,FerjaniBa,aliR,etal.Cadmium-inducedgrowthinhibitionandalterationofbiochemicalparametersinalmondseedlingsgrowninsolutionculture[J].actaphysiolplant,2007,29(1):57-62.

[17]陈朝明,龚惠群,王凯荣.Cd对桑叶品质、生理生化特性的影响及其机理研究[J].应用生态学报,1996,7(4):417-423.

[18]wangKR,GongH,wangY,etal.toxiceffectsofCadmiumonmorusalbaLandBombvxmorilL.plantandSoil,2004,261(1-2):171-180.

[19]滕葳,柳琪,李倩,等.重金属污染对农产品的危害与风险评估[m].北京:化学工业出版社,2010.

[20]陈朝明,龚惠群,王凯荣,等.桑-蚕系统中镉的吸收、累积与迁移[J].生态学报,1999,19(5):664-669.

[21]万飞.镉对桑蚕生长发育及茧质影响的试验初报[J].中国蚕业,2004,25(4):23-24.

[22]石德杨.铅对玉米产量、品质及生理特性的影响[D].济南:山东农业大学,2013.

[23]任立研,宋书巧,蓝唯源,等.土壤铅污染对桑树生长及桑叶品质的影响研究[J].资源开发与市场,2009,25(7):583-585.

[24]周伟.镉和铅污染土壤对桑树生长的影响[J].蚕业科学,1995,21(4):265-266.

[25]覃勇荣,覃艳花,严军,等.eDta对桑树和任豆幼苗吸收重金属pb的影响[J].南方农业学报,2011,42(2):168-172.

[26]吴浩东,宋书巧,蓝唯源.砷污染对桑树品质的影响研究及其污染防治措施[J].广东微量元素科学,2007,14(3):18-22.

[27]谭勇壁.矿区周边重金属污染农田发展桑树种植产业的可行性研究[D].南宁:广西大学,2008.

[28]杜伟,姚丽萍.重金属污染与蚕桑生产关系研究进展[J].北方蚕业,2012,33(3):1-4.

[29]张兴,王冶,揭雨成,等.桑树对矿区土壤中重金属的原位去除效应研究[J].中国农学通报,2012,28(7):59-63.

[30]唐翠明,王振江,戴凡伟,等.桑树在土壤污染和大气污染修复中的应用潜力[a].黄土高原生态桑建设现场研讨会论文集[C].2012:142.

[31]刘爱荣,张远兵,李百学,等.铅胁迫下高羊茅植株无机离子分布的响应特点研究[a].中国植物学会七十五周年年会论文摘要汇编(1933-2008)[C]:151-152.

[32]刘爱荣,张远兵,张雪平,等.铅污染对高羊茅生长、无机离子分布和铅积累量的影响[J].核农学报,2009,23(1):128-133.

[33]黄国勤.江西省土壤重金属污染研究[a].中国环境科学学会学术年会论文集[C].2011:1731-1736.

重金属污染的影响篇9

论文关键词:城市土壤,重金属污染,污染治理

 

引言

城市是人类社会经济发展的必然产物。从18世纪以来人口不断向城市集中。如今随着各国工业迅猛增长,社会经济飞速发展,城市的数目和规模均不断扩大[1]。而城市环境是一个以人为中心的城市经济、社会生态的复合生态系统。目前,城市人口剧增,人类活动频繁污染治理,使得组成这个环境的水、空气和土壤时刻处于被污染的状况之下,影响着城市的可持续性发展中国。所以,建设一个绿色健康的城市环境是城市可持续发展的必然方向。

城市土壤是指受多种人为活动的强烈影响,原有继承特性遭到强烈改变的厚度大于或等于50cm的城区或郊区土壤[2],是城市环境的重要组成部分,是城市生态系统地球化学循环的重要环节[3],也是城市赖以存在发展的物质基础。当大量的重金属随着各种各样的人类活动进入城市土壤中,便造成这些元素在土壤中的积累。一般认为,土壤中污染物累积总量达到土壤环境背景值的2或3倍标准差时,说明土壤中该污染元素或化合物含量异常,已属土壤轻度污染;当土壤污染物含量达到或超过土壤环境基准或环境标准时污染治理,说明该污染物的输入、富集的速度和强度已超过土壤环境的净化和缓冲能力,则属重度土壤污染。由于城市人口密集,人类活动频繁,与土壤接触的机率很高,所以城市土壤的重金属污染更容易通过大气、水体或食物链而直接或间接地进入人体,威胁着人类的健康甚至生命。因此,研究城市土壤重金属污染现状并提出相应的治理对策是可持续发展城市所必需进行的重要的基础工作。

1.城市土壤重金属污染的现状

2.1空间分布特征

由于城市土壤受人类各种活动的强烈影响,因此其重金属污染分布也呈现出

显著的空间差异。一般地,人口聚集的城市中心区域土壤重金属含量明显高于郊区和农田。对纽约市“市区-郊区-农区”土壤研究发现,重金属离子总量、重金属离子多样性等随着距市中心距离的增加而降低,重要污染重金属pb、Cu、ni、Cr的含量下降非常明显[4]。

在城市不同的功能区污染治理,重金属分布呈现出一定的规律性。一般的规律表现为:pb的浓度为老工业区>老居民区>商业区>开发区>其它;Zn的浓度为老居民区>商业区>老工业区>其它;Cu的浓度为老居民区>商业区>其它;Cd的浓度为老工业区>老居民区>其它[5-7]中国。

城市公园是人们与土壤直接接触较多的特殊区域。北京城区三十多个公园土壤pb质量分数调查表明,尽管大多数公园土壤污染程度轻,但客流量大的故宫、颐和园等著名公园污染指数却远远高于其它公园[8]。

城市土壤重金属污染的另一特征是公路两侧一般为城市土壤重金属污染最严重的地带,且呈明显的带状分布[9]。在50m~80m内公路两侧土壤中铅污染相当严重,100m外土壤中的铅含量没有明显增加[10]。

此外,建筑物的建设、垃圾的堆积填埋等严重破坏了自然土壤结构,土壤层次凌乱,重金属在其垂直剖面方向分布变异较大,不同功能区重金属元素在土壤中各层的聚集状况没有规律可循[11,12]。

2.2城市土壤重金属污染的来源

矿产冶炼加工、电镀、塑料、电池、化工等行业是排放重金属的主要工业源,其排放的重金属可以气溶胶形式进入到大气,经过干湿沉降进入土壤;另一方面污染治理,含有重金属的工业废渣随意堆放或直接混入土壤,潜在地危害着土壤环境[13]。随着城市化发展,大量污染企业搬出城区,原有的企业污染用地成为城市土壤重金属污染的突出问题[14]。

燃煤释放也是土壤重金属重要来源之一,195年中国燃煤排放汞302.9吨,其中向大气排放量为213.8吨,北京、上海等超大城市排汞强度较高[15]。虽然近些年燃料使用及供暖方式的改变已明显改善这些城市的空气污染状况,但过去燃煤释放并已沉降至城市土壤中的重金属对城市生态系统、环境及人体健康仍会产生长期效应。

随着城市化发展,交通工具的数量急剧增加,汽车轮胎及排放的废气中含有pb、Zn、Cu等多种重金属元素[16,17],进入周围的土壤环境污染治理,成为土壤重金属污染的主要来源之一。此外,雨水淋洗也会使市区内堆放的垃圾中的重金属以有效态形式[18]渗漏释放到土壤中,使城市土壤局部重金属含量增加中国。而表生条件下以有效态形式存在的金属元素几乎不可能再结合为残渣态,重金属在土壤中迁移能力增加,进而污染地下水。

2.3城市土壤重金属污染影响人体健康的途径

城市郊区是市区蔬菜的主要供应基地。因此,土壤-蔬菜系统是城市人群暴露土壤重金属污染的主要途径之一。目前研究发现中国城郊菜地土壤已受到不同程度的重金属污染[19,20],其供应的许多蔬菜中重金属含量已超过相应的标准。而西班牙的nadal等通过建立评价模型发现工业地区甜菜中Cr的积累与摄入有可能导致癌症发生率增加[21]。

城区内,土壤中主要种植的是观赏性或净化空气的植物,通过土壤-植物食物链对人体造成健康危害的可能性不大。但公园土壤与游人皮肤接触[22]、儿童摄取[22]、风起扬尘被人体直接吸入等成为城市土壤直接接触人体危害健康的又一个主要途径。研究发现[23,24]沙尘暴时,扬尘中来源于土壤的重金属元素pb、Zn、Cd、Cu等的浓度比平常高出3~12倍,可吸入颗粒物的质量浓度极高污染治理,人体吸入重金属的量因此增加。

2.城市土壤重金属污染的治理对策

城市土壤是城市生态环境的重要组成部分,是地球环境中进行物质、能量、信息交换的重要环节。当其中的重金属含量超过其环境承载力后,将通过地表径流、淋溶、大风扬尘等途径对地表水、地下水和大气环境产生危害。为了保证人类和谐地生活在高速发展的城市中和人类社会的可持续发展,寻找控制治理城市土壤重金属污染的有效方法势在必行中国。

3.1减少或切断重金属污染源,提高城市环境质量

在可持续发展理论和生态优先的原则下,改进生产工艺,实现绿色生产和循环经济,充分回收转换工业生产过程中产生的重金属有害物质,减少三废排放,禁止任意堆放工业生产的废渣,防止其中的重金属物质下渗到土壤或挥发到大气中。

减少煤的使用污染治理,开发清洁能源新技术,调整能源结构及能源供给方式,也是有效降低城市土壤重金属污染的有效措施。

分类收集处理城市垃圾,回收其中有用的重金属元素,在垃圾重金属不超标的情况下才能进行填埋、堆肥和焚烧。

3.2修复污染土壤,降低对人体的危害

由于土壤扬尘已成为城市大气重金属污染的主要来源。因此,可采取化学方法去除土壤中重金属。实验研究发现采用eDta溶液淋溶去除土壤重金属的同时还可以回收利用这些物质,因此其成为去除城市土壤重金属的一种极有应用前景的方法。

当然,生物修复污染土壤有着工程措施无法相比的优势。种植植物不仅可以覆盖城市土壤,减少土壤扬尘的机会,而且还美化城市景观污染治理,净化空气,同时根据污染城市土壤的重金属元素种类有目的地选择植物种类合理搭配,可切实有效地从根源上修复城市土壤中的重金属污染。

3.3建立城市土壤重金属健康评价标准

我国尚未制定出城市土壤重金属健康评价标准,不易界定城市土壤重金属污染,这不利于城市土壤不同功能的开发,因此应结合人体健康评估、土地利用方式和土壤中重金属赋存状态加大对城市土壤重金属健康评价体系研究的力度,尽快建立相应完整的评价标准,实现对城市土壤正确的评价,以便帮助政府相关部门制定出合理的法规,有效地保护、管理城市土壤和正确指导城市土壤的合理开发。

参考文献

[1]马光,等.环境与可持续发展导论[m].科学出版社,2000

[2]张甘霖,朱永官,傅伯杰.城市土壤质量演变及其生态环境效应[J].生态学报,2003,23(3):539–546.

[3]张甘霖.城市土壤的生态服务功能演变与城市生态环境保护[J].科技导报(北京),2005,23(3):16-19.

[4]张金屯,poUYatR.“城-郊-乡”生态样带森林土壤重金属变化格局[J].中国环境科学,1997,17(5):410-413.

[5]马建华,张丽,李亚丽.开封市城区土壤性质与污染的初步研究[J].土壤通报,1999,30(2):93-96.

[6]王美青,章明奎.杭州市城郊土壤重金属含量和形态的研究[J].环境科学学报,2002,22(2):603-608.

[7]卢瑛,龚子同,张甘霖.南京城市土壤pb的含量及其化学形态[J].环境科学学报,2002,22(2):156-160

[8]郑袁明,余轲,吴泓涛,等.北京市城市公园土壤铅含量及其污染评价[J].地理研究,2002,21(4):418-424.

[9]管东生,陈玉娟,阮国标.广州市及近郊土壤重金属含量特征及人类活动的影响[J].中山大学学报(自然科学版),2001,40(4):93-97.

[10]师利明,郭军庆,罗德春.对公路两侧土壤中铅积累模式的理论探讨[J].西安公路交通大学学报,1998,18(3):13-15.

[11]李敏,林玉锁.城市环境铅污染及其对人体健康的影响[J].环境监测管理与技术,2006,18(5):6-10.

[12]卢瑛,龚子同,张甘霖.南京市城市土壤pb的含量及其化学形态[J].环境科学学报,2002,22(2):156-160

[13]潘海峰.铬渣堆存区土壤重金属污染评价[J].环境与开发,1994,9(2):268-270.

[14]孙俊,陈晓东,常文越,等.搬迁企业环境遗留问题分析及修复对策研究[J].环境保护科学,2003,29(118):40-42.

[15]王起超,沈文国,麻壮伟.中国燃煤汞排放量估算[J].中国环境科学,1999,19(4):318-321.

[16]FaLaHi-aRDaKania.Contaminationofenvironmentwithheavymetalsemittedfromautomotives[J].ecotoxicologyandenvironmentalSafety,1984,8:152-161.

[17]刘廷良,高松武次郎,左濑裕之.日本城市土壤的重金属污染研究[J].环境科学研究,1996,9(2):47-51.

[18]张辉,马东升.城市生活垃圾向土壤释放重金属研究[J].环境化学,2001,20(1):43-47.

[19]李其林,黄昀.重庆市近郊蔬菜基地蔬菜中重金属含量变化及污染情况[J].农业环境与发展,2000,17(2):42-44.

[20]张勇.沈阳郊区土壤及农产品重金属污染的现状评价[J].土壤通报,2001,32(4):182-186.

[21]nadalm,Schuhmacherm,DomingoJL.metalpollutionofsoilsandvegetationinanareawithpetrochemicalindustry[J].theScienceofthetotalenvironment,2004,321(1-3):59-69

[22]aBRaHamSpw.Soils:theirimplicationstohumanhealth[J].Scitotalenviron,2002,291:1-32.

[23]王玮,岳欣,刘红杰,等.北京市春季沙尘暴天气大气气溶胶污染特征研究[J].环境科学学报,2002,22(4):494-498.

[24]庄国顺,郭敬华,袁蕙,等.2000年我国沙尘暴的组成、来源、粒径分布及其对全球环境的影响[J].科学通报,2001,46(3):191-197.

重金属污染的影响篇10

[关键词]土壤重金属污染现状防治措施

[中图分类号]X53[文献标识码]a[文章编号]1003-1650(2017)05-0287-01

陆良县隶属于云南曲靖,陆良县位于云南省东部,素有“滇东明珠”之称。我县土地面积广阔,农业粮食的播种面积901050亩,轻重工作发展迅速,经济实力雄厚。但是由于工业的发展和其他因素的影响,导致了我县的环境遭到了严重污染,尤其是土壤的重金属含量过高,严重阻碍了我县农业经济发展。针对这样一个状况,我农业综合服务中心相关负责人组织工作小组,制定了工作重点,积极寻求土壤重金属的污染成因、污染特点、污染危害,然后探讨了土壤重金属污染的预防和治理方式,科学合理的保护土壤,缓解重金属污染,促进农业健康发展。

1土壤重金属污染现状

1.1金属汞污染

土壤中汞的来源包括土壤母质、大气中汞的干湿沉降、工业污染源、农业污染源、含汞废弃物。其中农业污染主要是含汞农药的使用、含汞废水、废气、废渣的排放而污染土壤所致。较低含量的金属汞一般不会造成土壤污染,但是在土壤微生物作用下,汞金属转化为具有剧烈毒性的甲基汞,也称汞的甲基化。金属汞污染对农作物的危害随着作物的种类不同而有不同。

1.2重金属镉污染

在我国的重金属土壤污染中,镉污染是危害性最大的,镉污染土壤特点有色金属矿产开发、冶炼及其他工业生产排出的废气、废水和废渣都会造成镉污染。而耕地大量使用的磷肥中也有相当高的镉含量,因此当这些磷肥进入土壤,也加重了土壤中的镉浓度。此外,城市污泥和垃圾的焚烧也可导致土壤中镉含量增高,由于土壤对镉有很强的吸着力,因而镉易在土壤中造成蓄积。

1.3重金属铅污染

铅是土壤污染较普遍的元素。污染源主要来自铅化工业的发展产生的废气、废水、废渣,汽油燃烧后的尾气中含大量铅,矿山开采、金属冶炼、煤的燃烧、大量含铅化肥使用、蓄电池的丢弃等也是重要的污染源。

1.4重金属砷污染

土壤砷污染主要来自大气降尘、尾矿与含砷农药,燃煤是大气中砷的主要来源。砷中毒可影响作物生长发育,砷对植物危害的最初症状是叶片卷曲枯萎,进一步是根系发育受阻,最后是植物根、茎、叶全部枯死。

总的来说,土壤重金属污染对植物的影响主要是对其生理生态过程、植物的产量和质置方面,如果污染过于严重的话,就会直接导致植物根系坏死,植物得不到应有的土壤营养,生长寿命大大缩减,甚至于直接死掉。

2土壤重金属污染的预防措施

2.1加大环境监管和治理力度

土壤重金属污染的情况越来越严重,造成了严重的危害,因此,政府必须引起高度重视,加大对土壤重金属含量的监测。首先政府部门应该组织一批专业的技术人才,采用先进的监测技术和设备,对我县的土壤进行动态监测,全面掌握重金属污染的类型、污染的程度,充分了解土壤中金属成分、含量的变化,统计监测信息,将土地进行重金属筛选,根据土壤污染的具体情况,恰当的选择土壤修复技术,为治理更大范围的重金属污染区积累经验;其次要坚强环保部门对环境的监管力度,杜绝重金属污染的来源,督促相关工业园区引进净化设备,含重金属元素的废弃物进行净化处理,减少排出量,同时严格控制城市生产生活废水直接进入农田,从根本上防止重金属对土壤的污染。

2.2扩大土壤重金属污染宣传

重金属污染已经成为我县首要的土壤污染类型,必须提高人们的防范意思。我们可以利用先进的技术,通过互联网平台、以手机为载体,传统的书籍报刊等多种形式和途径,深入开展农产品产地土壤重金属污染防治的宣传工作,广泛动员和组织社会各界力量积极参与农产品产地土壤重金属污染防治工作,在全社会形成一种良好的社会风气,提高人们对土壤重金属污染的关注,让人们了解土壤重金属污染的严重危害性,自觉进行土壤保护。

2.3加强技术培育

将土壤重金属污染的专业技术人员组织起来,成立土壤重金属防治小组,深入我县各地区,对土壤重金属污染进行调查研究,为了更好的开展工作,一要积极开展技术培训,不断提高其整体业务素质,特别是基层机构人员的知识结构、技能和业务素质,提高他们的专业水平,同时我们还要根据污染情况,有针对性的开设培训内容,更好的服务于我县的土壤治理工作中。

2.4客土深翻,缓解污染

重金属的土壤污染,阻碍作物的生长发育,必须在短时间内根除,才能进行的正常的农运活动。因此我们可以在污染地区彻底挖去污染土层,换上新土,以根除污染物,也可以进行土壤的耕翻土层,采用深耕,将上下土层翻动混合,使表层土壤污染物含量减低。

2.5施用化学改良剂,

根据土壤重金属污染的类型,向土壤中施用石灰、碱性磷酸盐、氧化铁、碳酸盐和硫化物等化学改良剂,加速有机物的分解,使重金属固定在土壤中,降低重金属在土壤及土壤植物体的迁移能力,使其转化成为难溶的化合物,减少农作物的吸收,以减轻土壤中重金属的毒害。

土壤重金属污染的防治是环境监测的重要任务,是保障我县广大人民群众身体健康的根本,是促进经济快速发展的主要推力。采取科学有效的土壤污染防治措施,能够有效改善土壤结构,提高土壤肥力,降低土壤环境的污染。在未来的环境监测和农业生产中,政府和人民更应该携起手,爱护我们共有的生存土地,让重金属污染事件不再发生,远离人民群众,实现环境友好型的生存环境。

参考文献

[1]高锦卿,土壤重金属污染及防治措施[J].现代农业科技,2013年04期