首页范文焊接技术的重要性十篇焊接技术的重要性十篇

焊接技术的重要性十篇

发布时间:2024-04-25 22:37:24

焊接技术的重要性篇1

关键词:钢结构;机械焊接;新工艺;焊接反变形技术

中图分类号:tG457

文献标识码:a

文章编号:1009-2374(2012)23-0056-02

1 机械焊接技术简介

钢结构具有自重轻、建设周期短、适应性强、外形丰富、维护方便等优点,其应用范围广泛,在机械、石化、冶金、造船等领域都离不开钢结构的应用,这使得焊接技术的应用范围更加广泛。随着焊接技术和设备的发展,目前在钢结构的建设中主要的焊接技术可谓种类繁多,工艺或简单或复杂,但是都在不断地追求焊接技术的进步和焊接质量的提高。

1.1 主要的机械焊接技术种类

根据具体焊接过程的不同,可以将焊接技术分为气保焊、压力焊、钎焊和手工电弧焊四大类。

1.1.1 气保焊:气体保护焊的简称,主要是指在焊接器中装入氮气和氢气这两种气体,在焊接时利用焊接器喷嘴喷出这些气体,将周围的空气与焊接处隔离开以保证焊接效果的焊接方式。

1.1.2 压力焊:这种焊接方式可以利用电阻、摩擦或者超声波等按压所产生的压力,使得焊接接头处的金属原子可以相互结合而完成焊接任务。目前钢结构中最常使用的压力焊就是电阻压力焊。

1.1.3 钎焊:这是一种比较特殊的焊接技术,主要是把需要焊接的部分和钎料加热直至高于钎料的熔点、低于焊接材料的熔点后,利用钎料进行焊接的技术,这种技术可以有效地减少焊接时产生的裂缝,提高焊接的质量。

1.1.4 手工电弧焊:这种方式由于使用起来简单方便,是目前小型钢结构焊接主要采用的技术种类,我们经常所看到的焊接方式就是手工电弧焊,焊接时我们可以看到焊接处迸溅的火花。

1.2 焊接技术的质量控制

焊接的质量问题至关重要,因为焊接技术关系到整个钢结构的安全性和稳定性,尤其是大型的钢结构中,焊接技术的质量要求更为严格。要保证焊接技术的质量,就要重点关注焊接接头处的焊接质量,因为接头处关系着两部分之间的联系,尤其是两种不同材料之间的焊接,实质上相当于两种不同金属材料重新融合的过程。焊接接头处是影响焊接质量的主要部位,因此在焊接时应该重点加强对接头处的质量控制,保证技术的规范性,采取一定的措施加强对焊接效果的检测,及时消除质量隐患,能够有效地提高焊接质量,保证钢构件的安全性。在焊接时,要保证技术操作的规范性,获得良好的焊接效果,要重点做好焊道的尺寸、强度、外观、漏水试验要求和焊接变形等工作。

焊接技术工人在进行焊接工作时,一定要熟悉焊接要求,根据焊接图谱进行焊接,要保证程序化的操作焊接技术,在焊接开始时,首先要检查焊接材料以及焊接接头处的材料表面情况,保证材料的光滑清洁卫生,以免影响焊接效果。在焊接时要遵照工艺图开展工作,同时要注意焊接后的材料的实用性,保证焊接处的圆滑过渡以及适当的余高,留下改进空间,保证不影响材料的使用。按规定,焊缝的余高应该在0.5~3.5mm之间。同时焊接完成后要进行质量检修,及时地处理不合格的构件,同时要限制返修的次数,因为反复焊接会影响焊接处金属的物理质量,影响材料性能的稳定性。

要想保证焊接的质量,焊接工人熟练的技术和先进的焊接设备以及焊工高度的责任意识是关键。

2 焊接技术新工艺的发展

随着现代焊接工艺的发展和建筑钢结构新的技术要求,未来的焊接技术主要的发展趋势可以从两个方面进行具体分析:一是新技术的研发方面,主要是为了提高焊接的质量,扩大焊接技术的范围;二是要创新焊接工作的技术设备,将计算机人工智能技术引进焊接领域,提高焊接现代化水平。

2.1 研发新的焊接反变形技术

实际生活中,由于焊接技术的限制和钢构件的使用环境所致,经常会出现焊接处变形的情况。这种情况限制了领域内技术的发展和业务的扩大。从实际情况来看,变形主要分为纵向、横向收缩变形、弯曲变形、角变形和波浪变形等,因此有必要研发焊接反变形技术。实际应用中主要是通过完善焊接工作各个环节以提高焊接质量的方法避免变形的程度。而对于新的反变形技术,虽然也有研究,但是成果并不丰富。目前反变形技术的一个创新是利用残余角变形的方法,主要的技术规范是在焊接开始前对焊接材料进行技术处理,施加弹性的反向变形,利用热弹塑性有限元法来模拟结构的焊接过程,确定焊接结构的弹性反变形规律:焊接前施加弹性反变形的结构在焊接后角变形趋于零,效果十分理想。

2.2 低温焊接

焊接钢构件有时候也会出现断裂的问题,主要是由于低温造成的,尤其是当钢构件中存在缺口的时候,断裂发生的概率更大。科学研究焊结构件断裂的原因,结果表明低温焊接能够有效地减少断裂事件的发生。因为低温焊接比较重视焊接时对焊件的预热,并根据周围的环境温度进行调节预热与后热。同时也可以通过调整焊缝金属的微合金化的程度,同焊接规范相配合,使焊缝金属产生针状铁素体而获得理想的焊缝强韧性,从而取得焊接工艺评定试验的成功,确保工程实体质量。焊接工艺参数设定:冷却条件的改变影响相变,热影响区的组织取决于钢材的化学成分和焊接的冷却条件,同时也影响扩散氢的逸出和焊接应力的改变。焊接热影响区的冷裂纹大多数在马氏体内部产生,焊接区冷却速度过大易产生马氏体组织。在工程中应注意以下几条原则:(1)尽量减少焊接残余应力。(2)限制结构拘束度。焊缝所处的工况完全不同,焊缝中心产生偏析,低温焊接防治冷裂纹的同时,还须防范由于结构拘束度大,照搬工艺试验的结果很可能适得其反,甚至造成严重后果。(3)力图选用电加热。电加热可以使预热区域受热均匀,有效防止局部受热造成接头附加应力;升温速度均匀、可控,防止造成母材过热等现象,可达到母材充分均匀预热。(4)焊后处理措施:由于液-固态氢溶解度不同,在结晶温度下液态溶氢量是固态时的4倍以上,溶氢较多的半溶化晶界起了“通道”作用,氢很容易沿着该通道从焊缝——熔合区——热影响区扩散。(5)控制线能量。在低温施工中,控制aV≥0.6的前提下,采用控制不同焊接位置的aV,实现大电流,防止淬硬组织的产生。

参考文献

[1] 潘海珍.浅谈焊接缺陷产生的原因预防及质量检验[J].科技创新与应用,2012,(13).

[2] 张辉.浅谈钢材焊接裂纹成因与防治措施[J].科技创新与应用,2012,(13).

焊接技术的重要性篇2

关键词:焊接技术石油工程建设;

我国石油工程技术研究人员为石油行业的发展做出了很大的努力,石油工程建设中的焊接技术取得了很大的进步,特别是研究开发领域得到了较大扩展。科技人员依据市场的需求不断地更新、发展焊接技术,石油工程建设中球形储罐、油气管道、炼化装置等都以焊接技术为依托,焊接技术在石油工程建设发展中起到越来越重要的作用。

一、我国石油工程建设中焊接技术存在的问题

受焊接技术的影响,我国石油工程建设中焊接技术还存在很大的问题,主要表现在:第一,石油工程建设中管道运用非常广泛,在管道施工技术上面临着巨大的困难,特别是大口径管径的焊接工作,由于焊接工艺及其复杂,焊接技术受地理环境等因素的影响,造成焊接技术难以开展;第二,我国石油工程建设中焊接技术装备不完善,很多发达国家的焊接技术已经向自动化焊接形式转型,而我国仍然处于手工焊接和半自动焊接的状态,在全自动焊接工艺上还有待提高;第三,石油工程建设中焊接施工使用的材料性能不能满足工程建设的需要,我国焊接材料生产量特别大,但生产技术比较买落后,产品性能比较差,为了保证工程建设的质量,首先应该保证建设材料的高性能、高质量;第四,焊接施工队伍整体素质偏低。焊接工艺技术要求较高,受文化水平的影响,施工人员对焊接材料的性能以及焊接技术了解不全面,特别是对现代社会要求的全自动焊接工艺技术更加陌生。

二、焊接技术在我国石油工程建设中的应用

焊接技术在我国石油工程建设中应用非常广泛,笔者结合多年工作经验,以油气储蓄中的焊接技术和水下工程中的焊接技术为例,对焊接技术在石油工程建o中的应用做了简单介绍。

(一)油气储蓄中的焊接技术

油气储蓄中的焊接技术分为储罐焊接和油气管道焊接两类,对象不同焊接工艺也存在差异,焊接技术仍然是焊接质量的保证。

1、储罐焊接技术

储罐是石油运输中气体、液体、或液化气体存储的最佳选择,受存储气体的影响,储罐的种类很多如球形储罐、立式储罐等。储罐的焊接方法多种样,受储罐类型的影响,焊接方法有焊条电弧焊、埋弧自动焊以及气电立焊等,由于技术落后,我国石油工程建设中焊接技术还不能完成全自动焊接。笔者结合多年工作经验对气电立焊和埋弧自动焊做了简单介绍:埋弧自动焊是最早应用于石油工程建设中的焊接方法,这种方法主要运用于正装法施工建设中罐壁和罐底缝的焊接。近几年,我国焊接工艺研究领域取得了显著的成果,倒装储罐自动焊工艺的应用推动了我国焊接技术的发展,此项技术已经在我国各大油田广泛应用,为了提高生产效率,双丝和多丝焊接已经在埋弧自动焊接法中开始应用;气电立焊主要运用于大型立式浮顶储罐的焊接施工中,这种方法的焊接材料使用量较小,主要用来焊接罐壁立焊缝。为了保证焊接缝的美观、质量,很多施工单位在储罐的罐板底、壁板以及罐顶板的焊接施工中运用二氧化碳半自动焊接法,有效地提高了焊接的效率。

2、油气管道的焊接

油气管道的焊接方法主要有纤维素焊条下向焊、低氢焊条下向焊以及药芯焊丝半自动下向焊。焊接效果受气候因素的影响,在气候较差的地区一般采用低氢焊条下向焊法进行管道的焊接,焊接对象是输送酸性气体、对低温韧性要求高的管道。

(二)大力发展自动焊接技术的建议

1、建设焊接技术研究中心

焊接技术作为石油工程建设技术的主要内容之一,必须对其进行统筹规划、全而提升,以此来满足新时期工程建设越来越迫切的技术需求。建设焊接技术研究中心,以现有的较为成熟的焊接技术试验室为基础,重新对其规划并且整合建立一个机械加工中心,组成六个专业实验室:①水下焊接实验室②性能检测、焊缝理化及金相实验室③无损检测与焊接工艺实验室④焊接结构的完整性以及安全性的全面评价实验室⑤焊缝力学行为、激光一电弧复合备开展在焊接冶金、高效自动焊接技术、特殊条件下焊接实验室⑥焊接自动控制试验室。

2、实施差异化管理

在大部分石油工程建设企业当中,普遍都设有焊接培训中心,一般都是承担企业内部的焊工培训、新焊接方法的学习和运用、焊接工艺试验等实际应用研究性工作。今后焊接技术管理工作的要点是在实际工作中实施差异化管理,突出特色技术。在以后的工作中也将会根据上、中、下游技术需求以及不同地域,在炼油化工、油田建设、海洋工程、长输管道领域,来引导企业走特色焊接技术发展之路。

3、提高技术人员的待遇

人才是一个工程的重点,所以在工程中一定要重视建立一支科研人才队伍,大力支持年青人在岗成才,同时对于一线科技人员也要充分的关心他们,提高他们的待遇和关心他们的职称,让他们能感受到科研管理氛围中的职业自豪感,这样可以达到稳定科研队伍,最终保障企业的健康、长久发展。

三、结束语

焊接技术在石油工程建设中的应用不仅体现在油气储蓄中的焊接和海洋石油工程中的焊接上,石油钻采机械也需要运用焊接技术。总之,焊接技术在石油工程中占据着不可代替的位置,我国焊接技术与国外相比还有很大的距离,技术研究人员应该加强焊接工艺的研究,推动我国石油行业的发展。

参考文献:

[1]雷毅,吴斌,宫大猛等.焊接技术在我国石油工程建设中的应用[J].电焊机,2012(7).

[2]艾合塔木・买买提江.石油工程建设自动焊技术探索[J].城市建设理论研究(电子版),2013(12).

焊接技术的重要性篇3

中国石油天然气管道局第三工程分公司第三管道工程处河南郑州451450

摘要伴随着我国能源结构的调整,天然气在我国能源中所占的比重也越来越大。作为天然气运输主要途径的天然气管道建设总长也在不断增加,一些天然气管道建设中的新技术也在不断的出现和运用。焊机天然气管道建设中发挥着至关重要的作用,也是一项非常常见的应用技术。天然气管道建设的发展对焊接标准及技术都有了新的要求。

关键词焊机技术;天然气管道;应用

最近几年,随着我国对天然气用气量需求的加大,我国的天然气管道的建设也随之也随着加快了建设步伐。伴随着天然气管道建设速度的加快,天然气管道的施工技术也在不断的提升。下面就这几种不同的焊接技术在我国天然气管道建设中的实际应用一一进行说明。

1天然气管道焊接时的手工焊接技术及应用

手工电弧焊下向焊技术可具体分为纤维素焊条和低氢型焊条下向焊。相对传统的天然气管道焊接技术来说,手工下向焊是比较先进的手工焊接技术,手工下向焊因为采用大钝边、小间隙、小坡口角度的技术参数,使天然气管道工程加快了焊接速度,并且焊接的质量比较好,对焊接材料浪费少,加之操作难度不大,进行焊接时的抗风能力也很强,应用十分广泛。淤纤维素下向焊在天然气管道焊接中的应用。纤维素下向焊的显著特点是根焊的适应性极强。纤维素下向焊的焊接工艺有很大的熔透能力,与此同时纤维素下向焊能很好的填充连接处间隙,焊缝背面成形也比较平整,而且气孔敏感性很小,极易形成质量很高的焊缝,在钢材为X70以下的薄壁大口径管道上主要应用的焊接工艺就是纤维素下向焊。纤维素下向焊要注意防止产生冷裂纹。因为纤维素下向焊的焊条熔敷金属扩散氢含量高,不易控制预热温度和层间温度。于天然气管道手工焊接的另一种工艺就是低氢下向焊。利用低氢下向焊工艺进行焊接的管道接口具有较好的抗冷裂纹性和冲击韧性,焊缝质量相对较高,在焊接天然气管道中比较重要的部件时应用较多。低氢下向焊工艺的缺点是进行焊接时熔化速度较慢,对从事焊接的工人技艺要求比较高,不易掌握焊接时机。低氢下向焊根焊的适应性相对于纤维素焊条要差一些,所以常被用于填充盖面等部位的焊接。

2半自动焊接技术及应用

半自动焊接技术是我国从美国引进的自保护半自动焊设备和工艺,引进后陆续应用于国内外的一些天然气管道施工中使用,技术日渐成熟,也是目前天然气管道施工中重要的焊接方法。半自动焊焊接工艺效率高、劳动强度低、质量好等优点,而且焊接工艺相对较简单,从事焊接的技术人员易学习掌握。缺点在于根焊时焊缝质量不能够得到保证,所以在天然气管道施工中的半自动焊接技术主要用于管道的填充和盖面焊道等方面。目前常见的主要有:淤Co2活性气体保护焊技术。半自动焊接技术Co2活性气体保护焊是一种高效、优质的天然气管道焊接技术。对根焊部位主要采用Stt半自动焊进行焊接,这种焊接通过控制基值和峰值电流及电压,熔滴过渡成型非常有利,焊接过程稳定,能够很好地解决飞溅问题及大口径管道根部焊环节单面焊双面成型的难题,而且在全位置单面焊双面成形的打底焊也同样有很好的效果。半自动焊中的Stt型Co2半自动下向焊技术工艺具有电弧稳定、飞溅少、速度快、韧性好等一系列的优点,但在进行Stt型Co2半自动下向焊时,需要有相应的防风措施,要求现场风速不能大于2m/s。于天然气管道焊接的自保护药芯焊丝半自动焊。所谓的自保护药芯焊丝半自动焊,就是把焊药填灌在管状焊丝的内部,不需要保护气体就可以进行的一种焊接技术。在冶金过程利用管状焊丝中所含合金元素及焊药中保护熔池,彻底清除熔池中氮所造成的不良影响,得到合格的焊缝。这种焊接工艺具有性能优良、熔敷效率高、环境适应能力强等一系列优点,加之焊接成本相对较低,而且焊接技术简单,焊接合格率高。这种焊接技术的缺点是焊根熔合不易,仅仅在填充和盖面时有所运用。

3自动焊技术及应用

天然气管道的自动焊就是指使用一定的工艺和技术使整个焊接过程实现自动化,常用的是机械方法和电气方法。自动焊技术焊接效率高、进行焊接工作的劳动强度较小,焊缝稳定可靠,质量可靠,进行焊接时几乎不受人为操作因素影响,所以在焊接大口径管道和厚壁管道时使用非常方便,发挥了极大的作用。但是全自动气体保护焊设备昂贵,后期修理、维护不易操作,根部焊接也有局限性,所以全自动气体保护焊并未大规模应用于天然气管道焊接。现阶段常用的自动焊技术主要有:淤实芯焊丝气体保护自动焊接。这种自动焊是在可熔实芯焊丝与被焊金属间形成电弧,强大的电流把焊丝熔化,并与母材相结合形成焊缝,从而实现管道焊接。这种自动焊接技术工艺易于掌握,广泛应用大口径、大壁厚的管道焊接领。但缺点是进行焊接时,需要有较高的焊接装备及控制系统,而且对现场的风力有一定的要求。于药芯焊丝自动焊接。药芯焊丝自动焊有两种类型,分别是药芯焊丝自保焊和药芯焊丝气保焊。这种自动焊的原理和实芯焊丝气体保护焊基本相同。区别在于,药芯焊丝熔敷的速度很快、焊接的接缝韧性好、在不同的场合适应性也不错。盂电阻闪光对焊。电阻闪光对焊是利用低电压和强电流,使得要焊接的连接管两管端在极短的时间内达到极高的温度,利用蒸发金属保护焊接区域,进而用顶锻压力使熔化的管端形成连接接头,达到焊接目的。电阻闪光焊接技术工艺、焊接效率很高,也能很好的适应不同的环境,焊接质量好。但是电阻闪光对焊设备庞大且昂贵、针对性强,对焊缝无法进行标准的无损检测。所以并未在天然气管道施工焊接中得到普及。

天然气管道焊接时的焊接质量、焊接效率和焊接技术水平与天然气管线建设的质量密切相关,鉴于天然气管线本身的特点,在进行管道焊接时,一定要结合现场的实际情况,正确的选择合适的焊接技术,保证焊缝质量,确保天然气管道的安全。对于新的天然气管道焊接技术,要严格按照相关的操作规范来进行。对出现的问题,要认真研究,及时总结、处理,坚决避免因操作失误而造成的损失。

参考文献

[1]陆文清,张扬军,蒋云峰.简谈天然气管道安装焊接技术的应用[J].民营科技,2008(4):35-36.

焊接技术的重要性篇4

关键词:专用焊接;转炉;技术;自动化

abstract:Chinaweldingareaoftheweldingprocesstorealizemechanization,automationasthestrategictarget,hasbeeninvarioussectorsofthedevelopmentofscienceandtechnologyintopractice,inthedevelopmentofautomationweldingproductionandprocesscontrolintelligent,researchanddevelopmentandweldingproductionlineandflexiblemanufacturingtechnology,thedevelopmentoftheapplicationofcomputeraideddesignandmanufacturingtechnologyandsoon,hasmadegoodprogress.inthispaper,thisasabriefintroductionof.

Keywords:specialwelding;theconverter;technology;automation

中图分类号:tU74文献标识码:a文章编号:

我国焊接设备行业形成于五十年代,目前,行业规模已发展到900家以上,产品种类包括交流弧焊机、直流弧焊机、自动、半自动弧焊机、电阻焊机、特种焊机及各类专用成套焊接设备、辅机具等45个系列、150余个品种、1000多个规格。

1.我国焊接技术的发展现状

近年来,国内各大钢厂均在积极进行技术改造,扩大生产规模,引进新设备,以适应钢铁形势的发展,120吨转炉就是其中之一。为此,机械制造业也加快步伐,推行先进的焊接新工艺,以适应转炉容量、参数和炉型的变化,满足转炉新材料的制造要求。与此同时,二氧化碳焊接设备也得到飞速的应用与发展。我公司应用二氧化碳焊接,已成功为莱钢永锋、陕西龙钢等单位制作了多套120吨转炉。下面着重介绍转炉关键部件的焊接技术与二氧化碳焊接工艺发展现状。

1.1转炉关键部件焊接工艺现状

120吨转炉的关键部件主要有炉体、托圈、炉底、水冷炉口等组成,水冷炉口一般为铸件,炉底一般为冲压件。由于炉体、托圈尺寸较大,受运输条件的限制,炉体、托圈一般分体制作,为焊接件。

1.1.1转炉炉体的焊接

炉壳立焊缝采用aUt0一eGw―CnC气电立焊机焊接。焊接时从下向上进行,焊前对焊缝预热,预热温度为100~150℃。根据不同的板厚选择工艺参数进行焊接,焊接工艺参数见表1。

表1气电立焊工艺参数

环形焊缝和角焊缝采用松下KRii350C02气体保护焊,多层多道焊。焊前对焊缝预热,预热温度为100~150℃;并且先焊大坡口,然后在焊缝背面用碳弧气刨清根,用砂轮机打磨后再焊小坡口。

1.1.2转炉托圈焊接

120t转炉是氧气顶吹转炉,托圈是三支点承重,内水冷箱体结构,全部为焊缝联接,托圈内径为Φ6870mm,断面箱形高2000mm,宽800mm,上下盖板厚100mm,腹板厚80mm,箱内筋板厚60mm,托圈箱体分剖分(一)(二)两半体制做,每段重40多吨(如图1),我们把托圈剖分(一)(二)的焊接变形的预防及控制做为重点攻关项目来控制。

图1转炉托圈

在构件组装时,要求点焊长度100mm~150mm,以防撕裂,施焊时,随时监测焊点变化。由于托圈腹板自由度大于翼板,所以采用工字钢i56作支撑加固,将此支撑上、下两层固定在腹板上,两层之间拉筋加固,间距1500mm,此方法有效地控制了箱体向心收缩引起的焊接变形。

由于托圈剖分为半圆箱体形结构,刚度大,板材厚,焊接变形较复杂,如果不采取合理的焊接顺序,产生焊接变形将难以修复。为此,我们采用了如下的焊接顺序。先焊一遍箱体内立筋板,由中间向两边焊,对称分段,反向跳焊。(如图2)

图2焊接顺序图

1.2二氧化碳焊接设备

Co2气体保护焊是一种高效、优质、低成本的焊接方法。国家早在“七五”期间就将此列入重点推广的技术项目之一。1977年天津焊接研究所在《Co2气体保护焊的应用》一书中指出,Co2焊与焊条电弧焊相比,可提高效率2~4倍,降低成本和节约电能50%以上。

1.2.1Co2焊接具有较高的熔化速度和熔化系数

1.Co2焊熔敷速度是3~5kg/h,是焊条的1~2.5倍,Co2焊采用细焊丝(φ0.8~φ1.6),有较大的电流。电流密度大(Co2焊100―300a/mm2,焊条10~25a/mm2)电弧热量集中,不需要为熔化药皮消耗能量,熔化系数比焊条大1~3倍,可提高工效1~2倍。

2.Co2焊采用小截面坡口形式,可使焊缝熔敷金属量减少,等于提高了焊接速度。

3.Co2焊无渣,无须清渣打磨,无需清坡口和换焊条,焊缝成形好,熔深大。Co2焊的辅助时间为焊条辅助时间的50%,由此提高工效0.3~0.8倍。

上述三项可得出Co2焊的工效与焊条电弧焊相比可提高工效倍数是2.02~3.88倍。

1.2.2Co2焊接具有较低的成本

1.Co2焊可以大幅度节约焊材,由于Co2焊采用小截面坡口,焊缝截面积可减少35~50%,可节约35~50%的填充焊丝。

2.Co2可节约大量电能,Co2焊机与硅整流弧焊机相比可节约用电平均达37%,与交流弧焊机相比可节约用电60%以上。

3.Co2生产效率高,减少了清渣和清根的工序,节省诸多辅助时间和辅助人工。

以上表明Co2焊与焊条电弧焊相比使焊接总成本降低50%以上。

1.2.3Co2焊接的质量问题

1.Co2焊缝中的氢含量降低,焊缝的抗裂性较好。Co2焊是一种低氢焊接方法,焊缝中扩散氢的含量远远低于碱性低氢型焊条,Co2焊对锈和水分不敏感,焊缝中产生气孔的倾向小于碱性低氢焊条,这也是Co2焊十分可贵的优点,是Co2焊的焊接接头质量可靠的主要原因。

2.采用专门牌号的焊丝增加焊缝金属的掺合金作用,改善焊缝的机械性能,众多压力容器制造单位经过大量的焊接工艺评定实验结果证明Co2焊缝具有良好的综合机械性能。

3.Co2焊的焊缝热影响小,焊接接头的变形小,提高了焊接接头承受有效载荷的能力,这是焊条电弧焊所不及的。

4.Co2焊缝成形好,表面缺陷少。一次探伤合格率高于焊条电弧焊,操作容易,焊工培训周期短。

2.焊接设备的发展趋势

2.1逆变式焊接电源所占比重将越来越大

逆变式焊接电源由于具有焊接性能好、动态反应速度快、动特性好、体积小、重量轻、效率高、焊接速度高、多功能、有利于实现焊接机械化、自动化和智能化的优点,已成为弧焊电源的发展方向。

2.2成套、专用焊接设备

成套专用焊接设备的开发、设计是一个国家技术水平的体现,因此无论从满足国民经济需要,还是我国电焊机事业的发展角度出发,我们都要加强这方面的工作。

我们还应注意到,用户会不断给专用成套设备提出更高的要求,我国的成套焊接设备制造企业不但要在提高技术、设计水平上做出努力,还要在企业质量管理、各种基础件、配套件的选用方面投入大功夫,争取在专用、成套焊接设备方面取得新的突破。

3.焊接自动化技术的展望

电子技术、计算机微电子技术和自动化技术的发展,推动了焊接自动化技术的发展。特别是数控技术、柔性制造技术和信息处理技术等单元技术的引入,促进了焊接自动化技术革命性的发展。

(1)焊接过程控制系统的智能化是焊接自动化的核心问题之一,也是我们未来开展研究的重要方向。我们应开展最佳控制方法方面的研究,包括线性和各种非线性控制。最具代表性的是焊接过程的模糊控制、神经网络控制,以及专家系统的研究。

(2)焊接柔性化技术也是我们着力研究的内容。在未来的研究中,我们将各种光、机、电技术与焊接技术有机结合,以实现焊接的精确化和柔性化。用微电子技术改造传统焊接工艺装备,是提高焊接自动化水平的根本途径。将数控技术配以各类焊接机械设备,以提高其柔性化水平,是我们当前的一个研究方向;另外,焊接机器人与专家系统的结合,实现自动路径规划、自动校正轨迹、自动控制熔深等功能,是我们近期研究的重点。

(3)焊接控制系统的集成是人与技术的集成和焊接技术与信息技术的集成。集成系统中信息流和物质流是其重要的组成部分,促进其有机地结合,可大大降低信息量和实时控制的要求。注意发挥人在控制和临机处理的响应和判断能力,建立人机一体的友好界面,使人和自动系统和谐统一,是集成系统的不可低估的因素。

(4)提高焊接电源的可靠性、质量稳定性和控制以及优良的动感性,也是我们着重研究的课题。开发研制具有调节电弧运动、送丝和焊枪姿态,能探测焊缝坡口、温度场、熔池状态、熔透情况,适时提供焊接规范参数的高性能焊机,并应积极开发焊接过程的计算机模拟技术。使焊接技术由“技艺”向“科学”演变是实现焊接自动化的一个重要方面。本世纪头十年,将是焊接行业飞速发展的有利时期。我们广大焊接工作者任重而道远,务必树立知难而上的决心。抓住机遇,为我国焊接自动化水平的提高而努力奋斗。

总结

在我国专用焊接设备与技术进步的过程中还需要加快对国外先进制造技术的引进步伐,把重点放在消化吸收与发展创新上,立足于发展适合我国国情的焊接自动化技术。相信在今后激烈的市场竞争中,我国焊接界通过重视先进制造技术的发展,并为之不懈努力,专用焊接设备的发展一定能再创辉煌。

参考文献

[1]李刘合,张彦华;激光-电弧复合热源焊接[J];焊接技术;2003年02期

[2]杨惠宁,潘瑞娟;金刚石圆锯片激光焊接的研究[J];金刚石与磨料磨具工程;2002年02期

[3]马志华;大型转炉托圈焊接工艺分析[J];重工与起重技术;2009年03期

焊接技术的重要性篇5

二氧化碳焊接技术发展与金属结构制造状况密不可分。上世纪50年代初期,二氧化碳气保焊技术一经开发,就应用于金属结构制造,并伴随着焊接结构设计、制造技术水平的不断提高,逐渐成为金属结构焊接的主要方法。其高效、优质、自动化的技术特点,具有良好的应用条件,并且极大地推动了金属结构焊接技术的发展,在焊接技术发展史上书写了辉煌的一页。

2、二氧化碳气保焊技术的主要特点

通过多年研究与应用实践,二氧化碳气保焊技术的主要特点概述为以下几点:

2.1 生产效率高

二氧化碳气保焊能够实现较大的焊接电流,采用ø:1.2mm实心焊丝,焊接电流最大可达到350a,ø:1.6mm药芯焊丝的焊接电流可达到500a,电流密度通常为100-300a/mm2,电弧热量集中、焊丝熔化速度快、熔敷系数高,而且保持连续焊接,从而提高焊接生产效率,二氧化碳气保焊可比手工电弧焊提高工作效率1-5倍。

2.2 焊接质量好

二氧化碳气保焊的自动化程度高,电弧自身调节作用强,焊接过程中电弧稳定性好,人为干扰因素少。电弧可持续燃烧,整条接头少,金属组织致密,焊接质量稳定。同时二氧化碳气保焊电弧气氛氧化性强,对焊件表面油,锈敏感性低,焊缝金属扩散氢含量低,大大提高了焊接头力学性能和抗裂性能。

2.3 二氧化碳气保焊技术改良了焊接接头形式

二氧化碳气保焊技术改良了焊接接头形式和焊接坡口形式。二氧化碳气保焊接的焊接熔深较大,在t形接头形式设计时,当熔深增大时,在保证焊缝金属承载面积保持不变时,焊脚尺寸往往可以减少。在对按接头设计时,二氧化碳气保焊与手工电弧焊相比,焊接坡口角度一般可以减少5°-10°,当采用单边V形坡口对接焊时,坡口角度为45°,采用锥形喷嘴,就可以使根部焊透,并使焊缝熔合很好,从而有效地减少填充金属量,减少焊接作业时间和焊接材料消耗。

2.4 能源利用率高

二氧化碳气保焊的电弧密度高,电弧能量大多有效地用于焊接材料熔化及母材金属的熔合,获得每千克熔敷金属的耗电量较低,ø:1.2mm-ø:1.6mm实心焊丝约为1.8-2.0为kwh/kg;ø:1.2mm-ø:2,4mm药芯焊丝为2.1-2.4Kwh/kg,能源利用率高,因此,二氧化碳气保焊推广应用有利于节省能源,可比手工电弧焊节电50%-60%,从而减少了能源浪费。

2.5 焊接规范参数调节范围大

二氧化碳气保焊同一规格尺寸的焊丝可采用焊接规范参数变化范围较大,如Ø1.2mm实心焊丝,其焊接电流调节范围可以为60-350a,从而使二氧化碳焊接设备、材料具备较好的适应金属结构产品的变化能力,减少了储备焊接材料规格和重量,有利干焊接质量控制和管理。

3、二氧化碳气保焊技术应用状况

二氧化碳气保焊技术在大型金属结构制造企业中广泛使用,在中、小型企业中局部使用,制造的金属结构种类大大增加。

随着机械行业骨干企业焊接技术改造,二氧化碳气保焊技术在大型金属结构制造中广泛采用。如:太原重型机械(集团)有限公司、第一重型机械有限公司、大连重工集团有限公司等企业,二氧化碳气保焊完成的焊接金属结构已占其重量的50%-80%,在大型金属结构企业中发挥着不可替代的骨干作用。

在中、小型企业中推广应用与所在地区、所处行业、产品结构特点等因素有较大关系,在焊接技术较为发达的地区、焊接结构较多的企业、技术含量较高的产品,二氧化碳气保焊推广使用情况较好。虽然中、小企业中应用情况差别较大,但通过多年宣传、引导,二氧化碳气保焊技术已逐渐成为企业技术改造中主要选择的焊接技术装备。

3.1 二氧化碳气保焊设备应用状况

在二氧化碳气保焊技术推广的起步阶段,主要由国外进口焊接设备或引进国外技术设备生产,引进焊机有松下电器公司、日本大坂变压器、美国米勒公司等品牌机型;国内主要有天津电焊机厂、唐山电子设备厂、牡丹江无线电六厂、上海电焊机厂、四平电焊机厂等企业,焊机额定电流大多500a。因为国内企业生产的焊机功能和生产规模与国外厂商有一定的差距,所以大型企业在技术改造中大部分选用价格较高、功能好的进口设备。

在二氧化碳气保焊技术推广的发展阶段,经过焊接设备制造厂商的合资或独资开发,额定电流350a、500a的二氧化碳气保焊半自动焊机,基本实现国内组装制造,其中北京时代集团公司、天津电焊机厂、唐山松下产业机器有限公司等一批企业生产的主要机型,都具有较好使用功能和可靠性,并陆续在金属结构企业中成为主要选择的二氧化碳气保焊机型,占有一定数量和市场份额,从而改变了大批量进口设备的状况。

目前也有一些金属结构企业使用一批二氧化碳气保焊专业设备及焊接机器人工作站,但总体规模和应用数量比较小。这既与金属结构企业中成为主要选择的二氧化碳气保焊机型,占有一定数量和市场份额,从而改变了大批量进口设备的状况。

目前也有一些金属结构企业使用一批二氧化碳气保焊专业设备及焊接机器人工作站,但总体规模和应用数量比较小。这既与金属结构产品的生产规模及加工精度有直接联系,也与专用设备设计、制造水平有关。二氧化碳气保焊专用设备多用于金属零件形状简单、规格相近,生产批量较大的金属结构产品生产线,如汽车、摩托等产品零件的焊接。

3.2 二氧化碳气保焊焊接材料的应用状况

80年代初至80年代中期,我国针对当时Q235、16mn等主要结构钢生产的490mpa级二氧化碳气保焊实心焊丝,在引进设备、引进技术、开发试制的努力中,已实现部分自给,但是处于供不应求状态,而且药芯焊丝基本处于开发研制、试生产状态,大部分二氧化碳气保焊焊按材料主要依靠从欧美、日本等国家进口。国产焊接材料与进口焊接材料相比在工艺性能、力学性能方面存在着一定差距。

目前我国二氧化碳气保焊实心焊丝已经形成一定生产规模,产量和质量也有很大提高。针对Q235、Q345及16mn等结构钢的二氧化碳气保焊焊丝,能够满足金属结构制造的要求,使用最多的实心焊丝主要有eR49-l(H08mn2Sia)及eR50-6等牌号,规格主要有Ø1.2mm、ø:1.6mm两种,国内生产状态处于供大于求的状况,但国内备焊丝生产厂家的质量也有较大差别,特别是在焊丝化学成分稳定性、焊丝表面镀铜质量、焊丝刚度等主要参数方面仍有明显差异,焊丝质量优良的厂家有天津电焊条厂、上海电力电焊条厂、四川大西洋电焊条厂等厂家。

3.3 金属结构行业二氧化碳气保焊技术推广的人才状况

焊接技术的重要性篇6

关键词:现代焊接技术;发展;现状;展望

中图分类号:p755.1文献标识码:a

焊接技术是在高温或高压条件下,使用焊接材料(焊条或焊丝)将两块或两块以上母材(待焊接的工件)连接成一个整体的操作方法。焊接技术作为制造业中传统的基础工艺和技术,虽应用到工业中的历史并不长,但发展却非常迅速。短短几十年间,焊接技术已被广泛应用于航空航天、汽车、桥梁、高层建筑、造船以及海洋钻探等许多重要工业领域,并且为促进工业经济发展做出了重要贡献,使得焊接已经成为一个重要的制造技术和材料科学的重要专业学科。

一、焊接技术发展的现状

(一)焊接生产率是推动焊接技术发展的重要驱动力

连接简单的构件以及制造毛坯是最初的焊接方式,随着技术的不断更新,焊接已成为制造业中一项不可代替的基础工艺以及生产精确尺寸制成品的生产手段。目前,焊接技术最需要的就是有效的保证焊接产品质量的稳定性及提高劳动生产效率。提高生产率的途径有两种:一是提高焊接熔敷率,焊条电弧焊中的铁粉焊条、重力焊条、躺焊条等工艺以及埋弧焊中的多丝焊、热丝焊均属此类,其效果显著。二是减少坡口断面及熔敷金属量,其中窄间隙焊接效果最显著。窄间隙焊接采用气体保护焊为基础,利用单丝、双丝或三丝进行焊接。无论接头厚度如何,均可采用对接形式,所需熔敷金属量会数倍、数十倍地降低,从而大大提高生产率。窄间隙焊接的关键是保证两侧熔透和电弧中心自动跟踪处于坡口中心线上。为解决这两个问题,世界各国开发出多种不同方案,因而出现了种类多样的窄间隙焊接法。如果能够在以下方面取得进展,焊接方法的先进性会得到更高的评价:提高熔敷速度,减少生产周期,提高过程控制水平,减少返修率,减少接头准备时间,避免焊工在有害区域工作,减小焊缝尺寸,减少焊后操作,改进操作系数,降低潜在的安全风险,简化设备设置,高效快速优质焊接方法将成为主力军。

(二)焊接过程自动化、智能化

国外焊接技术发展速度快,国内焊接技术发展存在较大差距。工业发达国家焊接机械化、自动化率水平由1996年的19.6%增加到2008年的70-80%以上,目前焊接技术与现代制造技术、焊接科学与工程、焊接自动化与焊接机器人不断融合,焊接技术已经向自动化,智能化方向发展。焊接过程自动化,智能化以提高焊接质量稳定性,推进焊接自动化进程,学习、吸收、借鉴、提高是十分重要的环节,应加强现有工艺的学习和提高。但是我国目前的工艺大多数都为手工操作,存在一定的局限性。目前我国焊接的自动化率还不到30%,相对而言,焊接生产的机械化以及自动化水平非常低,但是如果能够在学习的基础上利用现代的自动化技术进行嫁接改造,往往可以实现一定的突破。20世纪90年代以来,我国逐渐在各个行业推广气体保护焊来取代传统的手工电弧焊,现在已经取得了一定的效果。目前我国在焊接生产自动化、过程控制智能化、研究和开发焊接生产线以及柔性制造技术、发展应用计算机辅助设计以及制造技术等方面取得了很大的进步。计算机技术、控制理论、人工智能、电子技术及机器人技术的发展为焊接过程自动化提供了十分有利的技术基础,并已渗透到焊接各领域中,取得了很多成果,焊接过程自动化已成为焊接技术的生长点之一。焊接过程控制系统的智能化是焊接自动化的核心问题之一,也是未来开展研究的重要方向。

(三)热源的研究和开发

热源是可提供热能以实现基本焊接过程的能源,热源是运动的。在焊接过程中,热源以点线面等传热方式来传导热能。焊接热源具有如下特点:能量密度高度集中、快速实现焊接过程、保证高质量的焊缝和最小的焊接热影响区。当前,焊接热源已十分丰厚,如电弧焊、化学热、电阻热、高频感应热、摩擦热、电子束等离子焰、激光束等。焊接热源的研讨与开拓始终在延续,焊接新热源的开发将推动焊接工艺的发展,促进新的焊接方法的产生。每出现一种新热源,就伴随一批新的焊接方法出现。焊接工艺已成功地利用各种热源形成相应的焊接方法,今后的发展将从改善现有热源,使它更为有用、便利、经济合用和开发。

(四)节能技术

随着社会的发展,节约能源已经成为各行各业首要考虑的问题,焊接行业也不例外。焊接产业发展节能、环保的焊接已成为必然的趋势;同时,高效焊接工艺的应用,对提高焊接效率,节约能源消耗意义很大。为了顺应节约环保的要求,手弧焊机以及普通的晶闸管焊机正在逐步被高效节能并能自动调节参数的智能型逆变焊接取代,同时为了适应当今淡化操作技能的趋势,焊接的操作也逐渐趋向智能化简单化。

二、现代焊接技术的任务和展望

(一)寻求解决制约焊接新材料、新结构的应用途径

在研究开发新材料的焊接技术时,应从材料的研制与焊接技术两个方面着手。由于先进的材料在实际焊接过程中并不一定容易焊接,因此造成材料的高性能和良好的焊接性要求之间的矛盾,而往往这又是难以协调的,所以要把矛盾的主要方面指向材料的研制,并且在研制高性能材料时,要把焊接性纳入材料高性能的技术指标。因此,寻求解决制约焊接新材料、新结构的途径时,焊接工程师必须和材料工程师进行合作,使新型材料的焊接质量更好、成本更低、生产效率更高、焊接产品更受市场欢迎。

(二)提高焊接产品质量,使焊接不再成为制造过程中的“薄弱环节”

在实际焊接工程中,形成了焊接是制造过程中的“薄弱环节”这一固化思维,我们必须消除这种老化思维的影响,提高焊接质量。为此,焊接界将进行长期的研究工作,开发新的焊接工艺,进一步提高焊接质量控制的智能化技术水平,使焊缝达到“零缺陷”,并提出实现这一目标的可行性方法。

(三)改善焊接能效,提高生产效率,降低焊接成本

新材料的研制将向着高效能、高性能和有益于保护环境的方向发展,焊接界将研究出更佳的焊接工艺,研制出更优良的焊接电源并开发出相应的控制技术,提高自动化程度,扩大机器人的应用范围;减少废品率和返修率,降低焊接成本,提高生产效率,彻底消除“焊接是制造工序障碍”的观念。

(四)全面改善焊接生产环境,提升焊接行业的整体形象,吸引高素质人才的加盟

新材料的研制、先进焊接工艺的应用不仅降低了材料与能源的消耗,而且将焊接对自然资源的影响降到最低程度,通过消除烟尘、噪音和辐射,使焊接工作环境更具吸引力;新型焊接技术的应用、焊接自动化及机器人的发展和多种高新技术在焊接领域中的应用,必将改变焊接行业的负面影响,吸引更多的年轻科技工作者,保证焊接技术领域的人才需求。

三、结语

焊接技术进步的需求是在经济和社会等多方面因素影响下形成的,这显著地促进了高效材料和设备的开发以及自动化技术的应用,规模生产和专业化生产开创新局面,高效快速优质焊接方法成为主力军,一个明显的趋势是在传统焊接过程中使用更先进的控制和监测技术。焊接新方法和先进材料技术的引入,提高了焊接技术的水平,同时也提出了新的挑战。国内外专家认为,焊接作为一种精确、可靠、低成本并采用高科技连接材料的方法,在未来的数十年内仍旧是制造业的重要加工工艺。我们广大焊接工作者任重而道远,务必树立知难而上的决心,抓住机遇,为我国焊接自动化水平的提高而努力奋斗。

参考文献:

[1]李洪涛.浅析中国焊接技术的现状与发展[J].黑龙江科技信息,2009(05).

[2]陈字刚.现代焊接技术的应用与发展[J].大连铁道学院学报,1987年01期.

焊接技术的重要性篇7

关键词:船舶制造;焊接技术;质量;对策

中图分类号:U66文献标识码:a文章编号:

在船舶制造过程中,其中的一个关键技术为焊接技术,焊接质量是衡量船只质量的重要指标。自从进入21世纪以来,随着海洋工程的大力发展,新型船舶和新型材料的应用迎来了更大的挑战。在船舶制造中,焊接技术有着非常重要的地位,属于一类技术性、专业性的系统工程。文章探讨了国内船舶焊接技术中影响焊接质量的因素,提出了相应的解决措施。

1、影响船舶焊接质量缺陷的因素和解决措施

国内船舶制造过程中,焊接工艺仍然存在一定的质量问题,总结影响焊接质量缺陷的影响因素,并提出相应的解决措施可以提升我国船舶建造效率。船舶焊接过程中几种焊接质量缺陷如图1所示。

图1船舶焊接中的各种质量缺陷

1.1气孔

所谓气孔,是指传播焊接时,熔池内的气泡没有及时的凝固之前溢出而形成的空穴。通常情况下,在焊接过程中形成气孔的因素主要有:坡口的边缘因为存在水分、油污、锈迹等,不够干净;未能以正常的程序对焊条或焊剂进行烘焙;焊芯锈蚀或者药皮变质、剥落等。除此之外,低氢型焊条电弧过长,自动焊、埋弧焊电压过高,过快的焊接速度等因素也会产生气孔。在船舶制造中,气孔的存在使焊缝的有效截面相对减小,甚至会使焊缝的强度降低,损害焊缝金属的致密性。为了避免气孔的出现,在实际操作过程中,防止气孔出现的方法有;将坡口边缘的水分、油污、锈迹清理干净;选择合适的焊接电流和焊接速度;焊接材料要按照相关规定进行保管、清理、烘焙,坚决不可以将变质的焊条应用在船舶制造中。倘若发现焊条变质、药皮脱落或者焊芯锈蚀的情形,需要在一定的限度内控制其使用范围。在进行埋弧焊时,需要选用较为合适焊接的工艺参数,特别是进行薄板自动焊时,要对焊接速度进行相应的调整。

1.2夹渣

夹渣指的是有溶渣残留在焊缝中,可降低焊缝的强度和致密性。形成夹渣的因素有焊缝边缘有氧割、碳弧气刨残留、坡口角度过小、焊接电流过小、焊接速度过快等。除此之外,在碱性焊条的使用过程中,电弧过长或极性不正确也会产生夹渣;在酸性焊条使用过程中,若运条不当或电流过小,将可能产生“糊渣”。防止夹渣形成的措施有:选取恰当的坡口尺寸,同时要认真清洗坡口边缘;确保运条的摆动合适。在进行多层焊时,还需仔细观察坡口两侧融化状况,并要将每个焊层的焊渣认真地清理。最后,应该彻底清除焊渣后再进行封底。

1.3咬边

咬边是指有凹陷留在焊缝边缘,这就在一定程度上减小了母材接头的工作截面。形成咬边的因素有:焊接电流过大、运动速度过快、电弧拉的过长、焊条角度不适当等。埋弧焊过快的焊接速度或不平的焊机轨道等因素,均会对焊机深度产生不同程度的融化,倘若填充金属不及时或填充不满时均会形成咬边。由于应力常常在咬边的地方较为集中,因此在重要的受动载荷结构,或者其他重要结构中,均会限制咬边深度,不允许存在咬边。具体的预防咬边措施有:埋弧焊的工艺参数要进行恰当的设置,尤其焊接速度不可设置的过高,同时焊机轨道要保持平整;选取适合的运条手法和焊接电流,并注意控制焊条角度和电弧长度。

1.4未熔合、未焊透

未熔合是指焊缝金属和焊件之间,或者是焊缝层之间出现了局部未熔透的情况;未焊透指的是焊接时并没有完全将接头的根部熔透。这种焊接质量缺陷会产生较为严重的后果,使焊缝出现间断或者突变,甚至使焊缝强度大大降低,形成裂纹。因此,未熔合、未焊透这类焊接质量缺陷坚决不能出现在船体的重要结构。产生这些质量缺陷的因素有:电弧过长、电流过小、焊接速度过快、钝边过厚、焊条直径过大、焊件装配的间隙或坡口角度过小等。其预防措施有:将坡口表层的氧化皮和油污清除干净,选择恰当的焊接电流、焊接速度、坡口尺寸,运条的摆动要保持适当,同时对坡口两侧的熔合状况进行密切的观察。

1.5焊接裂纹

在船舶制造过程中,出现焊接裂纹将会产生更为严重的后果,焊接裂纹会破坏众多的结构。因此一定要采取相应的措施预防焊接裂纹的发生,同时在焊接完毕后,需及时进行全面地检查,及时修补已经发现的裂纹,直至彻底的清除裂纹。

2、焊接缺陷对焊接强度的影响

在船舶制造的焊接过程中,由于技术缺陷而产生的焊接缺陷会在一定程度上影响结构强度。由于焊接接缝处受到的应力较多,而焊接缺陷常常是在焊接接缝处发生,这就在很大程度上会对结构产生威胁,降低焊接强度,影响产品质量。

船舶制造中若发生了焊接缺陷,均会对结构产生不同程度的影响。同样,对结构静载的破坏也如此,通常情况下,材料的破坏形式多为塑性断裂。而焊接缺陷的出现,会使结构强度相应的降低。由于焊接缺陷而降低的焊接强度,和缺陷减小的承载面积的比例基本一样。有标准表明,除去非常重要的结构部位,焊接缝中允许出现少量气孔,需要注意的是这些气孔的必须为不连续、小面积,且气孔总量不可超过工作界面的5%,否则将会影响接缝处的抗拉强度,同时也会使金属的机械性能降低。为了避免对焊接强度产生影响,船舶制造的焊接过程还需减少气孔的形成,尤其是要杜绝焊缝表面气孔的形成。夹渣对结构抗拉强度的影响与夹渣物的截面积成比例,但是对屈服强度的影响不大。单个间断的夹渣和相同形状尺寸的气孔引起的强度危害基本类似;但是细小的、直线排列,且排列方向和受力相互垂直的连续夹渣,产生的焊接强度危害较大。而未透和未熔合产生的强度危害比夹渣和气孔更大,在一定条件下,这类缺陷将可能引发焊接部位出现脆性断裂。为了能够解决船舶制造中焊接缺陷引起的质量强度问题,还需在制造过程中减小缺陷的发生率,如文章中第一部分所讲,从焊接时的各个细小环节做起,提高焊接技术水平,进而促进我国船舶制造业加快发展步伐,为我国在海洋领域的发展提供先进的基础设备。

结束语

在船舶制造中,焊接质量的好坏直接影响着船舶质量。分析国内焊接技术和焊接质量存在的问题及影响因素,对我国今后船舶焊接技术的发展提供相应的指导意义,深刻认识焊接缺陷对焊接强度的影响。在解决当前焊接质量影响因素的基础上,以国际先进技术为引导方向,使我国的船舶制造焊接技术得到快速的发展。

参考文献

[1]马晓丽,华学明,沈甘迪,王静,吴毅雄.高效弧焊设备与方法在船舶制造中的应用现状[J].焊接技术.2008(1).

[2]陈飞.激光焊接技术在船舶制造中的应用与前景[J].造船技术.2011(5).

[3]王伟伟,司海恩,王学胜,刘洪花,罗智琴.DY30焊剂在船舶制造高效焊接技术中的应用[J].焊接.2012(2).

焊接技术的重要性篇8

摘要:近年来,我国国民经济发展水平不断提高,金属压力容器行业也得到了快速发展,新的经济发展形势对压力容器的质量提出了更高的要求。焊接技术在压力容器制造的过程中发挥着重要的作用,能够有效的提高压力容器的质量,满足经济发展的要求。为了改善我国压力容器制造技术落后的情况,相关制造单位在不断的引进先进技术,提高压力容器制造的效率和质量。本文主要对压力容器制造过程中焊接技术的应用进行了分析,研究提高压力容器制造水平的新技术。

关键词:压力容器;焊接技术;应用

1压力容器焊接技术概述

焊接技术就是在高温高压的外部环境作用下,通过焊接材料的运用将母料结合在一起的工作手法,在工业发展中有着非常广泛的应用。焊接技术能够有效的保证压力容器的密闭性和承压能力,实现大型化的压力容器制造。在压力容器的制造过程中,焊接工作占据着很重要的地位,焊接的工作量占据总工作量的41%左右,在大型压力容器中焊接工作量高达51%。目前,我国的焊接技术多种多样,对于不同的压力容器,需选择与之相应的焊接技术,以保证焊接质量能够满足生产作业的要求。

焊接技术在工业发展占据着重要地位,在压力容器的制造过程中应严格注意对焊接质量的控制,若焊接质量过低,可能会导致压力容器无法承载相应的压力,发生液体的泄露或者气体爆炸,将带来十分恶劣的影响,严重的危害人民群众的生命财产安全,焊接技术对压力容器的质量有决定性的影响。

2压力容器焊接技术的应用研究

2.1窄间隙埋弧焊技术

窄间隙埋弧焊技术主要应用于厚板焊接的领域,对于厚度超过100mm的母材焊接具有独特的优势,在压力容器的制造得到了越来越广泛的应用。窄间隙埋弧焊技术焊接材料的利用效率更高,能够有效的减少材料的使用量,在较短的时间内实现有效焊接。这种技术在焊接的过程中承受的应力小,出现变形的机率相对较低,与普通的宽坡口埋弧焊技术相比,具有低成本、高效率、高质量的优势。窄间隙埋弧焊技术在我国焊接领域已经发展的相对成熟,经过大量的实践表明,该项技术能够有效的提高压力容器的焊接质量,保证其在生产使用过程中的安全性能。

2.2接管自动焊接技术

(1)接管与筒体自动焊接。随着科学技术水平的不断提高,工业生产不断的朝着机械化、数字化方向发展,自动焊接技术应用不能能够提高焊接工作的效率,也能够充分保障压力容器的焊接质量。接管与筒体的自动焊接,主要是通过马鞍形埋弧自动焊机实现。它能够根据接管内径与四连杆夹紧装置,输入相应的机械参数之后,机械设备按照一定的数学模型进行运作,实现自动化、机械化的焊接。马鞍形埋弧自动焊机还能够根据不同的焊接位置,进行多层连续焊接,实现内、外马鞍的自动焊接。同时该设备还具有断点记忆的功能,在焊接作业的过程中能够实现机械设备的自动复位。

(2)接管与封头自动焊接。在进行接管与封头自动焊接之前,要对自动焊机设备进行自动定心,通过设备自身的数据输入和运作,确定中心线的位置。自动定心相比于人工定心来说,不仅能够提高定心工作的效率,还能够有效的保证定心的准确程度。该项设备在焊接的过程,实现了对焊接工作的自动跟踪,通过输入相关的参数,对焊接部位进行有规划的自动焊接,有效的提高了压力容器的焊接质量。

(3)弯管内壁堆焊技术。由于工作环境的需要,某些压力容器的内壁要进行防腐蚀层的焊接,对于压力容器的直管部位,焊接相对比较容易,而弯管内壁由于具有特殊性,在内壁部位存在相应的角度,增加了焊接工作的难度。对于不同角度的弯管,根据其内壁的实际情况,需采用不同的焊接技术,目前我国对于弯管内壁的堆焊技术研究已经逐渐成熟。

1)30°弯管内壁堆焊。30°弯管的堆焊是通过借助焊机自身的五轴协调运作,根据预设的数学模型,焊机三轴运动进行自动焊接。在焊接的过程中,工件运作与焊机的摇摆幅度相协调,保持运行速度的稳定不变。每当焊接完成一圈之后,需要对摆角位置进行变动,在移动焊机之后重新进行自动定位。在内壁堆焊的过程中,需注意对焊机摇摆幅度的控制,一般情况下,摇摆幅度由小到大进行调整,焊机工作进入收尾部分是,再次将幅度调小,保证内壁焊接的结构和层次。在弯管内壁堆焊时,需应用数学模型对所需的参数进行计算。尽量选用具有自动追踪和断点记忆功能的焊机,其机械设备能够自动复位,保证焊接过程的顺利进行。

2)90°弯管内壁堆焊。90°弯管内壁堆焊的施工技术难度较大,在过去技术水平相对落后的情况下,是仿照30°弯管的施工操作流程进行焊接。因此,在进行90°弯管堆焊之前,需将弯管切割成三部分,依次进行防腐层焊接之后,再将弯管连接在一起,这样的堆焊方式不仅操作复杂,过程繁琐,焊接的效率也十分低下,在焊接过程中也容易存在安全隐患。如今,已经研制出专门用于90°弯管内壁堆焊的焊接设备,主要是运用弯管母线的纵向结构,通过二维变位机对焊接点进行旋转焊接。这种焊接方式大大提高到了压力容器内壁焊接的效率与焊接质量。

(4)激光复合焊接。激光复合焊接是近几年发展起来的新型焊接技术,这种焊接技术逐渐取代了对钨极填丝氩弧焊技术。钨极填丝氩弧焊技术的焊接质量较为稳定,在焊接的过程中无焊接材料飞溅的现象,接头性能良好,一度得到广泛应用,但是这种焊接技术的工作效率低下,在特定的施工环境中焊接质量不能得到有效的控制,制约了压力容器质量的提高。激光复合焊技术通过激光器的使用,具有焊接效率高、承受的热应力较小,不易发生焊接形变等优点,能够保证压力容器焊接外部的美观,提高焊接质量。同时,激光复合焊接技术操作简便,焊接的返工率很低,保证了压力容器的安全性能。

3结束语

综上所述,压力容器在现代工业建设的过程中发挥着重要的作用,提高压力容器的质量能够有效的促进工业生产的安全。近年来,随着科学技术水平的不断发展和新技术的引进,我国的焊接技术的水准不断提高,焊接技术不断向数字化、机械化、自动化的方向发展,为大型压力容器的制造提供了技术支持。通过新型焊接技术的应用,有效的提高了压力容器的质量,对我国工业制造的发展有着积极的促进作用。

参考文献:

焊接技术的重要性篇9

关键词:压力容器焊接自动化前景展望

引言:

压力容器在石油化工、能源工业、科研和军工领域等各个方面都有着重要的作用。压力容器的内部或者外部要承受来自气体或者液体的压力,需要较高的密封性来保证其使用安全,这样就对压力容器的焊接技术提出了高水平的需求。压力容器焊接自动化技术不仅可以提高焊接质量、减少事故发生,还可以提高人员利用率、改善劳动条件,在压力容器焊接工作中的应用有着十分重要的意义。

一、压力容器以及焊接自动化技术的简介

()一压力容器

压力容器一般泛指在工业生产中用于完成反应、传质、传热、分离和储存等生产工艺过程,并能承受压力载荷(内力、外力)的密闭容器,主要有圆柱形,也有球形或其他形状。随着化工和石油化工等工业的发展,压力容器的工作温度范围越来越宽,容量不断增大,有些还要求耐介质腐蚀。为了保证压力容器在使用过程中的安全性,根据压力容器的不同分类做出了等级划分,对于危险程度较大的压力容器提出了特殊要求。

压力容器在制造过程中要经历很多工序,其中焊接是非常重要的工序之一。对于不同的焊接工艺有不同的焊接方法,要根据材质、牌号、化学成分等具体情况来确定,之后再根据焊接方法制定相应的工艺参数。由于压力容器造成事故后危害十分严重,所以要有严格的安装检验要求,在制造、修理、安装和改造时,需要加强焊接管理,提高焊接质量并按规范要求进行热处理和探伤,同时加强材料管理,避免采用有缺陷的材料或用错钢材、焊接材料。

(二)焊接自动化技术

焊接是通过加热、加压,或两者并用,使两工件产生原子间结合的加工工艺和联接方式。焊接技术的自动化程度已经成为了衡量现代国家科学技术和工业发展水平的重要标志之一。焊接自动化是采用具有自动控制,能自动调节、检测、加工的机器设备、仪表,按照规定的程序或指令自动进行作业的技术措施。其目的在于增加产量、提高质量、降低成本和劳动强度、保障生产安全等。应用于现代的自动化技术主要是依靠计算机控制技术来实现的。焊接自动化技术是焊接结构生产技术未来发展的一个重要方向。现代焊接自动化技术将在高性能的微机波控焊接电源基础上发展智能化焊接设备,在现有的基础上发展柔性焊接工作站和焊接生产线,最终实现焊接计算机集成制造系统。焊接自动化系统主要分为电弧焊自动化系统、电阻点焊自动化系统、微型计算机控制的焊接自动化系统和焊接机器人。

二、压力容器焊接自动化技术的现状

压力容器焊接自动化技术主要受到硬件因素和软件因素两方面的影响。硬件因素是指压力容器自动焊接的相关设备;软件因素除了技术人员的素质外还包括将计算机技术、电子技术、自动控制技术以及信息技术等和压力容器焊接领域有机结合而形成的焊接技术、人工智能技术及专家系统等.。

(一)当前压力容器焊接自动化的设备

(1)逆变焊机

逆变焊机是目前国内外公认的最先进的焊机,是一种具有优良的焊接性能和电气性能的新技术和新工艺机具,可对压力容器的多位置使用不同的焊接方法进行焊接。逆变焊机在国外的应用程度较高,美国、日本已达到接近三分之一的程度。我国经过对逆变焊机的研究,目前已形成了三代产品,逆变频率最高在20~30kHz之间。由于逆变焊机的独特优势,发展前景十分良好。

(2)全位置自动焊机

我国曾经从瑞典等国家引进过全位置自动焊机,在国内一些锅炉厂进行使用。经过近年来的研究发展,我国自行研制出了多头埋弧自动焊机和多头maG自动专用焊机,国内的许多锅炉厂已经使用上了国产的专用成套焊接设备。

(3)现代焊接机器人

现代焊接机器人具有效率高、质量稳定等优点,在压力容器焊接领域受到高度重视。焊接机器人采用离线CaD仿真编程,用计算机进行控制,大多是柔性自动化工作站或焊接生产线。随着科技的进步,焊接机器人在我国逐步的广泛应用,成为了未来焊接设备的发展方向。

(二)当前压力容器焊接自动化的技术

(2)焊接方法

对不同材质和不同厚度的压力容器进行焊接需要用到不同的焊接方法,常用的方法主要有气体保护焊、埋弧焊、堆焊和窄间隙焊:

气体保护焊电弧在保护气流的压缩下热量集中,焊接速度较快,熔池较小,热影响区窄,焊件焊后变形小,操作方便,有利于焊接过程的机械化和自动化;埋弧焊有焊接质量稳定、焊接生产率高、无弧光及烟尘很少等优点,使其成为压力容器、管段制造、箱型梁柱等重要钢结构制作中的主要焊接方法;堆焊技术有效的发挥了对焊层的作用,是一种优质、高效、低稀释率的堆焊技术;窄间隙焊接技术已成为现代工业生产中厚板结构焊接的首选技术,其巨大的技术和经济优势决定了它是今后厚板焊接技术发展的主要方向之一。

(2)焊接控制

焊接自动控制技术在国际范围内发展迅速,成为了现代焊接自动化的主要标志之一。已出现的一些现代高精度的自动控制系统,如最优控制系统、自适应控制系统及自学习控制系统等,在工业生产中得到了一定程度的应用。其中焊缝跟踪是焊接自动化控制系统的一个重要组成部分,对实现压力容器生产过程的焊接自动化意义深远。

三、压力容器焊接自动化技术的未来发展

我国压力容器焊自动化接技术正在逐步的广泛使用,总体技术水平相比于国际最高水平仍有一定的差距,在此方面的研究还有待深化。对压力容器焊接自动化技术未来的发展依然分为硬件和软件两方面来进行分析。

(一)硬件

大多数焊接过程都需要一种特定静态和动态性能的电源。未来的新型电源应具备高频化、智能化和网络化的特点,供能稳定,绿色环保。研制可用于自动化焊接过程新型电源是目前焊接设备的未来发展方向之一。

激光焊接是激光材料加工技术应用的重要方面之一。由于激光焊接设备价格昂贵,在压力容器方面应用很少。但激光焊接自动化程度高,功率大,应用范围广以及无污染的等优点仍然不可忽略,有待于进一步研究。

此外,对传统的焊接工艺设备进行智能改造,提高机械化和自动化水平,要加大焊接材料的研究力度,也亟需引进先进的科学技术,尽快与国际一流水平接轨。

(二)软件

将人工智能技术引入到焊接设备形成了焊接设备的智能控制系统,这一领域具有代表性的焊接过程是模糊控制系统、神径网络控制系统和焊接专家系统。未来的具有智能性的模糊控制和神经网络等手段可以渗透到焊缝跟踪控制中,以增强非线性系统控制的准确性。焊接工程中专家系统的建立成为了智能化焊接设备的研究基础。以焊接机器人为核心的柔性智能焊接自动化技术在将来也会得到广泛应用,焊接专家系统的普及已是国内外公认的发展方向。

总结:

压力容器焊接自动化技术涉及到了诸多领域,想要进一步的提高需要多门学科的密切合作综合利用。压力容器的制造材料在不断更新,焊接技术的自动化也需要随之进步,要充分的利用计算机技术、电子技术、自动控制技术以及信息技术实现焊接过程的高度自动化。对现有的焊接设备智能改造,提高技术人员素质,引进研发先进焊接技术,让压力容器焊接自动化技术迈入更高的层次。

参考文献:

[1]黄石生,王秀媛,高向东.埋弧焊焊缝跟踪控制系统及发展状况[J].焊接,2000,(1):8-11.

焊接技术的重要性篇10

[关键词]焊接;机器人;汽车;焊装领域;应用

中图分类号:tp242文献标识码:a文章编号:1009-914X(2015)21-0355-01

在实际工作中,焊接机器人在汽车焊装领域中的应用,具有质量稳定、生产效率较高等优势,对于汽车行业的发展具有很大的影响。在具体的工作环节中,焊接机器人主要是在焊接生产领域,代替部分焊接工人完成焊接任务的工业机器人。同时,在计算机控制技术、网络控制技术以及人工智能技术发展的基础上,焊接机器人也逐渐朝着以智能化方向发展。

一、关于焊接机器人的发展解读

不断的社会实践调查表明,焊接机器人的存在与发展,为我国的工业化生产的发展,带来了极大的便利。据相关资料统计,全世界在役的工业机器人中有将近一半的工业机器人都被用于焊接加工的领域中,在很大程度上提高了生产效率,并节约了工业生产的成本。在实际的焊接工作中,焊接机器人的应用,主要是进行点焊与电弧焊两种形式。通常情况下,所谓的焊接机器人大多数都是指在焊接生产领域中代替焊工从事焊接任务的工业机器人。一般情况下,在生产领域的多任务环境中,一台设计合理的焊接机器人,可以在工作时间内完成包括焊接在内的搬运、安装、焊接以及卸料等多个环节的工作任务。在此工作的环节中,焊接机器人根据事先设定的工作程序以及任务性质,能够达到自动更换手腕工具,在规定的有效时间内完成设定的所有工作任务。因此,焊接机器人的发展,对于工业生产的发展,具有极大的促进作用。

二、焊接机器人在焊接生产中的应用

为了更好的促进汽车焊装工作的顺利发展,结合焊接机器人在实际焊接工作中的状况,深入探究焊接机器人在焊接生产中的应用,是有效促进汽车焊装工作发展的重要策略之一。在实际的焊接工作中,焊接机器人根据不同的应用场合,可以采取不同的结构形式。目前,最为普遍的焊接机器人主要是模仿人手臂功能的多关节式机器人,这种焊接机器人的手臂灵活性非常好,其高度的灵敏度可以使焊枪的工作姿态以及空间设置根据焊接任务的要求,为满足焊接器件的要求随意的变化方向。

在汽车焊装的生产车间,由于部分器件过大或者其空间几何的形状过于复杂,导致焊接机器人的焊枪无法在规定的时间内达到焊缝位置。一旦遇到这个问题,就必须安排专业的技术人员通过增加一到三个外部轴的方式,增加焊接机器人的自由度以及灵活度。在提高焊接机器人的的控制速度与焊接精度的基础上,应用电弧传感器,对于解决焊接机器人在电焊的焊缝轨迹跟踪与控制问题方面,具有促进作用。焊接机器人通过事先设定的编程,改变焊接轨迹和焊接顺序,对于解决汽车被焊工件品种变化大、形状复杂以及焊接缝短且多的问题,都具有一定的促进作用。

三、焊接机器人的编程方法分析

为了进一步研究焊接机器人在汽车焊装领域中的应用,对焊接机器人的编程方法进行研究,是一种相对有效的发展策略。当前,焊接机器人的编程方法主要是以线示教方式为主,通过液晶图形显示屏来展示焊接机器人的编程界面,操作更加简单。当时,在实际的汽车器件焊接作业过程中。在处理焊缝轨迹的关键点问题上,相对有效的处理方法还是示教方式,然后才能进行下一步的程序运动指令的操作。在具体的焊接作业中,如果遇到形状特别复杂的焊缝轨迹,就需要花费一定的时间示教,无形中就会降低焊接机器人的工作效率,并不断的增加专业编程工作人员的工作强度。为了解决这一问题,经过一定的实践调查,可以通过采取完全离线编程的办法以及示教编程获取关键点的方法进行处理。

四、焊接机器人的技术应用现状

(一)焊缝跟踪技术

在焊接机器人的应用过程中,焊缝跟踪技术的应用相对普遍。焊接机器人在进行焊接作业操作中,由于焊接的过程可能会受到强弧光辐射、烟尘、飞溅、加工误差、夹具精度、工件热变形等因素的影响,必须特别注意这些因素的控制,避免出现焊炬偏离焊缝,导致焊接质量出现问题。焊缝跟踪技术的存在,在一定程度上可以结合焊接条件的变化,实时监测出焊缝的偏差,并及时调整焊接路径和焊接参数,有效的避免焊接过程中出现质量问题。

(二)离线编程与路径规划技术

在焊接作业的操作过程中,离线编程与路径规划技术主要是指机器人编程语言的进一步扩展,其主要利用计算机图形学的研究成果建立的机器人以及工作环境的模型。并通过专业的算法,对焊接器件的图形进行一定的控制与操作,是促使焊接机器人可以在设定好的轨迹规划基础上进行焊接作业。离线编程的另一实现基础,是自动编程技术的应用。通过应用自动编程技术,为焊接机器人实现对焊接任务、焊接参数、焊接路径以及焊接轨迹的有效规划的同时,辅助编程人员进行编程任务的一种技术。

(三)多机器人协调控制技术

在实际工作中,多机器人协调控制技术主要是指为了完成某一工作任务进行组织数量若干的机器人通过合作与协调组合成一体的系统。多机器人协调控制技术在应用的过程中,主要是多焊接机器人合作及多焊接机器人协调两种方式。在具体的操作中,主要是给定多焊接机器人系统安排某项任务之前,需要考虑如何根据实际的操作任务组织焊接机器人进行有效的工作。当确定工作机制以后,就需要结合实际工作,考虑如何保持焊接机器人运动协调的一致性问题了。

(四)专用弧焊电源

不断的实践工作经验表明,在焊接机器人系统中,电气性能良好的专用弧焊电源,是确保焊接机器人使用性能正常发挥的关键之一。焊接机器人所用的专用弧焊逆变电源大多都是单片微机控制的晶体管式弧焊逆变器,在精细的波形控制以及模糊控制技术的支撑下,进行相关的焊接工作。一般情况下,采用模糊控制方法的焊接电源,可以在一定程度上确保焊缝熔宽以及熔深的一致性,促使焊接表面更加的美观。因此,在焊接机器人的应用过程中,针对专用弧焊电源进行深入的研究非常重要。

结语

综上所述,在我国社会经济与科技迅速发展的过程中,日趋完善的计算机控制技术、网络技术以及人工智能理论的发展背景下,焊接机器人在汽车焊接领域中的应用将更加的广泛,对于未来汽车行业的发展也具有至关重要的作用。在未来一段时间内,为了更好的促进焊接机器人在汽车焊接领域的发展,重点探究焊接机器人的视觉控制技术、智能化控制技术以及虚拟现实技术等问题,都会极大的促进焊接机器人工作效率的提高。

参考文献

[1]李铁柱.焊接机器人在汽车焊装领域中的应用[J].汽车零部件,2014,(12).