首页范文遗传学基本原理十篇遗传学基本原理十篇

遗传学基本原理十篇

发布时间:2024-04-25 20:00:40

遗传学基本原理篇1

在高校遗传学教学中存在许多经典案例,如:果蝇的翅型、体色、眼色等性状的遗传;豌豆的性状遗传以及玉米籽粒的形状和颜色性状的遗传等。其中,还有一个非常重要的经典案例,即血型遗传。自20世纪初至今,aBo血型遗传一直是复等位基因的一个不可缺少的经典案例。随着科学技术的高速发展,血型的经典内涵得到不断提升,新的研究结果使血型遗传所涵盖的遗传学知识点越来越多,内容越来越丰富。因此,以我们身边最常见的表型--血型为案例开展遗传学教学不仅可以将复杂的知识点简单化、形象化,便于理解,还可以将繁多的基础知识串联起来,便于记忆。另外,以血型遗传作为经典案例在遗传学的教学中还可以不断加人新的研究和新的应用,使经典的内涵不断得到新的提升,让学生的视野接触到前沿的科学知识,为日后的科研接力打好基础。

1血型与遗传学之间的重要关系

开展案例教学,案例的选择是关键。血型是人类血液由遗传控制的个体性状之一,与人类的生活关系密切,用途广泛。自1900年到2005年,已检测出约29个血型系统[21。临床上最常用的有“aBo血型系统”、“Rh血型系统”、“mn血型系统”和“HLa血型系统”。这些血型系统涵盖了复等位基因、基因互作之上位效应等遗传学的孟德尔定律拓展原理,基因的表达调控及群体遗传等遗传学的精髓内容。透过这个知识窗口,可以看到遗传学在血型中的奥秘。

孟德尔遗传定律从建立、发展到不断拓展完善,一直都是贯穿高校遗传学教学的核心知识点。由于现在大学生从高中开始就接触孟德尔定律,如果大学教学还是重复高中阶段所涉及的内容,学生的学习兴趣难以提高。在高中知识的基础上,开展案例教学,引入现代遗传学在人类血型上的最新认识,则不但可以给学生一种似曾相识的感觉,还能自然地激起他们深入探索的兴趣。血型的遗传特征及生化基础可以清晰明了地向学生阐述清楚孟德尔定律的一些重要的延伸知识内容。从红细胞血型到白细胞血型,从常见的aBo血型到罕见的孟买、Rh血型,对于假基因、等位基因、复等位基因和拟等位基因等不容易理解的基因概念以及基因之间的相互作用都可以通过血型案例,把学生带入情境之中,在教师的指引下由学生自己依靠其拥有的基础知识结构和背景,在血型案例情境中发现、分析和解决问题,比较轻松地掌握这些容易混淆不清的概念和一些难以理解的遗传学现象,如非等位基因之间的相互作用之上位效应等。

此外,人的血红蛋白基因在不同发育时期的表达调控还涉及遗传学中的表型和基因型之间的关系,真核生物中的基因表达调控模式等知识点。对血型相关的一些遗传疾病进行分析,还可以引申出基因突变和染色体缺失突变及一些重要的遗传标记。血型的遗传学检测方法及临床上的输血原则和溶血、血型互配等现象也与受基因表达调控的红细胞的细胞膜糖基的特征和生化机制密切 相关,引导遗传学从理论到实验,再到实践中的应用。血型与疾病的关联分析,把科研思维引入高校遗传学教学中,让学生紧跟时展的步伐,理论联系实际,为日后的科研工作打好基础。

遗传学中两大重要的主题是遗传和变异,主要包括孟德尔遗传和连锁遗传、基因突变和染色体畸变。通过以复旦大学遗传学教学大纲为参考,与刘祖洞主编的《遗传学》和乔守怡主编的《现代遗传学》教材内容相比较发现,血型遗传案例除了与上述遗传学四大内容关联外,还涉及到基因的表达调控、群体遗传、表观遗传等知识点,其中大部分知识点都是要求学生重点掌握的内容。目前,血型案例所涵盖的主要遗传学知识内容及在遗传学学科中的重要意义的归纳见表1。因此,把血型作为经典案例,开展遗传学的案例教学既贴近生活,引发学生深刻的思考,又能代表性地进一步阐述探讨遗传学的生物知识。

2血型案例在遗传学教学中的开展

在以血型为案例的教学过程中,我们首先根据高校遗传学的教学目标和培养目标的要求,在学生掌握了一些遗传学的基础知识和理论知识的基础上,结合遗传学的教学进度逐步有序地进行介绍:1.血型基本知识介绍;2.红细胞血型的细胞膜糖基特征和生化机制;3.红细胞血型与输血;4.血型的遗传学规律特征,包括(i)aBo血型复等位基因遗传及其应用,(ii)aBo血型基因的克隆,(iii)aBo血型的遗传学鉴定;5.aBo血型的拓展,包括(i)孟买血型与拟孟买血型,(ii)红细胞血型与白细胞血型。下面主表1血型与高校遗传学教学的重要关系

要选取两个方面阐述在遗传学教学中的开展过程。

    2.1血型基本知识在教学中的开展

aBo血型系统是第一个被描述的红细胞血型系统,也是最具有临床意义的一个系统。因此,在进行血型基本知识介绍时往往以aBo血型为例。随着以分子生物学为基础的血型研究的发展,aBo血型的基因遗传背景目前已比较清楚。在介绍血型基因的基本知识同时也涵盖着遗传学知识的传播,而且随着血型基因知识的不断丰富完善,涵盖的遗传学知识也越来越广泛。

aBo血型由3个复等位基因控制,即ia、产和i°o在开展遗传学相关教学活动时,一般都用此作为分析生物界中复等位现象的经典例证。这些基础知识对于高校学生来说可能在高中的时候就已经获得。因此,在大学开展相关教学时,除了简单介绍这3个主要的复等位基因外,还可以深入讲述新的研究结果,到目前为止通过分子生物学方法已经确定了160多个^50等位基因,只是目前国际上以4川7基因作为等位基因的参比序列,其他基因均与其紧密相关,非常保守。在此基础上aBo血型又可分为许多亚群,其中a血型表现出最多的亚型。在红细胞血型系统中还有一种Rh血型,分为Rh阳性和Rh阴性。Rh血型主要由3个紧密连锁的基因D/d、C/c、e/e决定,这3个基因以单倍型方式传递,属于拟等位基因。这样在讲解原有知识基础上,又不局限于原有知识范围,由aBo血型到Rh血型,由复等位基因引出拟等位基因,在教学方法上可以通过相互比较,举例分析,扩大学生的知识面,提

高他们的学习兴趣。

人类的血型是不是一生恒定不变的?面对这个问题,很多学生都会认为血型是由遗传决定,不会改变。其实人类的血型也会发生变异,如急性白血病以及再生障碍性贫血可以使血型抗原减弱,骨髓增生异常综合征可以导致血型抗原丢失等。而且,健康人也存在血型变异的现象,但是这个是与细胞表面血型物质受到掩盖以及人体存在一些稀有aBo等位基因有关。这些新的知识可以向学生很好地展示“遗传和变异”,利用身边的血型案例调动学生的学习积极性,使他们积极主动地掌握遗传学的精髓。

此外,最近几年疾病引发基因甲基化和突变的研究'又可以结合表观遗传学的内容开展教学。

2.2红细胞血型的细胞膜糖基特征和生化机制在教学中的开展

人类aBo基因位于9号染色体长臂(9q34),其基因产物是一些专一性的糖基转移酶,可以催化血型抗原前体特定部位的糖基转移,从而控制aBo血型抗原的生物合成。其中4基因编码产物为n-乙酰-D-半乳糖胺转移酶(简称a酶),可以产生常见的a抗原;S基因编码产物ci-l,3-D-半乳糖转移酶(简称B酶),可以产生常见的B表面抗原;和S基因同时存在产生的等位基因,其编码产物具有a酶和B酶的特异性,在红细胞表面上产生不同强度的a和B抗原;而o基因则是第258位和第349位碱基缺失导致的密码子移位,使终止密码提前出现,合成了无酶活性的短肽,因而体内没有a酶和B酶,也不能催化糖基转移,只有前体物质H的产生为H抗原(图1)。因此aBo血型有时也称为八811型[71。这样,不同的、B、0基因编码不同的多肽,产生具有不同功能的糖基转移酶,非常简单地引出了遗传学中经典的基因与酶的关系的“一个基因一条多肽(一个基因一个酶)假说”,使学生很容易获得一个基因决定一条相应的多肽链(酶)的结构,并相应地

影响这个多肽(以及由单条或多条多肽链组成的酶)的功能这种遗传学思想,达到良好的教学效果。

此外,最新研究发现aBH抗原除表达在血细胞表面以外,还可以出现在除脑脊液外的分泌液中;有大约80%的个体具有产生这些可溶性抗原的遗传基因;这种分泌抗原的表达由双结构基因控制,即第19号染色体2个紧密连锁的Ft/n(用和基因座。aBo血型抗原都由前体H物质合成,Seae基因和丑冷基因都可以控制合成H物质;简单来说,基因的表达决定体液中是否出现aBH抗原,H/h基因的表达决定红细胞上是否出现aBH抗原。但是,并不是所有带m基因的个体唾液中都分泌aBH物质,还要受到wh基因的制约,其中hh型(即孟买型)均为非分泌型[7]。这样又引出了遗传学中一个很重要的概念--上位基因,很重要的遗传学现象--上位效应。这些属于遗传学中基因互作的重点内容,而且发生基因相互作用的非等位基因仍然遵循孟德尔分离和自由组合定律,后代的基因型及其比例是可预计的,所以在遗传学教学中还可用于亲子鉴定、重大遗传疾病的关联分析、人种演化、群体遗传分析等相关内容。

2.2相关技术的拓展应用

aBo血型的分子检测是分子遗传学教学中pCR技术拓展应用的案例。血型基因的表达影响血型的表现型,表型相同的个体其基因型不一定相同。如何区分iaia、pi0在表现型都是a型和iBiB、iBi0在表现型都是B型的个体,可以根据a、B、0血型基因碱基的差异,应用聚合酶链式反应-限制性片段多态性(pCR-RFLp)技术分型人类aBo血型的方法。这种方法可以对个体血型(血型基因型)进行判定:是属于aa型、ao型,还是BB型或Bo型。在这个基础上,我们进行了改进,并结合教学进程,作为自选实验在学生中开设,获得了学生的好评。在135个学生中开展自选实验,其中有80%的学生选择aBo血型鉴定这个实验,并表示对这个实验很感兴趣。

此外,还可通过分析核苷酸来确定分泌型aBH血型的Se基因型。主要基因分型技术有:(l)pCR-序列特异性引物(pCR-SSp),这是一种新的基因多态性分析技术,根据基因座某一碱基的差异设计一系列引物,特异性引物仅扩增与其对应的等位基因, 而不扩增其他的等位基因;(2)pCR-Dna测序法,先通过pCR扩增基因的主要片段,然后测定序列;(3)pCR-限制性内切酶法,用对位点特异的限制性内切酶消化基因,再通过Southernblot分析来确定。目前,pCR-SSp常用于胎儿血型鉴定及白血病引起的血型抗原异常等血型鉴定。随着450基因结构和研究方法的迅速发展,aB0血型定型也将进入基因定型的时代,揭示更多的关于aB0基因和aB0血型表观遗传学等方面的奥秘。

在教学过程中还可以设计一系列与血型相关的论题,引导学生査阅相关方面的最新进展,总结出血型与人类疾病和性格之间的关系以及蕴涵的遗传学原理。学生可以分组制作ppt讨论,还可针对某一论题,学生组队分为正反两方,开展辩论式讨论。一学期可以安排一次课时(45分钟)开展辩论式讨论,前30分钟让学生正反方陈述观点,列举证据开展辩论,后15分钟用于总结和点评。在这个模式下,几乎所有的学生都积极主动地参与进来,将引导、鼓励与考评相结合,充分调动了学生学习的积极性[11]。开展“血型是否可以决定性格”类似专题的辩论式讨论,既增加了遗传学教学的兴趣性及可接受性,还可以使学生的思维在辨析中得到操练。正反两方队员通过收集资料和案例,与同学辩论解释的过程中,不仅掌握了深奥的科学知识,而且还与现实生活相联系,并且将遗传学应用于实际,填补了传统教学在知识灵活认知与实践中的不足。

3以血型为案例开展遗传学教学的优点

作为日常生活中被人们广泛熟知的遗传学常识,血型遗传学的研究历程符合遗传学的发展规律与教学规划,其作为遗传学教学案例有着不可替代的优势:

遗传学基本原理篇2

【关键词】课堂教学;分离规律;等位基因;相对性状;精讲;多练

分离规律是遗传规律的基本规律,在掌握其规律的基础上很容易掌握基因的自由组合规律、连锁互换规律及伴性遗传。因此在分离规律的教学过程中让学生理解掌握非常重要。

教学过程中主要是使学生了解等位基因的遗传行为与相对性状遗传表现之间的因果关系,从而理解性状分离的遗传学原理。课堂教学中,教师的精讲要抓住关键性概念和原理,以及与概念和原理有关的感性材料;学生课堂上的练习题要形式多样化,做到少讲多练。

一、分析感性材料要突出本质

分离规律和自由组合规律的提出要经历了由现象到假说、到理论的过程。学生理解概念和原理,也要求有相应的感性知识为基础。采取从感性到理性,从理论到实践的过程。在分离规律的教学中,首先讲述豌豆的一对相对性状的遗传实验,为学生提供与形成概念和原理有关的充分事实,符合学生思维活动的规律,有利于学生掌握分离规律的概念、原理及体系。那么,在一对相对性状的实验教学中,应当讲清哪些具体事实并突出其本质呢?

1.讲清豌豆的花部结构和传粉方式,使学生弄清自花授粉和异花授粉等基本概念。

2.讲清豌豆主要相对形状。使学生弄清相对性状的概念,明确纯种豌豆的自交后代仍然是纯种,纯种的杂交后代表现出相对性状的遗传差异。

3.讲清相对性状遗传表现的两个特点:一是F.全部表现为显性;二是出现相对性状的分离,比值近似3:10一对相对性状的遗传表现是孟德尔提出遗传因子F2分离假说的实验依据。所以,在教学中应当引导学生通过分析孟德尔的豌豆杂交实验资料,抓住相对性状遗传表现的本质,使之具备学习和理解分离规律相应的感性知识。

二、讲述分离规律要突出重点抓关键

基因的分离规律是解释相对性状分离的遗传原理,它是运用等位基因等科学概念所组成的判断,揭示出等位基因的遗传行为与相对性状遗传表现之间的因果关系。所以,分离规律教学的重点是讲清等位基因的定义、存在形式及其杂合体内的遗传行为。教学的关键在与抓住等位基因遗传行为的细胞学基础,也就是在减数分裂和受精过程中同源染色体的动态。

教学程序按照基因的遗传理论对分离现象的具体解释来安排,大致如下:

1.相对性状是由等位基因控制的。等位基因是指位于一对同源染色体的相同位置上,控制相对性状的成对基因。等位基因的概念:从数量看,是成对基因;从性质看,成对基因的遗传效应具有对应关系。从存在位置看,位于同源染色体的相同位点上。属性,所以等位基因又称对性基因。概括如下:其中,对应关系也是等位基因的本质等位基因与相对性状之间的关系可以概况如下:

2.等位基因在体细胞中是成对存在的,其中,等位基因的纯合状态称为纯合体,如高茎豌豆(DD)为显性基因纯合体;矮茎豌豆(dd)为隐性基因纯合体。等位基因的杂合状态称为杂合体,如高茎豌豆(Dd).配子中之含等位基因中的一个。教学中应该避免将等位基因的概念和存在形式混淆,造成学生理解和记忆概念的困难。

3.杂合体内等位基因的遗传行为概括如下:①显性基因对隐性基因有显性作用,因此F1全部表现为显性(高茎)。但是,隐性基因并没有消失。显性作用是由于高茎基因(D)能够控制一种酶的合成,通过酶作用促使细胞胞合成足够的赤霉素,赤霉素刺激细胞生长的结果,使含有显性基因的豌豆植株表现高茎性状。矮茎基因(d)不能控制这种酶的合成,因此,含有矮茎基因的豌豆植株表现为矮茎性状,杂合体则表现出高茎基因的性状。教学中不一定讲述显性作用的机制,但不要把显性作用误解为显性基因对隐性基因的控制作用。②杂合体内等位基因虽然共存与一个细胞中,由于分别位于同源的两条染色体上,具有一定的独立性。独立性是指等位基因间互不融合,保持着各自的质的纯洁性。杂合体内等位基因的纯洁性,是F1产生两种纯质配子,以及受精后导致F2出现隐性纯和的前提。③在减数分裂时,杂合体内等位基因随着同源染色体的分离而彼此分开,各进入一个配子,结果,产生数目相等的两种类型的配子。配子是亲体的产物,子体的根源,上下两代相连续的桥梁,传递基因的唯一媒介,所以,配子的质(两种纯质类型)和量(数量相等)的变化,必然对后代的性状表现有着决定性作用。因此,等位基因的分离是性状分离的根本原因。

④杂合体产生的雌雄配子间通过受精作用的随机结合,使F2群体中既有等位基因的纯合状态,又有等位基因的杂合状态,其中显性纯和和隐形纯和各占四分之一,从而导致群体F2出现相对性状的分离,比值为3:1。

综合所述看出,F2的性状分离是由于F是杂合体。在减数分裂和受精作用过程中,杂合体内等位基因的分离和纯和,必然导致后代表现性状分离。分离规律的语言表达,就是对杂合体内等位基因的遗传行为的概况。

表现型和基因型的教学可以放在概括分离规律之后,教材在阐述表现型和基因型的关系时,主要强调“表现型相同的,基因型不一定相同”,而没有确认“基因型相同,表现型一定相同”的判断推理。教学中学生可能提出这个问题,教师应该通过分析典型的事例,使学生认识到表现型是基因型与环境条件共同作用的结果,所以,这种判断推理只有在一定条件下才具有真实性,否则是不能成立的。

测交实验验证了相对性状分离假说的真实性,使假说上升为理论。所以,测交实验是继续深入地进行原理教学的一个重要组成成分。教学程序如下:

1.阐明回交和测交的概念,启发学生应用等位基因分离和纯和的原理,画出测交实验的遗传图解。

遗传学基本原理篇3

【关键词】临床医学遗传学实验课程

医学遗传学是一门医学与遗传学相结合的一门边缘学科,是现代医学中的一个新领域。它研究人类疾病与遗传的关系,主要任务是揭示各类遗传性疾病的遗传规律、发病机制、诊断和治疗措施,以降低人群中遗传病的发生率,提高人类的健康素质。

随着医药卫生的进步,急性传染病和流行病逐渐得到控制,遗传病对人类的影响越来越明显,遗传病的相对发病率正在增长[1]。早在1992年,美国已公认“医学遗传学”为一门医学专业[2]。在欧美发达国家已有较完善的针对人类遗传病的临床遗传学科和诊疗服务体系。仅北美地区,就有数百个实验室提供针对数千种遗传病的检测服务[3]。近年来,我国大城市的医院结合计划生育逐步建立起婚前检查门诊和遗传咨询门诊,临床各科的遗传医学服务也日益受到重视[4]。尽管在我国目前的高等医学教育中,医学遗传学仍作为一门基础课程,但它涉及到许多临床问题,在基础学科与临床各学科之间架起了一座纵横贯通的桥梁,通过它,医学生们才能在融汇贯通的基础上去领悟更新、更深的分子医学知识;随着现代生物学和现代遗传学研究技术的蓬勃发展以及基础研究与临床工作的密切互动,医学遗传学突飞猛进,它对于指导现代临床医学中疾病的诊断、治疗和预防都有着无可替代的作用。因此,医学遗传学的教学必须本着服务于临床这一原则,密切结合临床,才能促进医学遗传学教学的发展和提高[5];另一方面,医学遗传学是一门实验性很强的学科,需要通过实验、实践才能达到较好的教学效果。实验教学不仅是验证遗传学理论,巩固学生课堂上所学知识,更重要的是能培养学生的基本操作技能,让学生学会基本的医学遗传学临床诊断技术,并应用这些技术在医学实践中去解决临床上可能遇到的遗传疾病和遗传学问题,提高学生分析和解决问题的能力,为今后的临床工作奠定基础。

然而,由于医学遗传学作为一门新兴的基础学科,长期以来经费的投入不足,开设实验课的空间及时间都受到限制,大部分开设医学遗传学的学校,仅限于纸上谈兵,而未给学生实验、实践的机会。我院的情况也是如此,历年来医学遗传学都是作为选修课开设,没有安排实验,使本门课程的教学效果不佳。作为一所地处桂西南落后地区的高等民族医学院校,除教学科研外,我院还兼有社会服务的功能。对缺乏遗传病诊疗服务的桂西南落后地区而言,进行面向临床的医学遗传学实验课建设,在教学的同时为社会提供高水平的遗传诊疗服务,以提高当地人口遗传素质是我们应该承担的责任。因此,为提高医学遗传学教学质量,为适应现代医学发展和社会对遗传病诊疗服务的需求,开设医学遗传学实验课势在必行。

前几年,我们学校新办了临床检验本科专业,在检验本科专业中开设了医学遗传学实验课,去年开始在五年制本科的其他专业和检验专科中也增设实验课程,实验课内容在各专业之间略有增减,课时控制在18-27学时之间。在有限的时间内,实验课程如何安排是值得思考的的问题。本着面向临床的目标,我们在原有教学工作的基础上,对本课程的实验教学进行了一定的探索。

1优化教学内容,精选贴近临床实践的教学内容

由于众多因素的制约,不可能开设很多的实验内容,因此就存在有实验内容的选择问题。目前的医学遗传学主要包括群体和家系、细胞、分子水平的实验和社区优生实践等几个方面的内容。事实上,实验目的是通过实验使学生获取对这类实验的总体认识,而不是对某个实验的认识,侧重于建立起一种实验、实践的能力,而不是具体的某一实验本身。因此,我们把医学遗传学的主要实验内容加以归类。

1.1系谱分析、群体分析

系谱分析、群体分析是研究医学遗传学的传统方法。为帮助学生认识遗传规律,我们开设了群体遗传学实验的人类部分遗传性状的检查和系谱分析实验各一次;以苯硫脲尝味实验为例,让学生掌握计算基因频率和基因型频率的方法;通过绘制系谱图和进行系谱分析,加深学生对单基因病的各种遗传方式及其特点的理解,并初步掌握遗传病发病风险估计的基本要领。

1.2细胞遗传学实验技术部分,即人类染色体的制作和分析

人类染色体的制作和分析是目前医学遗传学实验教学核心之一。染色体分析是医学遗传学领域中的基本技术,国内的教学医院和妇幼保健机构的遗传学实验室,都是以染色体的诊断为主体,通过采用以染色体分析为核心的细胞遗传学技术来进行遗传疾病诊断和产前诊断。本着面向临床这一原则,特别是针对临床检验专业,我们把实验课教学重点放在细胞遗传学部分。根据我院遗传实验室的现有条件,我们开设的具体内容为:(1)正常人类染色体常规核型和G显带核型观察及分析;(2)人类外周血淋巴细胞的培养及染色体标本制备技术;(3)人类染色体G显带、C显带标本的制备及观察;(4)人类异常染色体核型观察与分析;(5)人类外周血淋巴细胞姐妹染色单体交换(SCe)试验。通过对以上这些实验内容的教学,让学生熟悉人类染色体的数目和形态特征;了解各号染色体G、C带带型特点;熟悉人体外周血淋巴细胞培养的方法和步骤;掌握人体外周血淋巴细胞染色体标本制备的方法;训练学生在显微镜下观察分析染色体的能力;掌握部分人类常见的异常核型的鉴别方法和了解某些罕见和重要染色体病的核型特点。

1.3遗传咨询与社区优生实践

从临床角度来看,结合上述实验而进行的遗传咨询则是极其重要的实践形式,通过这一形式,可预防遗传病患儿的出生,最大限度地降低遗传病的发生率,改善遗传病患者的生活质量和提高人口素质。

2实验教学目标的实施

要培养实用型医学人才,提高学生对医学遗传学实验课的重视和兴趣,引导其临床思维的形成,实验教学的水平与实施是关键。为此,我们尝试了多元化的教学方式。

利用视频互动网络实验室向学生展示遗传病录像,使学生深切感受到遗传病与遗传性状的存在;用案例教学法构筑基础医学与临床医学的桥梁,通过一些典型的实例,给学生思维的空间,让学生将理论知识融于实际遗传病病例中,灵活运用遗传学原理解答临床实际问题,增强临床意识,激发对专业知识的兴趣,变被动学习为主学习。达到既培养学生分析问题和解决问题的能力,又强化基础理论的实验目的。

在实验中,注重培养学生严谨的科学态度,让学生充分解实验的目的与意义,促进学生主动参与技能训练。一般的遗传学实验,一次课仅有3~4学时,许多实验操作课外完成的步骤多,例如人外周血淋巴细胞的培养及染色体标本制备,整个过程需要经历采血、培养、加秋水仙素、制片等过程,培养时间需72小时,课堂计划3学时内学生不可能完成,必须在课前进行细胞培养,计划内的3学时仅是学生的制片。如果实验教师事先做细胞培养准备,学生无法参与实验的全程,一旦离开老师的协作仍然无法独立开展类似实验。为此,我们要求学生树立总体观念,利用课外时间从实验器械和试剂的准备开始,独立操作,制备自己的染色体标本。在细胞培养实验教学过程中,学生得到了与医学相关的无菌操作技能的训练,同时培养学生严谨、认真的科学态度,这些都为学生以后从事医疗和科研工作打下良好的基础。学生完成实验后观察到了自己的染色体标本,都有成就感,逐渐变被动为主动,积极参与各种实验准备,并在此过程中初步掌握实室工作的基本原则与基本技能。

利用我校附属医院现有的妇科和儿科遗传咨询室,让学生见习各种遗传病症状和体征,现场了解与遗传相关疾病的预防、诊断和治疗原则,使现代医学遗传学实验课实习化。此外,课余或假日时间组织学生深入到社区进行遗传咨询与社区优生实践,提高学生的感性认识,使学生切身体会到社会和病人需要完善的遗传诊疗服务,因而更加重视实验课的学习。

上述所实施的实验教学使学生熟悉了遗传病特别是染色体病的常规诊断方法,提高了学生的实际操作技能。这些基本的医学遗传学操作技能的培养,对学生在医学实践中应用去解决临床上的问题是不可缺少的,同时也培养了学生伦理道德观念和社会责任感,为学生走向工作岗位将遗传学知识服务于社会奠定了基础。不足的是,虽然我们最大限度地利用了教学资源,开设了贴近临床的医学遗传学实验课,但由于学校的办学条件所限,包括师资水平及仪器和物质条件等因素的限制,目前我们还无法开设分子水平的实验。要提高医学遗传学课程的教学质量,顺应现代医学的日益发展对医学遗传学实验教学的要求,还需要我们在各方面不断地努力。

参考文献

[1]黄健.医学遗传学[m].广西:广西师范大学出版社,2004:10.

[2]罗会元.从历史的观点谈我国医学遗传学的出路[J].2008,28(5):417-418.

[3]赵会全.美国临床遗传学进展[J].国际遗传学杂志,2007,(10):398—401.

遗传学基本原理篇4

关键词:遗传学教学;科研理念;前沿知识

中图分类号:G642.0文献标志码:a文章编号:1674-9324(2015)46-0165-02

遗传学是生命科学中最核心的学科,也是发展最为迅速的学科之一。例如差不多每期顶级期刊《细胞》(Cell)、《自然》(nature)和《科学》(Science)(国内简称CnS)都会发表遗传学方面重要突破的文章。但是遗传学教材的内容则相对滞后,原因是教材的编写和出版周期较长,加之教材内容主要是结果比较确定的内容,因此往往要比实际进展滞后5~10年或者更长时间。对遗传学这样发展极快的学科来说,如果课程内容多年不更新,每年讲同样的内容,恐怕是不恰当的。另外,传统课堂教学中注重知识传授,忽视知识获得方法的情况也显著存在。

为了改善这种状况,遗传学教学要注重结合教师的科研理念和前沿知识的介绍,而且这两方面差不多是统一的。有研究表明,教师的科研成果和教师的教学效果呈现较为显著的正相关,表明大学教师的科研和教学存在相互促进的关系。注重科研的教师,更会将学科最前沿的信息带到课堂,从而激发学生的求知欲和好奇心。这要比只会照本宣科的教师更有利于培养学生的创造能力。老一代著名科学家钱伟长先生早就指出:“教师的提高,不是靠听课进修,而是主要靠做科研工作,边研究边学习,这是积极有效的方法。”“教师的教,主要不是把知识教给学生,而是要把获取和处理知识的能力教给学生。”“讲课不应只讲具体的知识。具体的知识学生是很容易懂的,教师应讲重大的概念,讲过去和当前发展的情况,发展的趋势和走向,讲你自己的观点,用你头脑里的一把火去点燃千百学生头脑里的一把火。”

不注重知识获得过程,只注重结论的传授,会阻碍学生对科学本质的理解;而不注重前沿知识的教学,则容易造成科学教育的“片断化”。前沿知识的教育,可以让学生了解学科的迅速发展,结果日新月异,体验前沿激动人心的进展,能激发他们的认知兴趣,引发探究欲望。此外,注重课堂教学中渗透科研理念和前沿知识,可以防止学生对教材和书本的盲信盲从和过度依赖,有助于学生对科学发现和科学本质深刻了解,养成科学精神。其实不止科学类课程是如此,文科教学也应如此。在这方面一些文科方面的大师给我们做出了很好的榜样。据历史学大师陈寅恪学生和女儿的回忆:“寅师授课,创见(Discovery)极多,全非复本(Reproduction)。”“即使每年开同以前一样的课程,每届讲授内容都必须有更新,加入新的研究成果、新的发现,绝不能一成不变。”

教师在在课堂教学中结合自己的研究,适当介绍研究对象的进展情况,所用遗传学方法的利用情况,将亲身经历和体会告诉学生,是很能提高学生的学习兴趣和加深学生对相关知识的掌握的。例如,结合我的科研工作,在遗传学教学中适当章节介绍互补测验、分子标记在基因克隆中的重要作用,以及上位性在进行遗传学分析和分子机理揭示方面的作用,都加深了学生对所学知识的印象,提高了教学效果。另外,本身是搞科研的教师,通常不会干巴巴介绍书本上的结论,有意注重经典实验的介绍。如avery-macLeod-mcCarty的R型细胞向S型细胞转化试验和Hershey-Chase的噬菌体侵染大肠杆菌(escherichiacoli)试验证明生物的遗传物质是Dna。watson和Crick的Dna三维结构模型,是在Dna碱基的Chargaff规律和Dna的X射线衍射照片的基础上提出的。证明Dna和染色体的半保留复制,需要介绍meselson-Stahl对大肠杆菌Dna的超速离心实验及利用BudR对复制染色体的标记实验。三联体密码子的存在和解码,需要介绍Crick利用噬菌体t4的rii突变体的遗传分析,nirenberg和mathaei利用无细胞的体外翻译方法破译遗传密码。

在农科遗传学教学中,我们发现很多前沿知识需要补充。目前随着包括人类、果蝇、拟南芥、水稻等在内的模式生物基因组测序工作的完成,遗传学进入了后基因组时代,即功能基因组学时代。在基因组、转录组、蛋白质组等水平上的系统研究手段需要让学生有所了解。此外,一些观念需要更正。如在真核生物基因组中存在着大量的非编码的Dna,原来以为它们没有什么功能,称之为“垃圾Dna”,现在人们发现事实并非如此,这些“垃圾Dna”可以通过编码微Rna(microRna,miRna)而发挥功能。

在基因表达调控领域,是研究相当活跃的遗传学领域之一。表观遗传学(epigenetics)机制和微Rna的作用,都需要在适当章节加以简介。不少遗传学课本这方面的内容极少,甚至有的课本提都不提。表观遗传是基因结构未改变但基因表达发生变化或染色质调节基因转录水平改变的遗传变化,主要内容包括Dna甲基化作用(Dnamethylation)、组蛋白修饰作用(histonmodification)、染色质重塑(chromatinremodeling)、遗传印记(geneticimprinting)、X染色体失活(Xchromosomeinactivation)及非编码Rna(non-codingRnas)等,这些内容对理解生物基因表达调控奥秘,运用表观遗传学技术来改变或调整基因表达方面都具有重要意义。微Rna是一类在基因表达调控、细胞分化等过程中发挥重要的作用的Rna分子,大小约21-25个核苷酸,一般来源于染色体的非编码区域。微Rna通过Rna干扰作用机制发挥生物学功能,是21世纪生命科学的重要发现。这些重要突破将来获得诺贝尔奖的可能性是很大的,呼声也是很高的。

即使在经典遗传学领域,目前在揭示遗传规律和遗传现象发生机制方面也取得了长足的进步。例如在讲授孟德尔分离规律时,F1代表现显性性状,而不表现隐性性状。我们可以提一下日本奈良尖端科学技术大学院大学高山诚司(Seijitakayama)课题组2006年发表在《自然-遗传学》和2010年发表在《自然》上的两篇文章。他们的研究表明,显性基因表达,而隐性基因表达被抑制的原因是,由于位于显性基因附近的某种基因指导合成了一种顺式作用的小分子非编码Rna(24-nucleotidesRna),导致隐性基因甲基化,从而隐性基因作用被遏制。

由于遗传学教师的实际科研工作可能只集中在相关生物遗传的某一个很窄的方面,如果要在课堂教学中渗透前沿学科知识,就需要经常性阅读遗传学方面的国外版本更新较快的专著、教材如KrebsJe、GoldsteineS、KilpatrickSt编写的《基因》(Levin’sGeneXi),期刊如英国《自然》(nature)、美国的《科学》(Science)和《细胞》(Cell)网页中全文(或摘要)、科技新闻及评论。此外,遗传学教师在有条件的情况下,宜泛览《自然-遗传学》(naturegenetics)、《自然综述遗传学》(naturereviewsgenetics)、《遗传学年评》(annualReviewofGenetics)、《遗传学趋势》(trendsinGenetics)、《美国人类遗传学杂志》(americanJournalofHumanGenetics)、《基因组研究》(GenomeResearch)、《遗传与发育新见》(CurrentopinioninGenetics&Development)等国际著名的遗传学期刊,并将最新的遗传学领域最新和最重要的发现、进展和动态介绍给学生,这对开阔学生专业视野、提高学生的学习兴趣大有裨益。

参考文献

[1]魏红,程学竹,赵可.科研成果与大学教师教学效果的关系研究[J].心理发展与教育,2006,(2):85-88.

[2]钱伟长.大学必须拆除教学与科研之间的高墙[J].群言,2003,223(10):16-20.

[3]陈世鸥,王辉.前沿物理教学与新课程改革[J].复旦教育论坛,2005,(3):49-53.

[4]张求会.陈寅恪丛考.杭州:浙江大学出版社,2012:130.

遗传学基本原理篇5

关键词:遗传学实验;教学改革;生物技术

中图分类号:G642.0文献标志码:a文章编号:1674-9324(2012)12-0190-02

遗传学(Genetics)是生命科学领域的重点学科之一,遗传学教学实验作为遗传学课程的重要组成部分,不但可以加深培养学生对基本理论的认知和理解,还可以提高观察、分析和解决问题的能力,并影响学生的世界观和正确的思维方法[1]。而近年来高校教育改革的工作重点也不光是要求能够培养学生具有良好的理论知识基础,更重要的是要培养学生具备熟练的实验操作技能,从而提高学生的创新性思维能力和动手能力[2]。

一、实验教学模块和内容的改革

如今遗传学作为发展最迅速的学科之一,不但增加了大量的分子遗传学内容,而且经典遗传学、分子遗传学以及群体遗传学三者相互补充和穿插在一起,因此遗传学实验教学必须不断补充和改革实验教学内容,从而为创新性人才的培养提供有利的平台。遗传学实验教学模块庞大,而学时数有限,还要做到突出模块中的重点和特色,只有通过精选实验内容,综合考虑、合理规划实验模块的构成,才能在有限的教学时间内使学生较全面系统地掌握遗传学实验原理和操作技术。本教研室重新对遗传学实验教学模块进行了科学、合理的制定和分布,主要由基础、综合、创新型三大实验教学模块构成。基础型模块:主要包括了以前染色体操作及经典遗传三大遗传规律实验内容的验证。综合型模块:我们保留了植物多倍体的诱导与鉴定、染色体数目变异及结构变异分析。创新型模块:是分子遗传基础实验,如植物细胞Dna的提取、pCR扩增等。另外我们专门针对实验操作能力强的学生新增了植物遗传转化、质粒的提取等实验,作为平时的开放性综合实验。改革后,不仅保留了以前实验模块中的经典内容,学生还可以从综合型模块的实验中全程参与所有实验内容,让学生从宏观角度上对实验有一个全面的认识和学习。而通过创新模块,利用现代分子遗传学实验技术,不仅拓展了学生眼界,而且加强了学生操作能力和实验范围,最终达到培养创新性人才的实验教学目的。

二、实验教学手段和方法的改革

以前教师在上课前就已经准备好所需的实验材料、试剂、仪器设备,并按部就班地讲解实验目的、原理和方法步骤,然后学生提交一份验证已知的实验结果的实验报告。学生只是死板地为做实验而做实验,一般实验课平均3个学时,在规定时间内完成实验内容比较紧张,因此实验效率不高,如制片实验,在平均30个人的实验课中,只能达到50%的制片合格率,教学效果很不理想,在整个实验教学过程中缺乏主动性,难以激发学生对实验课的兴趣。因此,本教研组提出了以下几点改进措施。

1.要求学生通过查阅相关文献资料对实验目的和原理进行学习和了解,并熟悉基本实验步骤和过程,并交一份预习报告作为实验考核的一部分。这样才能让学生对整个实验有一个全面的了解,保证能达到一个较好的实验效果。

2.组织学生参与实验材料的准备工作。如有丝分裂实验,我们将种子分配给每组进行发根,实验中所需的药品也在教师的指导下让学生自行配置,对根尖的预处理、固定、解离都由各小组自行处理。这样能让学生对整个实验有一个全程的学习,还能提高学生实验动手能力。

3.随着科技迅速的发展,我们可以充分利用计算机网络化和多媒体等教学手段来提高教学效果。课前由教师将诱导和鉴别多倍体的过程完整地拍摄下来放在网上,让学生们在课前预习时观看。这样能大大增强实验效果,提高实验质量。

三、实验教学与科研相结合的改革

教学和科研相结合就在于将科研引入到教学中去,使教学科研化。而实验教学不光单单给学生们传授实验技能和巩固理论知识,更重要的是将理论和实践相结合,培养学生创新意识和提高实践能力[3]。因此我们要将科研渗透到实验教学的各个环节,渗透到学生培养的方方面面。如今大多数高校都有大学生科研项目训练计划(SRtp),而且很多教师自己的科研内容都与分子遗传学方向的研究有密切关系,可以让学生参与到自己的与遗传学相关的科研项目中来,拓展和深化学生所学的专业基础知识。为此,教研组专门针对分子遗传学实验进行了延伸和拓展,给学生一个大的实验方向,通过自己查阅相关文献资料后,提出实验设计,撰写开题报告,经学校专业教师团队审批后才能进行实验。而整个过程中,教师仅起指导和辅助作用,以后实验的各个环节均由学生亲自动手完成。如马铃薯的遗传转化,首先让学生进行马铃薯试管薯的诱导培养,然后将构建好的表达载体提供给学生,让其培养和活化,最后让学生采用农杆菌介导的马铃薯试管薯薄片转化法进行遗传转化。通过这种以科研项目来扩展遗传学实验教学内容的方式,不但可以丰富遗传学实验教学内容,深化学生所学的遗传学知识,而且能够提高学生实验操作技能和综合分析问题和解决问题的能力,为将来独立完成科学研究打下基础。

四、实验教学考核方法的改革

以前实验课程的成绩光以实验报告的质量来评定给分,导致部分学生出现抄袭实验报告、伪造实验结果的现象,而有些学生虽然能够认真完成实验,但由于字迹潦草等因素,未能取得好成绩,不能客观、公正地反映出学生的真实的实验水平和操作能力,其可信度大大降低,影响学生实验的积极性和主动性,不能树立学生严谨的科学态度。因此,我们首先要求学生对实验方法和步骤进行简要阐述,然后在实验过程中教师会对每个学生的实验操作水平和发现问题时的分析和解决能力进行综合评分,最后要求学生对实验结果进行科学的分析和解释,如果实验失败也要写出相应的原因,并分析失败的实验步骤和心得体会,同时,坚决杜绝学生修改实验结果、弄虚作假等行为。整个实验考核包括实验预习报告(30%)、实验操作能力(20%)、实验报告主体(20%)、实验结果分析(30%)。总之,制定科学合理的实验考核评价体系,兼顾实验课教学中的每一个环节,这样才能全面、客观地考核学生的实验操作能力、设计创新能力、综合分析能力以及实验报告的撰写质量。

如今专门针对生物技术专业的具有本专业特色的遗传学实验体系尚未成熟,因此为了提高学生的专业技能和培养具有专业特色的高素质人才,本教研室通过现有实验室资源,充分调动学生的主观能动性,对生物技术专业遗传学实验教学中存在的问题进行了探索,对原有的实验教学体系进行积极的改革,建立了新的实验教学体系,并取得了较好的教学效果。

参考文献:

[1]朱玉贤.现代分子生物学(第2版)[m].北京:农业出版社,2002.

遗传学基本原理篇6

一、夯实基础,落实知识目标

遗传学知识理论性强,涉及的概念比较多,对中学生而言,这些抽象的概念不容易理解。课程目标中有关遗传学内容的知识目标实现不尽如人意,学生对遗传学基本概念和原理的理解比较普遍地存在:(1)不准确、不透彻;(2)不会正确地表达。在高考测量中,这两种情况是很难区分的。所以,在课程目标的实现过程中,教师应重视遗传学基本知识、基本理论,引导学生构建遗传学基本知识体系框架,通过逻辑递进和知识脉络理解,组合遗传学的基本概念,强化基础知识和理论的实际运用、综合运用。有效地学习策略是:(1)帮助学生提高生物学的学科素养,结合遗传学发展史,认识遗传学基本理论的形成;(2)引导学生逐一理清遗传学各个知识点,以及相互之间的联系;(3)解析各知识点的构成要素和含义,理顺遗传学的知识脉络;(4)按照各知识点的目标层次,进行材料阅读、关键词辨别、逻辑推演、科学表述的能力训练。综观自然学科的发展里程,基础知识、基本理论是学科建立和形成的基石。以遗传学的基本定律、基本理论为辐射中心,建构遗传学知识网络,理清各部分内容的内在联系,达到深入理解和融会贯通,并形成一定的应变能力,在分析、解决问题时才能做到游刃有余。

二、领悟方法,养成科学精神

对于科学素养的定义,国内多数学者认同的是:了解并能够进行个人决策、参与公民和文化事务、从事经济生产所需要的科学概念和科学过程。科学概念的理解和掌握可以通过课堂教学实现,科学过程则需要经历实验、实践得到体验。遗传学教与学所存在的困难,与忽视情感目标的落实不无关系。缺乏科学过程的体验,科学价值观则难以真正形成,对基础知识、基本理论的理解就会限于书本。遗传学同生物学其他分支学科一样,全部的知识、理论都是源于对自然界生命现象的观察假设实验推论否定再实验…直至形成结论,这个过程会有新的问题、新的发现,促使科学研究的方法也因此不断的改进、更新。生物学与其他自然科学不同的是:研究的对象――生命有机体个体间的差异以及环境影响因素多元、多变,因而常常导致研究结论的不确定性(非唯一性)。生物学的知识和理论,阐述的是生命现象的一般规律或趋势,有时,这种趋势可能是局部的或仅限于在某种生物类群中出现。所以,教师应该从辩证唯物主义的自然观、方法论出发,重视遗传学知识链的形成过程和其中蕴涵的科学方法,帮助学生领悟孟德尔在研究遗传学规律中应用的假说―演绎的方法、测交实验的预测中运用的演绎推理的方法;体验萨顿根据基因与染色体行为之间的平行行为推断基因位于染色体上的类比推理的方法。引导学生在构建遗传图解模型的基础上,运用假说中的推理法,表述亲代、子代的基因型、表现型及比例关系;学会对实验结果分析、解释,学会在不同的实验设计下预测实验可能出现的结果;关注遗传学中用数学方法解决问题的科学方法,如孟德尔遗传规律的获得中运用了统计学的方法对后代的性状进行统计比较,Dna中遗传信息的多样性、性状分离比的模拟实验、脱氧核苷酸序列与遗传信息的多样性、遗传密码、碱基与氨基酸对应关系、调查人群中的遗传病等知识中蕴含的数学方法。在学习Dna双螺旋结构模型的同时,领悟建立模型的方法;运用模型的方法理解遗传的基本规律,把握其实质,鉴别出基因分离规律模型对于细胞质遗传及无性生殖过程不适用等。

三、注重综合,实现能力目标

遗传学基本原理篇7

关键词:高中生物;遗传;教学;人文教育

中图分类号:G632文献标识码:B文章编号:1002-7661(2013)19-213-01

在高中生物教学中,“遗传的基本规律”是一个重点和也是一个难点,关于该部分的有些问题值得进行认识上的探讨和教学上的改进,使得在进行科学教育的同时渗透人文教育,从而达到提升学生生物学素养的目的。

一、在“遗传的基本规律”教学中发现的问题

笔者在进行高中生物“遗传的基本规律”教学时,讲述孟德尔的豌豆杂交实验以及对豌豆杂交实验的解释时,发现大多数学生似听非听,注意力不是很集中,当引导学生自行分析某些较为浅显的问题的时候,又不知所云,而且这一现象在不同的班级均有显现。课后了解到:初中生物八年级下册便在“基因的显性和隐性”讲述过这部分内容的,而且孟德尔的豌豆杂交实验早就在科普书上读过了。现在都高中了还讲这些,太小儿科了,没有听的价值。

虽然学生在初中时候学过孟德尔的豌豆杂交试验,但多数学生不了解遗传基本规律的具体的创建过程,以及围绕该实验应掌握的核心知识,比如,不少学生认为孟德尔就只做得豌豆杂交试验,得出了基因分离定律和自由组合定律。而忽略了这位遗传学家还总结出科学的遗传研究方法,并提出“遗传因子”假说,为遗传学的诞生和近代颗粒遗传理论的发展奠定了基础。对此问题的误解还表现在,学生在被问及怎样解释基因分离现象以及为什么孟德尔的要用测交实验来验证实验结果的时候,许多学生不着边际胡乱说几句或者干脆答不上来。

如果这一系列的问题没有得到有效的解决,那这一部分的教育便没有达到科学教育的目的,更难实现人文教育,也就无法涵养人文精神。因此,在遗传的基本规律教学中应重视以下几个问题:①重视孟德尔设计实验的科学程序的讲解:从物质到意识、现象到本质、特殊到一般、偶然性到必然性循序渐进地揭示了基因的分离定律,不可只揭示实验结果。②阐明孟德尔精心选择豌豆作为试验材料的道理,以及杂交技术的要点。③用数理统计方法定量分析试验结果。④高中教材中,这一部分所占的比重较大,考试所占比例也大,教师应注重理论与实际联系,加强对基本规律的理解。⑤本节内容知识点多,知识面广,而且知识点分散,跨章节多,新概念多再加上新的研究方法,使得这部分内容较难把握,教师应作好充分准备。

二、相关问题的探讨和教学改进建议

1、引导学生挖掘遗传的基本规律探寻过程中所蕴含的观点

孟德尔祖籍德国,贫寒的家境让他靠当家庭教师挣几个钱糊口,才勉强读完了中学。在奥尔缪茨大学哲学学院毕业后,孟德尔进入了奥古斯丁修道院。在修道院里,他矢志投身科学的心意弥坚,长年潜心于植物杂交实验,坚持不懈,终于在遗传研究上作出了划时代的发现。

起初,孟德尔的豌豆杂交实验,并不是有意为探索遗传规律而进行的。他的初衷是为了获得优良品种,只是在试验的过程中,逐步把重点转向了探索遗传规律。他首先在生物学领域引入了实验物理学的方法和理论,使用纯种豌豆进行实验,并用统计学的方法来处理实验数据。通过实验和分析,他发现了植物性状遗传的分离和组合的规律,并由此提出了遗传的显性和隐性原理,阐明了在控制生物的性状上,存在一种“遗传因子”的思想。1865年,他把自己的发现和理论阐述写成,这就是著名的《植物杂交试验》。可惜的是,在当时的生物学界,没有人能理解他的方法和他的发现的真正意义。到了1900年,人们才突然在图书馆里发现了他的《植物杂交试验》这篇划时代的论文,才理解了它的含义。这时,他已去世16年;距他的时间,已经35年。

以上对于孟德尔遗传的基本规律研究的揭示,对于培养学生的人文素养的意义在于:

首先,孟德尔刻苦学习的探究精神和投身科学的坚持不懈,让学生们了解到科学的道路没有一帆风顺,唯有不懈攀登的人才能达到光辉的顶点。成功需要扎实的专业基础,顽强的拼搏、充分的学习和借鉴前人的研究成果,成功就是1%的灵感加上99%的汗水。

其次,通过性状分离比的模拟实验让学生在实践中体会孟德尔的科学研究遗传学的方法,以及孟德尔科学严谨的实验研究过程。第三,孟德尔早年的刻苦努力的学习,让他能用数学上统计学的方法来分析植物实验结果。这种把生物学和统计学、数学结合了起来的研究方法,为他的成功又一次铺平的道路。所以,即使是同时代的博物学家很难理解他论文的真正含义。通过对这些知识的学习,可以培养学生在学习的过程中注重全面发展的意识,不断提高学生学科均衡发展的能力。

2、引导学生了解遗传的基本规律的价值,从而认识生物学教学的价值

遗传学基本原理篇8

关键词:基因突变;交叉互换;基因重组;受精作用生物变异在高考时最常见的考查形式为选择题,落脚点多为概念、原理的理解和判断,变异与减数分裂和有性生殖的关系等。下面就生物变异中常见的误解总结,辨析如下:

一、基因重组是否可发生在受精作用过程中

广义上讲,任何造成基因型变化的基因交流过程,都叫基因重组。而狭义的基因重组仅指涉及Dna分子内断裂―复合的基因交流。基因重组有两种情况,一种是可以发生在减数分裂过程中以及非同源染色上的等位基因之间,这叫自由组合;另一种是发生在同源染色体联会是的非姐妹染色单体之间,叫做交叉互换。而根据这种定义,课本上减数第一次分裂后期,非同源染色体上的非等位基因自由组合就不属于狭义上的基因重组。显然,课本中的基因重组是指广义上的基因重组。这样,受精作用就应属于基因重组范畴。但我们如果按广义的基因重组继续分析下去,染色体结构变异中的易位、细胞融合、植物体细胞杂交等也都应算是基因重组,而这又与高中教材变异的分类相违背。故这个问题一直困扰着广大教师和学生,具体到现在也没有一个定论。但个人认为,基因重组可分为:分子水平的重组、染色体水平的重组、细胞水平的重组。高中教材中所讲的变异把这些不同水平上的基因重组重新进行了分类界定。即高中阶段的基因重组应特指有性生殖中的分子水平的基因重组,而受精作用是一个细胞融合的过程,属于细胞水平。故个人认为,在高中阶段,受精作用不属于基因重组。

二、单倍体、二倍体、多倍体的判断

在学习过程中,学生对染色体组的理解,几倍体的判断,一直是教学的难点,知识抽象,难于理解。关于几倍体的判断,学生印象最深刻的恐怕就是“体细胞含有几个染色体组,就是几倍体”。这种错误的观点,往往是教师讲解、强调不到位;或是由于平时语言不规范,造成学生的错误认知,以至概念混乱,难于判断。教材上的概念强调,由受精卵发育而来的个体,体细胞中含有两个染色体组的个体称为二倍体,体细胞含有三个及三个以上染色体组的个体称为多倍体。单倍体是体细胞含有本物种配子染色体数目的个体。比较二者的定义,我们不难发现二者的起点不同,前者特别强调是由受精卵发育而来的个体。正确的几倍体判断的方法是:首先,区分来源,若个体是由配子发育而来的,不论体细胞中含有多少个染色体组,都是单倍体;若个体不是由配子发育而来的(分两种情况进行判断,由受精卵发育而来的个体,人工诱导染色体数目加倍的个体),则看染色体组数;若体细胞中含有两个染色体组,则为二倍体;若体细胞中含有3个以上的染色体组,则为多倍体。

三、可遗传的变异是否一定遗传到下一代

对于可遗传的变异与不可遗传的变异,学生往往只是从字面意思去理解,而不是抓住实质去区别。例如,三倍体无籽西瓜是否为可遗传变异的判断。学生往往回答,因为三倍体不可育,所以为不可遗传变异。但如果再深入的想一想,可遗传的变异一定要遗传下去吗?一定要通过有性生殖遗传下去吗?无籽蕃茄、无籽西瓜同为无籽果实,但二者有着本质的区别。前者是由生长素处理,由环境引起,遗传物质并未发生变化,为不可遗传变异;后者为染色体变异,属可遗传变异。再比如,生殖细胞突变更容易遗传给下一代,是否就说明生殖细胞更容易发生基因突变呢?这也是把变异与性状的传递混在了一起,所有这些错误的产生都是对变异的实质理解不够。可遗传的变异是遗传物质发生改变,引起的变异。可遗传变异不一定遗传到下一代,遗传到下一代也不一定表达,如无义突变、隐性突变等,且与遗传到下一代的几率无关。

四、基因突变与交叉互换的辨析

基因突变是指由于Dna分子上碱基对的替换、增添或缺失而引起的基因内部的可遗传结构的改变。基因突变的结果是产生原基因的一系列异质性等位基因,因而是生物变异的根本来源。基因突变是外因通过内因起作用的结果,其内因是基因碱基对的局部变化导致遗传信息变化,外因则包括物理因素、化学因素和生物因素等。由于稳定的Dna分子结构在复制解旋时容易受到外界因素的影响,因此Dna分子复制时是外因诱发基因突变的时机。基因突变既可能发生在减数分裂过程中又可以发生在有丝分裂过程中,而交叉互换只能发生在减数分裂过程中,发生在减数第一次分裂前期(减Ⅰ前)时同源染色体联会的时候,四分体的同源染色体的非姐妹染色单体之间,相互交换一部分染色体,进而交叉,属于基因重组。

生物学中有些概念非常相似,有时一字之差却谬之千里,误人非浅,教学中必须将概念讲清、讲透,才能更好地理解生物学现象和原理,必须学会从本质入手进行理解的、辨析性的学习。

参考文献:

[1]张飞雄主编.普通遗传学[m].北京:科学出版社,2004.

遗传学基本原理篇9

论证式教学;论证;科学史

科学的本质是基于证据的思想、解释与辩解,是证实和证伪的过程。论证式教学是指将科学研究方式引入课堂教学,让学生经历类似科学家的评价资料、提出主张、为主张进行辩驳等过程,从而培养学生科学的思维方式。论证是指围绕某一论题利用科学的方法收集证据,运用一定的论证方式解释、评价自己及他人证据与观点之间的相关性,促进思维的共享与交锋,最终达成限定条件下可成立的结论的活动。科学教育中实施论证式教学有利于学生对重要概念的理解,促进学生对科学概念的建构、科学探究的深入开展以及学生论证能力与解决问题能力的培养。

人教版《高中生物・必修2・遗传与进化》中的“Dna是主要的遗传物质”一节,提供了人类对遗传物质的探索历程丰富的科学史,展示了科学家如何逐步通过实证的方法获得相应科学结论的过程,也体现了科学技术的发展对科学认识的影响过程。复习教学时,可以通过论证式教学,解决学生普遍存在的“小鼠对两种类型肺炎双球菌的免疫过程是什么样的?”“转化因子为什么是遗传物质?”“艾弗里的实验既然已经证明Dna是遗传物质,为什么赫尔希和蔡斯还要用噬菌体侵染细菌做实验得出相同的结论?”“赫尔希和蔡斯的噬菌体侵染细菌能不能证明蛋白质不是遗传物质?”等四个疑问。

二、论证式教学设计思路

针对学生的四个疑问,以“Dna是主要的遗传物质”为主题,展开基于论证式教学策略的复习教学。通过问题设置、补充资料、还原科学史实,使得论证主题情境化,沿着“转化因子遗传物质Dna是遗传物质Rna是遗传物质Dna是主要的遗传物质”论证框架,逐步深化学生对“Dna是主要的遗传物质”这一重要概念的理解,并通过设置“质疑和辩驳”课堂活动环节,激发学生的复习热情和兴趣。再把相关生物变异、免疫调节、Dna分子结构、Dna分子杂交等重要概念穿插于复习教学中,使得学生体验和领悟科学精神以及科学、技术之间的相互影响。

论证是从学生活动“质疑举证:蛋白质是生物体的遗传物质”导入,再以“肺炎双球菌的转化实验”“噬菌体侵染实验”和“重组烟草花叶病毒接种实验”为主体展开对“Dna是主要的遗传物质”论证,最后归纳总结作为遗传物质应具备的基本条件。论证过程力图使学生领悟到:一个正确的结论可以通过不同的方法获得,从而认同科学结论获得的最基方法是实证方法,人类对科学的认识是不断深化和不断完善的过程。其中补充“两种肺炎双球菌的遗传关系”“肺炎双球菌引发人患肺炎和鼠患败血症的生理机制”等资料,对格里菲斯、艾弗里的肺炎双球菌转化实验进行方案与思路的还原,穿插引导学生运用生物变异、Dna分子杂交技术等概念解决“转化的分子机制”问题、运用免疫调节的知识分析“R型活菌与加热处理的S型死菌混合条件下在小鼠体内的数量变化”等问题。最后引导学生归纳Dna作为遗传物质的结构特性和功能特性。

通过上述论证教学,还引导学生认识“从微生物培养技术到物质分离提纯技术,从同位素标记技术到病毒重组技术,从X射线衍射技术到化学物质含量测定技术”等科学技术的发展对科学发展的影响。

二、论证式教学与反思

1.“蛋白质是生物的遗传物质”的论证式教学

学生通过回顾蛋白质相关知识,围绕主张“蛋白质是生物的遗传物质”从正、反两个方面提出相应的质疑和支持的证据。

证据①:组成蛋白质的氨基酸种类有20种,由于氨基酸的种类和数量不同、排列顺序不同,空间结构具有多样性,具有贮存大量信息的潜能。

证据②:蛋白质的功能具有多样性,其作为酶能够控制代谢,进而影响生物的性状表现。这与遗传物质能控制生物新陈代谢和生物性状相同。

证据③:蛋白质具有种属的特异性,遗传物质也具有种属的特性。

质疑①:蛋白质不能进行自我复制。这与遗传物质能够传递给子代不符。

质疑②:蛋白质的结构和含量不稳定。这与遗传物质具有结构和含量的相对稳定不符。

质疑③:蛋白质的结构和活性易受外界条件影响而改变。

2.“格里菲斯的肺炎双球菌体内转化实验”的论证式教学

围绕“死亡小鼠体内的S型活菌从何而来?”和“R型活菌如何转化S型活菌?转化机制属于基因突变还是基因重组?”这两个问题展开论证式教学。首先,教师在课前将补充资料和还原后的格里菲斯实验过程、结果整合成主题案例资料,以便学生课堂阅读,并布置学生根据上述两个问题提出主张和搜集证据。其次,展示学生依据资料提出个人的主张。再次,通过质疑与辩驳,学生基于证据,对自己的主张提供解释和补充证据,对他人的主张进行质疑。最后,对主张进行修正和限定,达成共识。

资料1:S型细菌有荚膜,其荚膜多糖称为内毒素,是一种抗原物质,对动物体有危害作用。当S型细菌被吞噬细胞吞噬后,由于荚膜的保护,能抵抗吞噬细胞的吞噬和消化,从而在细胞内迅速增殖、扩散,引起人患肺炎或鼠患败血症。而R型细菌无荚膜,则能被吞噬细胞吞噬、消化,所以不能使机体患病。

资料2:R型和S型是同一物种不同品系。R型是S型自身合成荚膜的基因突变形成,即R型是由于S型发生突变而丧失了合成荚膜能力而形成。R型和S两型可以相互转化。S型分为许多种亚型,分别被称为SⅠ、SⅡ、SⅢ等,其物质基础是构成荚膜的多糖存在差异。不同亚型的S型肺炎双球菌都能突变形成相应的R型,它们又都能发生回复突变形成相应的SⅠ、SⅡ、SⅢ,但只能发生同型突变(SiRi、SⅡRⅡ、SⅢRⅢ)。

资料3:还原后的格里菲斯实验

①问题1:死亡小鼠体内的S型活菌从何而来?

初步主张:观点①加热处理不完全,残余的S型活菌伤后复原繁殖产生;观点②S型死菌死而复生;观点③R型活菌自发突变形成,与加热杀死的S型死菌无关;观点④R型活菌在加热处理的S型死菌的作用下转化产生;

基于证据的辩驳:针对观点①②,学生提出质疑的间接和直接两种证据。如证据①:蛋白质高温变性失活,是不可逆过程(间接证据);证据②:第三组实验结果小鼠健康存活表明,加热处理已致S型活菌完全死亡。针对复活观点,学生补充提供了其通过网络搜集的证据,格里菲斯在1933年,在体外用S型细菌的无细胞提取物与R型活菌混合培养实验,仍然发现S型活菌的出现。证据③:第一组实验结果表明,实验过程中,R型活菌没有自发突变形成S型活菌(直接证据)。

归纳解释:R型活菌发生性状的转化,且这种转化可传递给子代。这表明R型活菌的遗传物质发生了稳定性的变化,这种可遗传变异与S型死菌有关。

完善主张:在加热杀死的S型菌中存在某种促成这种转化的活性物质(转化因子),这种转化因子将无毒性的R型活菌转化为有毒性的S型活菌。

②问题2:“R型活菌如何转化S型活菌?转化机制属于基因突变还是基因重组?”

预设主张:观点①R型细菌自身的基因发生突变转化形成;观点②R型细菌获得S型死菌的有关特异性荚膜合成部分遗传物质,通过基因重组实现转化。

支持辩护:先引导学生比较两种观点,使其明白两种观点的主要区别是对转化因子作用的界定上,观点①认为转化因子的作用是诱变剂,而观点②认为转化因子的作用则是遗传信息的载体,即转化因子是遗传物质。再启发学生进行反向推理,最后利用提供材料进行判断。如若是基因突变,则Rii型细菌只能发生同型突变形成Sii型细菌,而实验分离得到是Siii型细菌,从而否定观点①,而支持观点②。

完善主张:R型活菌发生性状的转化的本质由于其接收了加热杀死的S型细菌的部分遗传物质,并实现重组整合形成的。

教学过程中,学生往往提出有关“为什么加热没有使遗传物质失活?”问题,此时教师可直接补充“加热所使用的温度”与“遗传物质的热稳定性”等资料加以说明,也可“留白”,让学生课后自己搜集材料思考。

本环节教学中,教师还设计两个问题来观察学生对这一主题是否真正理解,以及学生能否运用实证的方法获取相关经验。问题①:请用现代生物学相关方法区分Rii活菌是转化为Sii型,还是Siii型?问题②:请分析格里菲斯第四组实验小鼠体内两种类型细菌的数量变化?值得欣慰的是,关于第一个问题学生在教师引导下能够提出三种解决方案:①微生物形态结构显微观察;②Dna分子杂交技术;③免疫反应抗体分析。关于第二问题学生也能做出正确判断:R型先降后升,S型从无到有。

3.“艾弗里的肺炎双球菌体外转化实验”的论证式教学

先抛出“艾弗里的实验结论不被当时大多数科学家接受”的史实引发学生疑问,接着展示还原后的真实的艾弗里实验方案,再让学生对比教材编者处理过的实验方案,使得学生认识到虽然物质分离方法不同,一个采用现代提取分离提纯技术,一个采用酶解逐个成分去除技术,但实验设计思路是一致的。从中提示学生注意艾弗里采取上述方法是受限于提取分离技术,使其初步认识到技术与科学之间的关系。最后,引导学生分析实验现象,肯定艾弗里实验结论的正确性。并简要补充介绍当时社会背景和一些导致艾弗里成为诺贝尔奖遗漏之珠的科学事件,让学生领悟科学发展的曲折以及科学精神。

4.“噬菌体侵染细菌实验”与“重组烟草花叶病毒接种实验”的论证式教学

关于噬菌体侵染细菌实验的复习,先通过问题引导学生思考实验材料选择的依据,并从材料选择引出实验设计思路。然后引导学生思考该实验如何实现Dna与蛋白质分离的观测,得出同位素标记方法。接着引导学生将实验现象和实验结论有机联系起来。再运用反证法说明蛋白质不是遗传物质。重组烟草花叶病毒接种实验方案则作为补充资料,用来修正“Dna是生物的遗传物质”这一主张。并通过细胞生物和非细胞生物的遗传物质比较表,进一步完善、达成共识“Dna是主要的遗传物质”。

遗传学基本原理篇10

关键词遗传标记;生物技术;应用

abstractasthebiologicalscienceandbio-technologydeveloping,geneticmarkers,particularlymolecularmarkersareincreasinglywidespreadinbiologicalresearch.inthisarticle,thedevelopmentandclassificationofgeneticmarkerswerediscussed,andtheapplicationinbiotechnologywasintroduced.

Keywordsgeneticmarker;biotechnology;application

遗传和变异作为生物的重要特征之一,决定着生物的生存和进化。在对物种的遗传和变异进行研究的过程中,遗传标记(Geneticmarker)是指那些表现变异性,且遵循简单遗传方式的性状或物质,是非常重要的任何遗传分析都不可缺少的工具,其作为遗传物质特殊的易于识别的表现形式,可以用来研究基因遗传和变异的规律[1]。

1遗传标记的发展

19世纪60年代,mendel以豌豆为材料,详细研究了豌豆的7对相对性状的遗传规律。由于这些性状都具有典型的外部形态,很容易识别,从而构成了最早的遗传标记,即形态学标记,由此奠定了近代遗传学的基础。1900年以后,morgan等将mendel所称的“遗传因子”(inheritedfactor)的行为与细胞核内染色体的行为相联系进行研究,导致细胞遗传学的诞生,从而使细胞学标记得到应用。随着生物学各个分支学科的发展,遗传标记从可见形态的表现型扩展到生理、生化、细胞、发育和免疫等多个方面,但所有这些标记都是从生物学方面进行判别。1941年Beald和tatum通过研究红色面包酶的生化突变型,提出了“一个基因一个酶”的假说,创立了生化遗传学,这也是第1个将生化标记用于遗传多样性分析的实例。生化标记在50年代末60年代初被大量应用。同工酶标记的兴起,使遗传标记的识别突破了活体形式,但仍然没有突破表达基因的范围。1953年,watson和Crick提出了Dna分子结构的双螺旋模型,宣布分子遗传学时代的到来。1974年,Grodzicker等首次提出Dna限制性片段长度多态性(RFLp)可以作为遗传标记,开创了直接应用Dna多态性作为遗传标记的新阶段。1985年mullis等发明了聚合酶链式反应(polymerasechainreaction,pCR),使直接扩增Dna的多态性成为可能,随着pCR的迅速发展,又产生了各种新型的分子标记,从而使遗传标记进入了一个日新月异的发展阶段[2]。

2遗传标记的分类

2.1形态学标记

形态学标记是最原始的生物性状遗传标记,是指肉眼可见的生物特定的外部特征特性。经过遗传学家的努力,已建立了许多形态标记的遗传图谱,但需要寻找或人工诱变突变体。这就使形态标记构建时间变长,并且这种标记易受环境影响,突变对有利形态标记会产生不利影响[3]。

2.2细胞学标记

随着遗传学和细胞学的发展,人们将遗传现象与染色体结合起来。染色体数目及结构的变化常常引起表型的变化,因此染色体的变化可以作为一种遗传标记。

2.3生物化学标记

1952年neilands首次结晶出2种类型的乳酸脱氢酶,并证实它们为同工酶,即它们是来源相同、催化反应性质相同而分子结构有差异的酶蛋白分子。不同的同工酶所带的电荷不同,可通过电泳分离,并经与底物反应或染色,检测它们的存在与否和分子质量的大小,因而可作为遗传标记。但在植物的群体研究中,仅有10~20种同工酶表现出位点的多态性[4]。

2.4免疫学标记

免疫学标记是以动物个体的免疫学特征为遗传标记。早在1900年,ehrlich和morgenroth指出山羊红细胞表面存在抗原,并证明这些抗原具有个体差异。20世纪80年代初,人们转向白细胞抗原的研究,即主要组织相容性复合体(mHC),根据个体淋巴细胞抗原特异性,研究品种间、个体间的性状差异,并应用于遗传育种[5]。

2.5分子标记

生物体之间的差异本质上是Dna水平上的差异。以Dna多态性与性状间的紧密连锁关系为基础遗传标记,是性状基因的真实反映,能在不同发育阶段对不同组织Dna进行检测分析。分子标记具有以下优点:直接以Dna的形式出现,不受环境和其他因素的影响;多态性几乎遍及整个基因组;表现为中性标记;不影响目标性状的表达,与不良性状无必然连锁;有许多分子标记为共显性;部分分子标记可分析微量Dna样品[6]。

3遗传标记检测技术的分类

Dna分子标记检测技术大致可分为3类:第1类是以电泳技术和分子杂交技术为核心的分子标记技术;第2类是以电泳技术和pCR技术为核心的分子标记技术;第3类是以Dna测序为核心的分子标记技术。

3.1以电泳技术和分子杂交技术为核心的分子标记

3.1.1限制性片段长度多态性(RestrictionFragmentLengthpolymorphism,RFLp)。RFLp是利用放射性同位素标记(如32p)或非放射性标记(如地高辛标记)探针,与转移于支持膜上的总Dna(经过限制性酶消化)杂交,通过显示限制性酶切片段的大小,来检测不同遗传位点变异(多态性)的一种技术。

3.1.2Dna指纹(Dnafingerprinting)标记。Dna指纹标记是以重复序列为探针进行分子杂交,由于不同基因型中的重复次数不同而产生多态性的分子标记。目前常用的Dna指纹标记主要有微卫星Dna(microsatelliteDna)标记和小卫星Dna(minisatelliteDna)标记。

3.2以电泳技术和pCR技术为核心的分子标记

pCR技术问世不久,便以简便、快速和高效等特点迅速成为分子生物学研究的有力工具,尤其是在Dna分子标记技术的发展上更是发挥了巨大作用。根据所用引物的特点,这类分子标记可概括为3种类型:

3.2.1单引物pCR标记。是以一个寡核苷酸序列为引物,对基因组Dna进行pCR扩增来鉴别多态性Dna的过程。其代表性技术是RapD。随机扩增多态性Dna(RandomamplifiedpolymorphismDna,RapD)是以寡核苷酸序列(通常为10个核苷酸)为引物,对基因组Dna随机扩增,从而得到多态性图谱作为遗传标记的方法。

3.2.23′端具有选择性的双引物pCR标记。该类最典型的技术为扩增片段长度多态性(amplifiedfragmentlengthpoly-morphisms,aFLp)。其基本原理是利用一个在基因组Dna中酶切位点少的内切酶和一个内切酶位点多的内切酶组合,对基因组Dna进行完全消化,再使用双链人工接头与酶切片段的粘性末端连接作为反应模板,先进行预扩增,之后再进行选择性pCR扩增,最后通过变性聚丙烯酰胺凝胶电泳展现其多态性[7]。

3.2.3基于特异双引物的pCR标记。切割的扩增产物多态性序列(Cleavedamplifiedpolymorphismsequence,CapS)标记是指pCR产物经限制性内切酶消化后所表现出的Dna片段长度的变异,表现为共显性遗传。特异引物序列来自基因数据库、基因组或cDna克隆以及已克隆的RapD条带等。

3.3以Dna测序技术为核心的分子标记

随着人类基因组研究计划的深入和Dna自动测序技术的不断改进,以Dna序列为核心的分子标记也孕育而生,其中最具代表性的是表达序列标定标记(expressedsequencetags,eSt)。eSt标记主要是在cDna文库中随机挑选克隆,并进行单向测序(Singlepasssequencing)生成的250~400bp的核苷酸序列片段。由于etS来源于cDna克隆,因此部分反映了基因组的结构及不同组织中基因的表达模式[2]。

4遗传标记的应用

4.1遗传图谱的构建

一般步骤包括:选择用于作图的遗传标记;根据遗传材料的多态性确定作图群体的亲本和组合;培育具有大量遗传标记处于分离状态的群体或衍生系;作图群体中不同个体和品系标记基因型确定;标记之间的连锁群的构建。

4.1.1经典遗传图谱。经典遗传图谱构建理论基础是染色体的交换和重组。用重组率来揭示基因间的遗传图距,其单位用厘摩(centimorgan,cm)表示,1个cm的大小大致符合1%的重组率[8]。

4.1.2分子遗传图谱。在高等植物中,RFLp最初用于已被经典遗传学比较详细研究的一些作物的遗传图谱的构建,如玉米和番茄[9-10]。对样品提取所得Dna采用多种限制性内切酶处理,对所有探针在亲本间的多态性进行检测。aFLp能够揭示大量的多态性位点,可以弥补传统的RFLp标记多态性低的缺点,特别是对于没有很多Dna序列的物种来说,利用其近源种的Dna序列(包括eSt)而发展的其他分子标记结合aFLp标记,构建高密度的遗传连锁图是非常有效的一种策略[11]。

4.2基因定位

基因定位是遗传学和育种学研究中的重要内容,也是基因克隆的基础工作。目的基因的定位一般要经过初步定位和精细定位2个过程。目的基因的初步定位是利用分子标记技术在一个目标性状的分离群体中把目的基因定位在染色体的一个区域内。在初步定位的基础上,利用高密度的分子标记连锁图对目的基因区域进行区域高密度分子标记连锁分析,以便精细定位目的基因。

5小结

动物遗传标记是随着人类对基因由现象到本质的认识而由形态标记向分子标记逐步发展的过程,技术手段由复杂、高成本向简便、低成本转变。各个阶段的遗传标记方法,各有其优缺点和使用范围。随着分子生物学技术的深入和完善,遗传标记手段必将逐步改进,为遗传学研究和遗传育种起到巨大的推动作用。

6参考文献

[1]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.

[2]王永飞,马三梅,刘翠平,等.遗传标记的发展和分子标记的检测技术[J].西北农林科技大学学报:自然科学版,2001,29(6):130-136.

[3]李柱刚,崔崇士,马荣才.遗传标记在植物上的发展与应用[J].东北农业大学学报,2001,32(4):313-319.

[4]张培江,才宏伟,袁平荣,等.利用同工酶标记水稻亲本遗传差异及其在杂交水稻育种中的利用[J].杂交水稻,2002,17(2):47-52.

[5]魏麟,黎晓英,黄英,等.遗传标记及其发展概述[J].动物育种,2004,21(10):42-45.

[6]王关林,方宏筠.植物基因工程[m].2版.北京:科学出版社,2002.

[7]李韬.aFLp标记技术的发展和完善[J].生物工程学报,2006,22(5):861-865.

[8]刘杰,何德,李永红.林木遗传图谱构建的研究进展[J]生物技术通报,2008(1):38-41.

[9]黄烈健,向道权,杨俊品,等.玉米RFLp连锁图谱构建及大斑病QtL定位[J].遗传学报,2002,29(12):1100-1104.