首页范文废水净化处理的方法十篇废水净化处理的方法十篇

废水净化处理的方法十篇

发布时间:2024-04-25 19:47:18

废水净化处理的方法篇1

关键词:美容废气废水废油设备措施

汽车在美容施工中,产生了废气、废水、废物等污染物,如处理不当将导致大气污染、水质污染和土壤污染.造成社会性公害。因此,治理“三废”,保护环境是汽车美容施工中不可忽视的重要问题。

一、废气的处理

汽车美容施工中产生的废气主要来源于喷涂散发的漆雾和溶剂挥发的蒸气。尤其溶剂蒸气是一种毒性很大的气体物质。一般液态涂料的溶剂含量约占50%~60%(硝基涂料甚至高达80%),这些溶剂在涂装中全部挥发成气体。为防止废气造成大气污染,常采用活性碳吸附、触煤燃烧和直接燃烧等方法进行治理。

1.活性碳吸附法

这种方法是采用活性碳作为物理吸附剂,利用其毛细管的凝聚作用和分子间的引力,把有害物质吸附在活性碳表面上,使废气净化。

2.触媒燃烧法

这种方法是将作为有机溶剂的气体加热至2000℃~4000℃,通过进行氧化反应,这样可以在较低温度下燃烧,热能消耗少。

3.直接燃烧法

直接燃烧法是将含有机溶剂的气体加热至6000℃~8000℃,使其直接燃烧,进行氧化反应,分解为二氧化碳和水。

二、废水的处理

在汽车美容的清洗、湿打磨等作业中,将产生大量废水,这些废水中含有油污、清洗剂等有害物质,必须进行净化处理,使之符合工业废水最高允许排放浓度及地面水质的卫生要求才能排放,以减少环境污染,保证水质卫生。

1.油污的处理

清洗汽车下身、底盘时产生大量含油废液。这种油污主要以乳化油的状态存在,油分子的粒径很小,不易从废液中去除,通常采用破乳――油水分离――水质净化方法进行油污处理。其原理如下:

(1)破乳。主要用外加药剂来破坏废液中乳化胶体溶液的稳定性,使其凝聚。常用的药剂有氧化钙、氯化钠、氧化镁等。为了使油珠和其他悬浮物尽快地分离,并生成微小的凝絮,还需投加混凝剂。常用的混凝剂有:硫酸铝、聚合氯化铝、硫酸亚铁、活化硅酸、聚丙烯酰胺等。

(2)油水分离。通过破乳、凝聚处理,油珠和杂质生存凝絮。然后用物理方法使油水分层,去除沉淀,达到分离的目的。

(3)水质净化。经破乳、油水分离后,水中油分和有机物都大大降低,但水中还存在着微量的油和一些水溶性表面活性剂,可通过吸附、过滤除去。

2.碱性废液的处理

汽车表面清洗采用的大多为碱性清洗剂,对废液中的碱可以采用中和法进行处理。

(1)将碱洗废液与酸洗废液互相中和,使pH值为6~8。

(2)采用加药中和,常用的中和剂为工业用硫酸或硝酸。

3.酸性废液的处理

对酸性废液处理通常也是采用中和法。方法一是将酸性废液处理与碱性废液互相中和,使pH值为6~9。方法二是采用投药中和法。常用中和剂有:纯碱、烧碱、氨水、石灰乳、碳酸钙等。

三、废水再生利用

在汽车美容行业中水消耗量大,如果把洗车用过的废水进行处理后再用,不仅可节约用水,降低成本,而且还可以减少水污染,是一项利国利民的好事。

1.主要设备

废水再生利用的主要设备有:水泵、蓄水箱、沉淀池、过滤槽和过滤塔等。其中过滤塔的结构最复杂,它由塔身和五道过滤层组成,过滤层从下到上依次为鹅卵石层、方解石层、棕纤维层、海绵层和净水剂层。

2.工艺流程

废水再生利用工艺流程如图l-1所示。

(1)废水回收

首先要控制废水的流向,洗车场应建有封闭的废水回流地沟,确保洗车废水都能流入地沟,地沟的出口为过滤槽。

(2)初次过滤

初次过滤的目的是吸附、沉淀或除去部分泥沙等粗大颗粒。该工序在过滤槽中进行,过滤槽中设有方解石层、海绵层和净水剂层三道过滤层。废水经三道过滤层过滤后进入沉淀池。

(3)沉淀处理

沉淀处理的目的是除去水中的悬浮颗粒。

(4)净化处理

净化处理在过滤塔中进行,废水在塔内依次经过鹅卵石层、方解石层、棕纤维层、海绵层和净水剂层进行净化。过滤出来的杂质沉淀于塔内底层,通过释放阀可将沉淀物排出。净化后的水最后流入蓄水箱,蓄水箱中的水经过一段时间的静置便可再次使用。

参考文献:

1.覃维献编.汽车美容.北京:北京理工大学出版社.2009.2

废水净化处理的方法篇2

关键词:废水处理;成本;费用

中图分类号:X703文献标识码:a文章编号:1001-828X(2012)08-0-02

株冶是传统的铅锌冶炼企业,主要生产锌、铅、铜、镉、合金及硫酸等产品。在铅、锌冶炼工艺过程中产生大量含锌、铅、铜、镉、汞、砷等重金属的酸性污水,经生物制剂+石灰或生物制剂+氢氧化钠处理后,重金属离子达到GB25466-2010铅锌工业污染物排放标准。随着我国对环境污染防治和治理力度的不断加大,各种污染物的排放指标更为严格。特别是2006年起,我国对铅锌工业废水的排放实施总量控制与浓度控制相结合的方法。而株冶废水年总量达500万吨,与湖南省签订的“十二五”节能减排指标年外排水量为60万吨,通过生物法处理后年回用量为320万吨,总外排水量仍大于60万吨排放量目标,因此必须对废水进行深度净化处理后回用,进一步降低外排水量。

目前,株冶废水处理系统包括石灰法处理生产高钙外排水、生物法处理生产低钙回用水、膜深度净化生产淡水三套运行模式,其中高钙水外排,低钙水进系统补充工艺用水,淡水进生产水管网。每种水质由于处理工艺不同,相应生产成本也有很大差异。在我国对环保的要求日趋严格,民众环保意识不断增强的情况下,企业对环保的投入越来越大,如何达到环保达标与企业效益双赢的目标,控制环保项目运行成本尤显关键。

一、废水处理成本构成

企业生产成本构成分为:原料、燃料、动力、生产工人工资、工资附加、制造费用,除原料外,其他成本项目又统称为加工费。同时生产成本又可划分为可控费用和不可控费用。对于生产厂而言,燃料、动力、制造费用一部分属于可控费用,如水处理厂年预算2550万,在财务上就叫可控费用,而原料、生产工人工资、工资附加、制造费用另一部分属于不可控费用。中和渣为废水处理过程中间产品,按每吨金属量200元冲减成本。净化水为废水处理产品,按每吨0.8元冲减成本。废水处理成本构成见表1。

表1废水处理成本构成

2011年废水处理成本费用总额为3988.40万元,其中材料成本1585万元,占总成本的41%,制造费用1428.80万元,占总成本的36%,材料成本与制造费用占废水处理总成本的77%。废水处理量为564万吨,废水处理单耗成本为6.64元/吨。2011年废水处理成本构成见表2。

二、废水处理三套运行模式成本构成

1.生物制剂+石灰法生产高钙外排水成本

生产高钙水模式运行170天,处理废水261.74吨,材料单耗为1.68元/吨,高钙水处理成本见表3。

2.生物制剂+氢氧化钠生产低钙净化水成本

按低钙水模式运行11天,处理废水20.26万吨,低钙水处理材料单耗为3.31元/吨,由此可见,低钙水模式处理废水的材料单耗是高钙水模式的约2倍。低钙水处理成本见表4。

表22011年废水处理成本

表3高钙水处理成本

表4低钙水处理成本

3.膜深度净化生产淡水成本

膜深度净化产淡水13.4万吨,发生费用136.3万元,处理成本见表5。

表5膜深度净化处理成本

膜深度净化产淡水13.4万吨,每吨水材料成本为10.17元,这主要由膜产水较少,生产运行不正常导致。

由此可见,如果按照低钙水模式生产,材料费将达到1866.80万元(3.31×564),比实际多出1866.80-1585=281.80万元,膜深度净化产淡水按公司制定的年产60万吨目标组织生产,2011年膜深度净化产淡水材料费用将达10.17×60=610.20万元,比实际多出337.60万元,2011年废水处理总费用将达到2524万元,与预算的半年2550万元基本持平。

三、影响废水处理成本的因素

1.制造费用

2011年年制造费用总额为1428.8万元,比2010年同期上升475.6万元,相比增加31%。制造费用超支的主要原因:

(1)由于2011年大多数材料价格上涨,2011年材料成本差异258万元,比去年同期增长264.2万元。

(2)2011年修理费中备品备件费用发生196.1万元,比去年同期的127.1万元增加69万元,增加54.28%。

(3)2011年发生劳务用工费用62.1万元,比去年同期的48.3万元增加13.8万元,增加28.6%。

(4)制造费用中的工资及工资附加,2011年发生242.6万元,比去年同期的209.2万元增长33.4万元,增长16%。

由上可见可控成本费用包括备件费用及劳务用工合计增长102.4万元,不可控成本费用材料价格差异及工资和工资附加增长291.4万元。

2.消耗材料

2011年发生消耗材料费1585.00万元,比去年同期的1568.2万元增长16.8万元,比去年同期增长1.1%。2011年消耗材料费用见表6。

表62011年消耗材料费用

从表6可以看出片碱消耗比去年同期增幅较大,主要是应急投加和废水水质水量波动较大,废水平均流量566.85m3/h,水量同期减少4.67%,但废水含锌上升55.14%,且水质波动大,废水水质见表7。

表7废水水质

3.动力能源

2011年动力能源消耗319.60万元,比去年同期增长47.5万元。动力能源消耗的主要原因:

(1)自来水

2011年自来水消耗9483吨,发生费用3.32万元,比去年同期的3.48万元节约0.16万元。

(2)交流电

2011年交流电用量596万千瓦时,费用313万元,去年同期的电耗200.2万元增长112.8万元,主要原因是膜深度净化系统运行新增耗电,并且运行时间不连续导致频繁开车增加电能消耗。

四、废水处理成本控制措施

从废水处理成本构成及影响因素可以看出,要有效的控制废水处理成本必须从源头废水水质水量控制、药剂消耗材料控制、系统经济运行三方面入手。

1.源头水质水量控制

实施车间废水排放在线监控,对每个废水排放口的水量进行实时检测,数据传输到公司废水在线监测网,使每个排放口的废水流量时刻受控,在水量出现异常时可以及时发现并采取措施处理。

制定废水水质考核办法,将废水水质与废水排放单位员工奖金挂靠,促使各个车间排放口主动控制水质。总废水进口Zn金属量m考核办法:m

2.药剂消耗控制

根据废水处理过程的实际需要和成本费用总量控制相结合原则,实行成本倒推法控制药剂的消耗量。使用单位根据生产安排,预算下个月的药剂消耗,负责药剂的计划与验收,材料员按计划进行药剂采购。生产工段将成本指标分解到班组,落实到岗位,开展班组经济核算,工段对班组按照“干什么、管什么、算什么”的原则,实行“看得见、摸得着、算得了”的投入产出核算。特别是采取建立日台账,周报表,月总结的方法,使药剂的使用得到很好的控制。

建立药剂成本消耗的动态管理考核体系。由于低钙净化水和膜深度净化成本较高,生产工段没有积极性运行这两套生产模式,为确保完成低钙净化水和膜产水的目标,制定了药剂成本消耗动态管理考核体系。670(基本费用,万元)+235(回用净化水,万吨)×4(回用净化水单位药剂成本,元/吨)+60(膜系统产水,万元)×6.5(膜深度净化产淡水单位药剂成本,元/吨)=2000万元(不含动力费用;含各种药剂费用、材料费用、污酸处理石灰乳费用)。每月目标成本=55.8(万元)+当月净化水产量(万吨)×4(回用净化水单位药剂成本,元/吨)+当月膜产水量(万吨)×6.5(膜系统产水单位药剂成本,元/吨)。形成每月目标成本与实际消耗成本的差额,并按差额费用的10%对工段进行考核,使得工段在成本控制方面更有积极性。

3.废水处理系统经济运行

建立废水处理三套生产模式的经济运行方案。充分做好石灰法生产高钙外排水,生物法生产低钙回用净化水,膜深度净化生产淡水的成本控制与技术指标的预算和分析。在确保完成生产技术指标前提下控制运行成本。技术经经济指标目标见表8。

表8技术经济指标完成目标

五、结语

重金属废水达到GB25466-2010铅锌工业污染物排放标准成本为6.64元/吨,而要达到减量排放,消减重金属排放总量的目标则必须通过工艺升级,提高回用水率及回用水质来解决。但处理成本将进一步提高,膜深度净化生产淡水的成本达到了10.17元/吨,这对企业的成本控制是个很大的压力。通过对重金属废水处理成本的分析及重金属废水处理三套生产模式成本单耗的探讨,找出影响重金属废水处理成本的主要因素,提出了从源头废水质水量控制、药剂消耗控制、系统经济运行三方面的措施,这对提高企业环保项目运行效率及成本控制,达到企业可持续发展的目的是有益的尝试。

参考文献:

[1]宋梦洁.我国创新型企业成本控制的市场环境适应性[J].国际商务财会,2012,282(6):60-62

废水净化处理的方法篇3

随着新课程的实施,中学实验课增加了很多,实验后产生的废水量也越来越多。如果这些废水不加以处理而直接排放到下水道,尤其是化学实验后产生的废水,将会给所在城市的水处理系统造成严重的负担,不仅会增加污水处理的难度,也会对水资源造成极大的污染。

目前,新闻报道的多数针对高校、科研机构、检测机构和企业中的检验研究部门中的化学实验室废水,排放的特殊性、对环境的危害性及处理方法。这些部门排出的废水成分复杂,除无机物外还有重金属离子、细菌等微生物和有机物,处理药剂品种繁多。但针对中学实验室这方面的研究报道较少,而中学实验室废水的成分比较简单,含量较低,更易于处理。本文提出了净化处理实验室废水方案,并充分利用实验室现有器材设计了废水净化的流程图和操作装置,简单易行,既可减轻污水处理厂后续去除废水中杂质的负担,又为日后各中学化学实验室建设和废水处理提供一个参考方案。

一、实验室废水处理流程及装置

需要先收集每次实验后产生的废水,经过以下流程图来逐级进行净化操作,处理后的净化水可以直接排放,或回收再利用。具体操作过程如图1和图2所示。

图1化学实验室废水处理流程图

图2化学实验室废水的净化操作过程

对于处理过程中产生的有毒有害气体,如氯气等,需要回收或吸收,防止实验室内空气污染。如果实验室处理后的清水水质很好还可以回用,如冲洗厕所、浇灌花卉绿地等,这样可以节约大量水资源。如果出水水质一般,可以直接排放到下水道。特别提示,有些实验废水的酸性或碱性较强,需要考虑收集容器的防腐蚀问题,或需要用相应的废酸或废碱来中和。

二、化学实验室废水的处理方法

1.收集并分析化学实验室废水的主要成分

用实验室现有的下口玻璃瓶作为废水收集的容器(如图3所示),出水口在下方,有胶皮管和止水阀,便于取水。

图3

分析每次实验后收集起来的废水水质前,需要了解本次实验内容和所用药品类型,确定杂质离子的种类。观察废水中是否有固体物质,是无机化学沉淀物还是有机物,列表并记录。

2.调整废水的pH值

先用pH试纸或酸度计测定废水的pH值,以确定酸碱中和需要用废酸废碱(以废治废)的量和浓度,以防腐蚀设备,同时可以预先产生大量的沉淀物。

3.用化学沉淀法来分离废水中的可溶性离子

选择化学药品时要把握“种类少、用量省、价格便宜”的原则,根据废水的成分分批处理。Ca2+,ag+,Ba2+,So42-,Cl-等离子容易转变为沉淀和气体,而K+,na+,no3-等可溶盐离子用此法难以除掉。这种处理方法的缺点是,因加入化学药品而使水引入新的杂质,造成二次污染。

4.化学污泥的沉淀和过滤

通过上述化学沉淀法会得到大量的固体沉淀,需要进一步和水分离。先将反应后的混合液静置一段时间后,沉淀就会沉降到容器的底部而使溶液分层。若使用离心机进行离心分离,几分钟内就能完成。再将分层后的上清液进行过滤,进一步除去没有沉淀下来的固体。也可用真空抽滤器,几分钟内完成。

5.自制多滤层的废水净化器

取一个2~5L空饮料瓶或塑料桶,剪去底部,瓶口用单孔橡胶塞塞住,连接玻璃导管和橡皮导管(带止水夹)。将饮料瓶口朝下倒置,瓶内由下至上分层放置膨松棉、洗净的铁丝网(起支撑作用)、双层纱布、活性炭、双层纱布、混合后的阴阳离子交换树脂、双层纱布、石英砂和小玻璃珠(本试验中因石英砂和小玻璃珠的大小形状和粒径相近而混装)、铁丝网,最上层是多层纱布(可根据实际情况随时更换和清洗后再用)。

把经过沉淀和过滤后的废水的上清液倒入自制废水净化器,可进一步减少其中的悬浮物、离子和有色物质。

6.用活性炭吸附和脱色

废水中的某些有色物质,如酸碱指示剂反应后的产物、苯酚等有机物,如果浓度较大,也需要进行脱色处理。我们选择多孔、比表面积大、吸附和脱色性能好的活性炭,即可以吸附水中的细小固体杂质,还可以吸附可溶性的有色有机小分子。

7.电解法回收金属

高中学校实验室总会产生大量的高浓度的铜离子废水,我们用电解法先降低铜离子的浓度。用化学教科书上的电解实验装置处理废水,效率较低,有局限性。因此我们选择用图4所示的具支U形管,把阴极和阳极分开进行电解。用U形管电解实验来回收金属,如实验室CuCl2废水的处理,阴极和阳极附近的产物易分离,易回收。在阴极产生Cu,阳极产生Cl2。经过以上方法处理后,废水中的离子还有许多,如果想提高水质而回用,可采用电渗析技术。

图4电解CuCl2实验前中后溶液的变化

为了防止电解后产生的大量尾气污染空气,可在阴极支管端用小气球密封和收集少量的氢气,阳极支管端连接倒置的小漏斗来用浓碱吸收大量有毒的氯气。同时可以在阴极收集到大量的金属铜。电解后的废水再次收集器,进行下一步处理。

8.难沉淀的钠离子、钾离子、硝酸根等离子的电渗析

人造渗透膜(阴、阳离子交换膜)对要交换的离子具有选择性和透过性,水分子也可以自由通过。这种电渗析法膜处理技术,在现代工业水质净化中应用很普遍,但对于高中生则很陌生。它适合处理浓度较小的废水,否则会堵塞膜孔,影响出水水质甚至降低膜的使用寿命。它的优点是占地面积很小,处理的水量却很大,适合化学实验室使用。

电渗析装置在接通电源后会产生电场推动力,选择性地使阴、阳离子透过交换膜而分离溶质和水。一般,阴离子交换膜又叫阴膜,只容许阴离子通过;阳离子交换膜又叫阳膜,阳膜只让阳离子通过。图5为电渗析处理系统其中的一个单元,化学实验室可根据废水量而选择多个单元组成。

图5电渗析处理废水过程

电渗析装置工作过程:将已经过前处理的废水引流到废水入口处,经过半透膜通道时,其中的杂质离子分别通过阴膜和阳膜成为浓缩水而分别汇集到排污口,回收利用。这种电渗析装置可在常温常压条件下进行操作,浓缩分离同时进行,不需投加药品,出水的水质好,可再利用。目前电渗析法还被广泛应用到许多领域,如自来水厂和发电厂制取纯水,海水或苦咸水的淡化处理,酸洗废水回收硫酸和铁,芒硝回收硫酸和碱等。

如果我国所有的化学实验室都配备一套废水处理器,既节约了水资源,使废物资源化,又提高了下水管道的使用寿命,减少了污水处理的费用,还在广大学生中树立了环保节约意识。

参考文献

[1][英]tomStephenson.膜生物反应器污水处理技术[m].北京:化学工业出版社,2003

废水净化处理的方法篇4

关键词水产养殖;水体处理;水质净化;方法

中图分类号S959文献标识码a文章编号1007-5739(2014)03-0234-02

随着规模化水产养殖业的发展,养殖水体污染问题日益严重,来自水产养殖的环境负荷是水环境恶化的重要原因,成为人们关注的焦点[1]。因此,挖掘集约化水产养殖业内部的节水环保潜力意义重大。现对常用的水体处理方法应用现状进行综述,分析当前生物净化技术,对生态农业健康渔业提出一些展望。

1水产养殖水体自然生物处理方法

使用自然生物处理池塘养殖水体的方法一般有稳定塘、自然湿地及利用土地处理等方法,其优势是对于处理含tn和tp的养殖水体,具有较好的处理效果。非规模化水产养殖的自然水体本身类似于典型的自然湿地生态系统,具有一定的自净能力,在充分合理地利用其自净能力的情况下,能够较好地净化池塘养殖水体,并且经济合理。池塘的水生生态系统本身就有较强的自净能力,对渔业养殖水体的处理中,可以充分合理利用池塘的水生生态系统对污染物的净化能力来处理渔业养殖污水。

2水产养殖水体物理处理方法

2.1机械过滤法

由于渔业养殖废水中的生物排泄物和剩余饵料等主要以悬浮物形式存在,因此采用机械过滤去除是最为便捷、高效的处理方法。常用的过滤设施有砂滤器、压力过滤器、机械过滤器等[2]。在水产养殖废水处理工程实践中,机械过滤器使用较多,分离效果较好,其工作原理是将通过喷淋管喷洒到过滤箱,过滤箱内的过滤器和小粒径沸石颗粒过滤后的水返回到水池。

2.2光照处理法

光照处理作用机理是通过将微生物的Dna链断裂,造成微生物永久失活,从而达到灭菌的目的。光照处理系统对渔业养殖废水具有明显的处理效果,对渔业养殖废水中的no3--n、no2--n、nH4+-n、tp、CoD的处理效率分别为52.5%~61.73%、48.9%~57.86%、68.91%~80.07%、41.56%~49.87%、13.86%~25.68%[3]。光照处理法利用光照对池塘养殖废水进行处理,具有成本低、操作易、处理后出水水质稳定的特点。

2.3泡沫分离法

泡沫分离法是利用气泡的气液界面可吸附、浓缩污浊物质的性质,从而分离去除水中污浊物质之浮选分离法的一种方法[4]。泡沫分离和臭氧消毒设备对渔业养殖水体中异养微生物、nH4+-n、no2--n处理效率分别为86.72%~94.66%、36.56%~40.21%、37.59%~39.12%,能明显提高水体溶解氧,对CoD的处理效果较低;连续工作24h后,能有效降低渔业养殖水体中的no2--n的含量和异养微生物数量。泡沫分离法处理效果一般,在泡沫分离设备处理后位置比处理前位置的nH4+-n、no2--n和CoD浓度能降低38.92%~43.45%、23.65%~28.71%、10.52%~13.85%,但能明显提高出水溶解氧含量。

3水产养殖水体化学处理方法

养殖水化学处理法指通过在养殖水体洒入一定量的无机或有机化学制剂,与水中污染物或悬浮物发生反应以改善养殖水质,这种方法在传统渔业养殖中使比较普遍。根据化学反应类型可分为中和法、沉淀法、络合法、氧化还原法[5]。其中臭氧处理法已较广泛应用于渔业养殖用水的处理,效果比较明显,但臭氧处理法大幅度增加养殖的成本,同时具有一定的副作用,也不能降低养殖水体营养物质tn、tp等的含量,因此在渔业养殖废水的深度处理中应用较少。

4水产养殖水体生物处理方法

4.1生物制剂法

微生态制剂具有较强的生物活性,加入到渔业养殖水体后能够快速增殖而变为优势种。利用有益微生物改善渔业养殖水体环境、维持渔业养殖水体生态平衡,是保持渔业养殖健康和稳定发展的重要措施[6]。光合细菌是目前应用最多的一种水质微生态调控剂,光合细菌可利用水中的nH4+-n、H2S等污染物质,使水中的有毒有害成分降低,溶解氧增加,遏制水体的富营养化,增强水体的透明度,使水质得到改善。在pH值合适的情况下,芽孢杆菌为主的复合菌对养殖水体有很好的生态调控作用,特别对水体中nH4+-n、no2--n、no3--n和CoD的处理效率很好。随着投放时间不同,去除效果也不同,投入微生态制剂9d后,上述主要污染物含量显著降低,渔业养殖水体可以达到《地表水环境质量标准(GB3838-2002)》中Ⅱ类水域的水环境质量标准[7]。反硝化细菌对水体中的no3--n、no2--n处理效率也较好,研究表明,no3--n、no2--n为1mg/L的水体中,3d内no3--n、no22-n处理效率可以分别达到95.8%和90.2%[8]。

4.2活性污泥法

活性污泥法是渔业养殖水体生物处理的关键技术,其是以好氧微生物及其黏附的无机化合物和有机化合物所组成,具有吸附分解有机污染物,有效降低有机污染物浓度的能力。在经典的活性污泥处理法上发展而来成的aB法和SBR等处理工艺,具有更好的处理效果。Umbletal在渔业养殖污水排放沟中使用类似SBR法的操作方法进行好氧和厌氧处理,效果良好。meskeetetal对经典的活性污泥法处理渔业养殖循环水进行研究,其结果表明nH4+-n浓度较高达不到回用水质的要求。nugualetal使用SBR法工艺处理海水养殖废水的有机污染物并研究盐度对处理效果的影响,发现在处理盐度不是太高的海水养殖废水时,tn去除效果明显[9]。

4.3生物膜法

生物膜法由于具有产生活性污泥量少、运行维护便利、处理费用低廉的特点,在渔业养殖废水处理方面也有相对优势。生物膜法主要有生物转盘法工艺、生物接触氧化法工艺、生物流化床法工艺和生物滤池法工艺等,这些技术方法可根据微生物的多样化特征,选用于渔业养殖废水的封闭循环使用。由于生物膜上固定化的微生物密度较高、活性较强、反应速度更快,同经典的挂膜微生物处理工艺相比,对nH4+-n和难以降解的有机污染物具有明显的去除效果。在连续曝气的作用下,生物膜法对渔业养殖池塘中有毒有害的no2--n和nH4+-n等有很高的处理效率,尤其对nH4+-n的去除效果比不曝气的好。连续曝气对水体中可溶性p的去除无明显效果,不曝气时明显降低水中可溶性p浓度[10]。

4.4生物滤池法

曝气生物滤池是具有集生物氧化、过滤和生物吸附等多种处理工艺于一体的水处理工艺,其通过维持较高的水力负荷和保留较高的微生物浓度以减少环境冲击,能促进好氧微生物生长,同时污泥产生量较少。曝气生物滤池主要应用于受污染渔业水源的预处理、难降解污染物处理和回用水的深度处理,且应用前景很好。在规模化养鱼池塘中使用的生物滤池设备主要有平流式、降流式和升流式[11]。生物滤池的运行最关键的部分在于挂膜,滤料表面如果不能形成有效的好氧生物膜,则无法对渔业养殖废水进行处理。挂膜从环境微生物学的来讲,即菌体接种,使微生物吸附在滤料表面上。微生物的载体为生物滤池中的填料,在不更换滤料的情况下,生物滤池可以连续使用。

4.5渔业养殖水体人工湿地法

人工湿地按水流方式的不同可将其划分为表面流、潜流和垂直流3个类型。陈家长等[12]对表面流人工湿地系统对混养区渔业养殖废水的处理效率进行了研究,结果表明,人工湿地对渔业养殖废水中的CoD、nH4+-n、no2--n、no3--n、po43--p、tn和tp的处理效率分别变化在32.07%~50.00%、57.25%~91.67%、38.46%~79.59%、43.75%~81.82%、47.50%~78.67%、31.37%~80.00%和39.53%~71.43%,平均处理效率分别为41.69%、76.91%、53.06%、60.88%、61.33%、54.22%和59.15%。

5水产养殖水体处理发展方向

随着世界范围内的水环境污染和水资源短缺的日趋严重,未来世界各国将采用封闭式循环养殖方法,渔业养殖废水的综合利用和无害化排放技术研究具有巨大的实用价值和广阔的应用前景[13]。我国渔业养殖废水主要来自的渔业养殖结束后的排水及渔业养殖过程中的季节性换水和补水,排换水时间相对比较集中,发达国家广泛采用的渔业循环养殖技术,运行费用非常昂贵,不适合我国的国情,在我国难以推广。我国池塘养殖具有规模小、分散,且种养混合区域面积广,主要养殖品种的经济效益相对较低等特点,采用人工湿地和自然湿地水质净化系统处理渔业养殖废水[14],符合现代和未来生态农业的要求,通过调整渔业养殖生态系统的结构,减少和避免养殖废弃物在水体中的积累,在使渔业养殖水质得到净化处理的同时使这些渔业养殖废弃物再循环利用。进一步研究高效可行的规模化渔业养殖废水集中处理系统和工艺,改善渔业养殖水体生态环境质量,保护水资源和减轻渔业养殖排水对环境的负面影响,是我国渔业养殖可持续发展的重要方向。

6参考文献

[1]王君英.水产养殖对生态环境污染的控制措施[J].北京水产,2004(4):4-6.

[2]tiLLeYDR,BaDRinaRaYananH,RoSatiR,etal.Constructedwetlandsasrecirculationfiltersinlarge-scaleshrimpaquaculture[J].aquaculturalengineering,2002(26):81-109.

[3]晏小霞,唐文浩.光照处理系统对养殖废水净化效果的研究[J].农业环境科学学报,2006(25):201-205.

[4]谭洪新,周琪.泡沫分离―臭氧消毒装置的水处理效果研究析[J].渔业现代化,2008(1):15-19

[5]郭立新.循环水培高等陆生植物系统对水产养殖废水的净化研究[D].杭州:浙江大学,2004.

[6]邹健,方建光.微生态制剂在水产养殖环境生物修复中的应用[J].中国畜牧杂志,2007,10(43):60-61.

[7]孟睿,何连生,席北斗.芽孢杆菌与硝化细菌净化水产养殖废水的试验研究[J].环境科学与技术,2009(11):28-31.

[8]尹艳娥,沈新强,晁敏,等.反硝化技术对模拟养殖池塘修复的研究[J].农业环境科学学报,2009,28(8):1727-1732.

[9]方圣琼,胡雪峰,巫和昕.水产养殖废水处理技术及应用[J].环境污染治理技术与设备,2004,5(9):51-55.

[10]张寒冰,黄凤莲,周艳红,等.生物膜法处理养殖废水的研究[J].生态环境,2005,14(1):26-29.

[11]RoUSSeaUDpL,VanRoLLeGHempa,paUwnD.ConstructedwetlandsinFlanders:aperformanceanalysis[J].ecoleng,2004,23(3):151-163.

[12]陈家长,何尧平,孟顺龙,等.表面流人工湿地在池塘养殖循环经济模式中的净化效能研究[J].农业环境科学学报,2007,26(5):198-190.

废水净化处理的方法篇5

关键词:环保工程水处理超滤膜技术

中图分类号:te08文献标识码:a

前言

超滤是一种加压膜分离技术,它是由高分子材料采用特殊工艺制成的对称性半透膜。即在一定的压力下,使小分子溶质和溶剂穿过一定孔径的特制的薄膜,而使大分子溶质不能透过,留在膜的一边,从而使大分子物质得到了部分的纯化。通常,凡是能截留分子量在500以上的高分子膜分离过程被成为超滤膜。超滤过程为动态过滤,分离是在流动状态下完成的。溶质仅在膜表面有限沉积,超滤速率衰减到一定程度而趋于平衡,且通过清洗可以恢复。超滤装置一般由若干超滤组件构成。通常可分为板框式、管式、螺旋卷式和中空纤维式四种主要类型。

一、环境工程水处理中的超滤膜技术

1、使用双膜净水处理技术

双膜净水处理技术即使用双层过滤膜或结合反渗透与过滤膜进行净化处理的技术,采取双膜净水处理技术可以有效解决原水中盐度及水硬度过高的问题。我国目前已经存在很多地区,使用该项净水处理技术,例如盐度较高的沿海地区及一些水环境受到污染,水硬度相对较高的地区。过去在自来水生产中采用的传统净水处理技术,不能适应解决现在原水中存在的一些水污染问题,生产的水质不能满足城市饮用水的需求,因此,采取双膜净水处理技术。双膜净水处理技术和传统的净水处理技术相比,增加了超滤及纳滤净水膜或反渗透处理工艺流程,这样在水源处抽取的水原料经过超滤装置处理后直接进入到清水池中,还有一部分水原料经过反渗透处理进入清水池,经处理后的水混合、加工,最后向城市提供的饮用水水质较好,有一定的硬度。

2、围绕超滤进行的短流程净水处理技术

围绕超滤进行的短流程净水处理技术指的是将多道净水处理工艺集中到一起的净水处理方案,在我国环境工程水处理中有很多应用实践。使用该净水处理工艺需要有较好的取水水源,保证抽取的水原料有较好的水质;使用优点是可以不受到自来水处理厂规模的限制,既可以对现有的旧的自来水厂进行改造,也可以在此基础上进行新的自来水厂建设。不同的地区在使用该项技术的时候,需要根据本区的具体特点进行净水处理工艺的适当调整。例如,对于有些地区在水源处抽取的水原料有很高的质量保证,但是水中含有许多微生物,严重影响自来水厂出厂水的水质。一般对于这种情况,我们采取混凝加超滤膜净水处理的短流程处理技术进行净水处理,在原有的自来水厂净水处理设备基础上进行部分改造,缩短净水处理工艺流程。此外,该项精水处理技术使用的超滤膜通水量比较低,超滤膜一侧的水压差较低,有效的减轻超滤膜对原水的污染。超滤膜使用过程中不用长期进行清理,延长了超滤膜的使用时间。同时,这种净水处理技术对自来水厂出水装置进行改造,使得直接利用现有的设备进行出水,节约自来水厂生产、运行的成本。

3、超滤直接替代过滤处理技术

采用超滤净水处理技术替代传统的通过过滤的方式实现水的净化处理,改善自来水厂输出水的质量。使用这种净水处理技术需要能够在比较优质的水源处取得水原料,原水中含有较少的有机物质,而且氨氮物质含量比较少。例如,有些新建的自来水厂,原水中含有比较少的浑浊物质,有较多的藻类植物等,自来水厂需要对原水进行净化处理,但是自来水厂可利用的建筑面积相对较少,一般我们会采用此种工艺进行水的净化处理。使用超滤膜净化处理替代传统的过滤净水处理,减少了精水处理技术所使用设备的占用面积,减少了净水处理工艺的工艺过程,可以利用较短的时间,实现对原水的净化处理,去除水中藻类植物等,有效地提高水的质量。

针对有些地区原水温度较低,水中含有少量的胶体物质及原水的浑浊度不稳定情况,会采用高密度沉淀和超滤结合处理的净水处理工艺。在原有的净水处理厂的基础上进行的扩建和直接进行自来水厂新建相比,减少了资金的投入,能够利用较低的成本获取更多的效益,提高自来水厂供水的质量,在环境工程水处理中使用超滤膜净水处理技术能够去除水中异味,保证水的安全,同时各个净水处理工艺流程缩短,减少环境工程水处理厂的占地面积,使得进水处理的成本降低。

二、废水处理中的超滤膜技术应用

据超滤膜各项特点,无论在生活污水还是在工业废水中都得到广泛应用。

1、生活污水处理

城市污水处理厂废水,可采用膜生物反应器(mBR)技术进行处理,处理后的水质较好,可用于中水回用,且反应器占地面积小,设备投资低。可广泛应用于小区中水回用。

2、含油废水的处理

含油废水存在的状态分三种:浮油、分散油、乳化油。前两种较容易处理,可采用机械分离、凝聚沉淀、活性炭吸附等技术处理,使油分降到很低。但乳化油含有表面活性剂和起同样作用的有机物,油分以微米级大小的离子存在于水中,重力分离和粗粒化法都比较困难。超滤膜能达到目的,它使水和低分子有机物透过膜,从而实现油水分离。例如,油田含油废水中通常油量为100~1000mg/L,超过国家排放标准(<10mg/L),故排放前必须进行除油处理应用中空纤维超滤技术,在操作压力为0.1mpa,污水温度40℃时,膜的透水速度可达60~120L/(m2・h),可将原油200~1000mg/L的废水处理后达到环境排放标准。

3、食品工业废水处理

食品工业中牛奶、饮料、淀粉、酵母、豆腐、肉类等加工过程中形成的废水,含有大量的蛋白质、淀粉、酵母、乳糖及脂肪等,都有一定的回收价值,而这类废水中的BoD和CoD又较高,会对环境造成污染。用一般生化法较难处理,且无法回收其中有用的物质,用超滤法可以实现回收利用又达到净化废水的目的。如采用中空纤维和管式超滤装置处理蟹加工废水时,入口压力采用0.18mp,出口压力采用0.12mp,浓缩倍数可达十倍,20L废水浓缩液经离心干燥可获得180g的干燥固体、含40%的蛋白质和23%~45%的脂肪。

4、电镀废水

电镀废水的用水量高,其中的氰化物、六价铬、镍、铜、锌、镉等重金属离子具有很强的毒性,对人、动物和农作物等都会造成严重的危害。电镀废水的特点是可生化性小,且里面的金属离子难以被微生物吸收。目前国内外治理电镀废水使用技术中,利用铁氧化法处理电镀废水,虽然原料方便和价廉,但是出水色感差、污泥量大。利用电解法处理电镀废水,处理效果虽然较好,但是投资较大、耗电较多,处理成本持高不下。采用超滤膜和反渗透膜连用可以使镀镍废水中的电导率、镍、硝酸盐和总有机碳的去除率分别为97%,99.8%,95%和87%,通过超滤膜作为预处理,反渗透膜的污染明显减少,并且反渗透膜的通量能提高30%~50%。

5、造纸废水的处理

造纸废水处理碱回收中应用最多的是燃烧法碱回收,此种方法不仅不经济,还没有对有用的物质进行回收。超滤应用于造纸废水中,主要是对某些成分进行浓缩并回收,而透过的水又重新返回工艺中使用,主要回收的物质是磺化木质素,它可以再返回纸浆中被在利用,这样就能创造较大的环境效益和经济效益。

结束语

总之,为了控制超滤膜的污染需要消耗大量的能量以维持原料液的循环,这正好推高了超滤膜的运行成本,限制了它的进一步普及应用。因此,研发和使用更耐污染的和强度更高的超滤膜组件,设计简单的自动化反冲洗系统和耐污染的超滤膜成了必须要解决的当务之急。

参考文献

[1]李志国,臧新宇.浅谈超滤膜技术在环境工程水处理中的应用[J].科技创新与应用.2013(23)

[2]赵雪莲,翟东会,王凯.超滤膜技术在自来水处理中的研究与应用进展[J].北京水务.2011(06)

废水净化处理的方法篇6

关键词:氟污染化学沉淀混凝沉淀吸附

中途分类号:X51文献标识码:a文章编号:

1氟污染危害及来源

1.1氟的危害

1886年Henrimoisson首次制得氟至今已有100多年的历史。上世纪30年代,(Churchill等)氟斑牙与饮水中氟的含量有因果关系。1932年moller等人报告了瑞典冰晶石工厂的工人的工业性氟骨症。在我国地方性氟中毒从1930年开始就有报道,近年来,对氟中毒的研究也更为人们重视,也更深入(1995,王云)。

氟作为人体和动物必须元素,但是当环境中氟的含量过高时会引起环境污染,危害人和动植物的健康。过量的氟它将抑制体内酶化过程,破坏人体正常的钙、磷代谢,使钙从正常组织中沉积和造成血钙减少;由于氟的矿化作用可将骨骼中的轻基磷酸钙转变为氟磷酸钙而破坏骨骼中正常的磷氟比。人长期吸收过量的无机氟化物,会引起氟斑牙、骨膜增生、形成骨刺、骨节硬化、骨质疏松、骨骼变形发脆等氟骨病;植物吸收过量的氟将影响其光合作用产物的分布模式,并影响植物的生长,同时氟在植物体内积累通过食物链影响食草动物,使之氟中毒。研究表明氟含量达200~400mg/kg的食物会使鸡增重(速度)明显降低,而且还会引发“鸡软脚”,且死亡率较高(HuyshebaertG,1988)。还有(n.J.Chinoy,1991.D.mohapatraetc,2004)报道人体中过量的氟还将导致癌症、妇女不孕症、脑损伤、alzheimer综合症和甲状腺紊乱。

1.2氟污染来源

在自然界有许多的含氟的矿物如氟化钙(CaF2)、氟镁石(mgF2)、氟盐naF、冰晶石(na3alF6)、氟镧铈矿[(Ca,La,nd—pr)F3]、氟铝石(alF3·3Ho)、磷灰石[Ca5F(po4)]、氟硅钾石(K2SiF6)以及属于氟碳酸盐、氟硅酸盐、氟铝酸盐、磷酸盐、氟硼酸盐等类的矿物。岩石中有大约625~800mg/kg的氟,土壤有约160~715mg/kg。(郑包山,1992)在含氟矿物的地区在土壤的形成中使土壤氟背景值升高,饮用水中的氟含量也很高。贵州中西部乌蒙山区的织金县当地农民长期在室内用烧煤烘烤食物使当地农民食物中的氟含量超标上百倍。人体长期摄入超标氟,轻则导致牙齿变黄的氟斑牙,重则导致破坏骨骼的氟骨症。

另外以含氟矿物为主要原料或辅助原料的钢铁、铝电解、磷肥、水泥、砖瓦、陶瓷、玻璃等行业,在其冶炼、生产过程中,氟将从矿物中分解而进入环境,造成氟污染;还有在稀土的冶炼过程中也产生氟污染,其中以氟碳铈矿为原料的会产生0.4~2.8g/L的含氟废水污染,而以混合型稀土矿为原料的会产生1.5~14×103mg/m3的含氟废弃(刘咏等,2001)。

2氟污染的治理

目前研究的最多的是工矿业中产生的含氟废气和废水的处理,也有很少的关于高氟饮用水的进化处理,在含氟的废气处理技术上有干法净化回收、湿法处理。含氟的废水利用的技术有吸附法和沉淀法。

2.1含氟废气处理

2.1.1干法净化回收

在废气中主要的污染物质是HF、SiF4利用他们的化学原理进行净化。借助某些吸附剂吸附净化含氟废气—干法技术。该法采用氧化铝、石灰和石灰石粉末等作为吸附剂,将流化床反应器与袋式过滤器组合为一个整体设备,因而设备造价和占地面积大大减少。净化效率很高,气氟达99%,固98%。我国在60,70年代就开始研究和攻关以来来,有一些新建铝厂和老厂改造中普遍采用这项技术(铝厂含氟烟气治理编写组,1982.杨飏,2000)

2.1.2含氟废气的湿法处理

湿式净化以水或碱性溶液为吸收剂,洗涤吸收废气中的气态氟化物。HF和SiF4都是易溶于水的物质,在净化过程中可以达到很高的净化效果。湿式装置的流出液达到一定浓度后,可以进一步加工制成有用的氟化物。这种回收工艺分为酸法和碱法两类。酸法回收以水为基础,生成氢氟酸溶液再加工成氟化盐。这种流程的优点是产品的纯度和价值较高。其缺点是腐蚀严重,设备材料要求特殊。碱法回收以碱性溶液为基础,生成物是氟化钠或其他氟化物。这种方法虽然克服了腐蚀问题,但结垢堵塞成了制命弱点。

含氟烟气在净化设备中用水或碱溶液循环吸。流出液中含有大量HF或naF为避免二次污,必须加以回收或采取化学固定法加以无害化理,例如转化CaF2。酸法回收工艺以氟铝酸法和合成法较为典型,二者均是以制取冰晶石为目的,酸法回收多见HF是化学活泼性很强的物质,易溶于水生成于氟化盐工业。碱法回收工艺主要是碳酸化过程。完成这一过程,可以采取不同的方式,例如常见的外加Co2的直接通入法;利用烟气中Co2的碳酸化塔法;把洗涤与碳酸化合并进行的塔内合成法;以及碳酸氢钠法。此外,还有硫酸铝法,氧化铝法和酸性氟化钠法等。同时还有用氨水作为吸收剂,把废气中的SiF4和HF先转化为氟化铵,经脱硅处理后再与硫酸反应生成铵冰晶石,然后同钠盐反应,便可制成合成冰晶石产品。砖瓦工业和玻璃陶瓷工业的废气大致与磷肥工业的类似,净化回收方式可以参考(杨飏,2000)。

2.2含氟废水的处理

2.2.1化学沉淀

化学沉淀法是含氟废水处理最常用的方法,在高浓度含氟废水预处理应用中尤为普遍。其处理采用钙盐沉淀法处理最为普遍,即向废水中投加石灰中和废水的酸度,并投加适量的其它可溶性钙盐,使废水中的F-与Ca2+反应生成CaF2沉淀而除去。但是单一使用石灰作除氟剂,即使pH值高达12以上,也只能使沉淀后出水含氟控制在15~20mg/L左右。用水溶性较好的钙盐如CaCl2作为石灰的补充,其实际用量为理论用量的2倍左右。对于pH偏中性的废水,可直接投加CaCl2作除氟剂,再配以凝聚剂,可使废水中F降至10mg/L以下(吴兆清,2003)。有人研究(罗彬,1999)在萤石矿选矿废水pH9~10中加入CaCl2、碱式氯化铝、聚丙烯酰胺等药剂在一定的条件下处理后出水的含氟量F

废水净化处理的方法篇7

焙烧污水治理技术自最初引进国外技术,经过国内多年生产实践及实验研究已趋于成熟,国内已先后建成6套系统。本次焙烧污水治理工程总结吸收了已有企业生产经验及实验成果,设计时对流程中的部分环节进行了针对性改进,改进后的污水处理流程已于1998年10月投入运行。

一、污水的来源及水质

处理的污水由阳极焙烧烟气洗涤塔排出的部分洗涤液和成型机沥青烟气净化系统喷淋洗涤沥青烟气排出的废水组成,污水总量为20m3/h。

1、焙烧烟气净化洗涤污水水量及水质

污水量:17m3/h

F-:470mg/l

So2-4:2058.8mg/l

焦油:294.1mg/l

粉尘:823.5mg/l

2、成型工段沥青烟气处理污水水量及水质

污水量:3m3/h

焦油:340mg/l

混合污水水质:F-:400.01mg/l

So2-4:1749.98mg/l

焦油:301mg/l

粉尘:699.98mg/l

二、污水处理机理及处理流程

1、处理机理

烟气净化污水处理采用化学沉淀法,投加化学反应剂CaCl2和助凝剂pam及Fe-Cl36H2o,污水中所含F-及部分So2-4转化为溶解度较小的CaF2和CaSo42H2o,在不同性能的两种助凝剂作用下,形成絮凝团沉降。(略)

三、系统及运行操作要求设计改革

本次阳极焙烧污水处理工程针对以上分析,在流程配置、防腐、药剂使用、废水回用、运行管理等方面进行了以下改进:

1、增加污水预处理

由于污水中含有大量焦油及粉尘等易沉物,直接进入化学处理系统,不但增加药剂用量,而且将会降低处理效果,同时焦油会增大箱式压滤机的维护工作。故在污水进入反应槽之前,增加预处理设施非常必要,本次设计污水首先进入沉淀池,设置撇油刮渣设备,同时设置旁流除油污水过滤器进一步除油,为后续化学反应提供较单纯水质,减轻负荷。沉淀池污泥燃值较高可返回生产工艺流程或锅炉焚烧。

2、助凝剂使用

采用近年使用效果较稳定的两种助凝剂pam及FeCl36H2o代替单一的pam助凝剂。

3、贮罐、剂量泵、管道防腐

由于FeCl36H2o溶液及CaCl22H2o溶液腐蚀性较强,系统又要求在中性或弱酸性条件下,本次设计在防腐处理上进行改进。FeCl36H2o溶液、CaCl22H2o溶液以及pam溶液的计量泵在与设备厂联系后确定分别采用HastelloyC型、HastelloyB型和1Cr18ni9ti型材料防腐。贮罐(槽)采用5mm厚的玻璃钢防腐,管道采用钢衬聚丙烯复合管,阀门采用聚氯乙烯阀门,管道、设备连接均采用特制法兰连接,接口处严格密封,以充分保证防腐质量。

4、废水回用

经处理后的废水考虑返回焙烧烟气净化洗涤塔循环使用,以避免废水的二次污染。由于废水因用为首采用,运行中可能存在预计不到的问题,设计中废水按可回用及直接排放两套措施设计,以保证正常生产。

废水回用可能存在的问题:废水回用将使阳极焙烧烟气净化整个系统(含烟气洗涤循环系统)总盐份增加,使处理系统必须重新建立污水污物、水处理使用药剂量与水处理排出污泥携带污物相互之间的平衡,形成平衡后的循环水质,该循环水质对系统的影响尚须在实际生产中逐步研究。直观分析处理后废水水质远优于烟气净化系统自循环水质,该部分废水将可以用于循环使用。

5、污泥压滤系统改进

过去设计当中污泥直接泵入压滤机,压泥管无回流管,由于泵与压滤机能力的不完全匹配,易出现压滤机冒槽现象。本次设计设置污泥泵送泥返回管路,污泥由泵可直接送压滤机,也可部分或全部返回泥浆槽,可随意调节压滤机上泥量和上泥压力,从而保证压滤机pLC控制系统运行更可靠。

6、运行要求

由于系统在去除氟污染的同时,考虑部分去除硫化物,为提高处理效率和有利于废水的回用,要求系统必须在中性或弱酸性条件下运行,而焙烧烟气净化洗涤系统循环用水希望pH值高,实际生产中需要逐步摸索,确定合理的运行pH值点。

废水净化处理的方法篇8

关键词:重金属废水;处理;工艺

中图分类号: tU992.3文献标识码:a

重金属废水是指矿冶、机械制造、化工、电子、仪表等工业生产过程中排出的含重金属的废水。实际所需处理的废水中含有的重金属并不是单一种类, 往往多种重金属并存,废水的分类通常以其中含量最高的重金属为依据,其中含铜废水、含铬废水、含镍废水和含铅废水等较为多见。废水中所含重金属能对环境及人体产生长远的不良影响,是对环境污染最严重和对人类危害最大的工业废水之一,未经处理直接排放,一方面将对环境造成污染,另一方面也浪费了大量的水资源和贵重金属资源, 其水质水量与生产工艺有关,因此对废水处理工艺的研究具有十分重要的意义。

1 废水处理操作方法

废水中的重金属一般不能分解破坏,只能转移其存在位置和转变其物化形态。处理方法是首先改革生产工艺,不用或少用毒性大的重金属。对已经形成的重金属废水处理方法很多,一般分为物理法、化学法和生物法, 每种处理方法都有各自的特点和适用条件, 根据不同的原水水质和处理后的水质要求, 可单独应用,亦可几种方法组合应用。重金属废水处理的主要原理是利用金属离子在碱性条件下的沉淀,经分离达到净化废水,回收重金属,进而回用废水,最终实现降低金属排放总量,节约水资源回收贵重金属的目的。对含有机物、络离子及螯合物量大的废水, 要先将妨碍处理重金属的有机物质用氧化、吸附等适当的处理方法除去。然后再把它作无机类废水处理。重金属废水经处理后形成两种产物,一是基本上脱除了重金属的处理水,一是重金属的浓缩产物。含重金属废水最常采用的是化学沉淀法, 把重金属离子转变成难溶于水的氢氧化物或硫化物等的盐类, 然后进行共沉淀而除去, 处理后的水中重金属低于排放标准可以排放或回用。加强混凝方法对重金属的处理也很有效,形成新的重金属浓缩产物应尽量回收利用或加以无害化处理。

2 重金属废水处理工艺

2.1 硫酸盐生物还原法处理含锌废水

硫酸盐生物还原法处理含锌废水其原理是利用硫酸盐还原菌SRB在厌氧条件下产生硫化氢,硫化氢和废水中的重金属反应,生成金属硫化物沉淀以去除重金属离子。生物反应器是一个厌氧反应系统,微生物在厌氧条件下分解有机物,还原硫酸盐生成硫化氢,硫化氢与废水中的锌离子反应生成不溶性的硫化锌。生物反应器的类型可以是上流式厌氧污泥床、厌氧接触反应器等。

反应生成的硫化锌沉淀同厌氧污泥混在一起,当其浓度达到一定程度以后,为了保证生物反应器的正常运行,就必然排放一部分污泥。由于污泥中锌含量较高,可以回收。从沉淀池中的出水,虽然锌离子的去除率很高,但是出水中还含有比较高的CoD和硫化氢,因此必须要进行好氧处理去除CoD和硫化氢,使最终出水的指标都达到国家排放标准。

2.2 含铜重金属废水处理工艺

焦磷酸铜废水中铜主要以络合物形式存在,因此该类废水在强碱条件下投加酸进行破络反应,再与其他重金属废水混合处理。含铜废水主要来源于电镀、化学镀工序。一般有电镀铜工序产生电镀废水, 工件电镀铜后清洗工序产生清洗水, 化学镀铜工序产生化学镀废水, 工件化学镀铜后清洗工序产生清洗水, 线路板镀铜后蚀刻工序产生蚀刻废水, 线路板镀铜后微蚀工序产生微蚀水, 线路板镀铜后棕化工序产生棕化废水, 线路板镀铜后采用表面活性剂清洗产生清洗水等。

2.2.1 工作原理

2.2.2 工艺流程

3 电池厂重金属废水的污水处理系统

某电池生产废水排放量650/d。在生产过程中使用含汞锌、锰和淀粉等原料。在电液配制、糊化、洗碳棒头等生产过程中排出的废水重金属污染物浓度平均为:汞008mg/L、锌315m1/L。锰73mg/L,如果直接排放会对环境造成较严重的污染。由于废水中含有几种重金属污染物,处理难度高,该厂针对水质制定出一套高效经济的废水治理方案。

3.1 工艺流程

很多废水(如电池的含锌废水)经絮凝反应后能分离出大量的污泥,这些絮状污泥有一定的吸附能力。针对重金属离子容易被吸附的特性,ewp高效污水净化器利用Zn在pH=8-9时能生成的Zn(0H)2絮凝沉淀物,在净化器内形成吸附过滤流化床,并添加重金属离子吸附剂GpC,对汞和其它重金属污染物进行吸附过滤,达到同时治理几种重金属污染物的效果。废水从调节池自流至反应池,在反应池的入口与出口处分别加入三组药剂,再由进流泵将经过混凝反应的废水泵入净化器内处理,处理后的清水从顶部流出,污泥从底部排入污泥浓缩罐,经污泥浓缩罐及污泥贮罐浓缩后脱水运走。

3.2工艺设备及主要构筑物设计参数

(1)调节池调节池有效容积为200m3。加设一个反应池。

(2)加药系统 na2S:用量5×10-5用玻璃钢作溶药搅拌器配制成质量分数为5%的溶液;石灰:由固体加药机投加,用量由pH自动控制器控制;重金属离子吸附剂GpC:用量3×10,由固体加药机投加。

(3)主要设备 ewp高效污水净化器共两套:ewp-10、ewp-20处理量分别为200m/d和500m/d,污泥脱水机选用10m的板框压滤机,污泥经脱水后外运至固废中心。

结语

含重金属废水的处理要讲求实效,可概括为两个方面:

( 1) 控制污染源, 尽量改革工艺, 实现少排放。

( 2) 使用重金属的生产过程中采用合理的工艺流程和完善的生产设备,实行科学的生产管理和运行操作,减少重金属的耗用量和随废水的流失量;在此基础上对数量少、浓度低的废水进行有效的处理。处理以化学沉淀法为主, 适当辅以其他处理方法。污水处理系统工程投入正常运行后,使得附近大量的陆源污水得到处理,消减了大量的排海污染物,使得整个海域海洋生态环境得到改善。对整个近岸海域的海域生态环境的改善将起到积极的作用,同时对周边的环境和港区的开发建设也起到积极的促进作用,是正效益工程。

参考文献

[1]王志军,岳远鑫,屈银龙等.污水处理实时监测系统[J].广东时报,2010(4).

[2]易晓民.污水处理自动化控制系统的应用[J].北京给排水,2008(1).

[3]郑志辉.中小型污水处理站的水泵装备及其运行方式的研讨[J].铁道勘测与设计,2003(5).

[4]黄志文.邯钢污水处理厂设计及应用[J].西南给排水,2007(3).

[5]林俊飞,李迎春.污水处理净化过程三维细胞自动机动态模拟[J].智能系统学报,20l1(5).

废水净化处理的方法篇9

1、生态环保,1970年4月22日,美国哈佛大学学生丹尼斯·海斯(DennisHayes)发起并组织保护环境活动,得到了环保组织的热情响应,全美各地约2000万人参加了这场声势浩大的游行集会,旨在唤起人们对环境的保护意识,促使美国政府采取了一些治理环境污染的措施。后来,这项活动得到了联合国的首肯。至此,每年4月22日便被确定为“世界地球日”。

2、废水处理,废水处理(wastewatertreatmentmethods)就是利用物理、化学和生物的方法对废水进行处理,使废水净化,减少污染,以至达到废水回收、复用,充分利用水资源。

3、废气处理,废气处理又称废气净化。废气处理指的是针对工业场所、工厂车间产生的废气在对外排放前进行预处理,以达到国家废气对外排放的标准的工作。一般废气处理包括了有机废气处理、粉尘废气处理、酸碱废气处理、异味废气处理和空气杀菌消毒净化等方面。

(来源:文章屋网)

废水净化处理的方法篇10

1材料与方法

1.1试验区位本试验基地位于江苏省无锡市胡埭镇直湖港地区养殖塘(图1)。胡埭镇直湖港地区水产养殖面积700hm2,以养殖鱼类和中华绒鳌蟹为主,养殖面积约38.8hm2,鱼塘面积约83%,蟹塘面积约12%。水产养殖业产值占农业总产值的比重呈逐年上升趋势,是农业增效产、农民增收重要途径。以太湖地区污染物排放系数、入河系数为基础,根据污染源调查分析,直湖港地区CoDmn(以高锰酸钾作化学氧化剂测定的化学需氧量)、铵态氮、总磷等水产养殖污染物入河量分别为6.0、0.9、0.6t/年。

1.2试验材料沉水植物主要为苦草(Vallisnerianatans)、轮叶黑藻(Hydrillaverticillata)、伊乐藻(potamogetonmalaianus)。轮叶黑藻株高20~25cm,伊乐藻株高12~15cm,均来自上海海洋大学南汇水产养殖试验基地,苦草为草籽,来自无锡。蟹塘面积为0.67hm2,中华绒鳌蟹(eriocheirsinensis)投放密度109.5kg/hm2,规格200只/kg。鱼塘面积为0.8hm2,主要为鲫鱼、草鱼、白鲢、花鲢混养(草鱼4180尾/hm2,鲫鱼3880尾/hm2,白鲢2090尾/hm2,花鲢895尾/hm2),饲料为四大家鱼配合饲料,每日投饵量为鱼体重的3%~4%;试验期间,补给水来自降雨,鱼苗塘面积0.13hm2,主要是草鱼与鲫鱼鱼苗。用化肥追肥,每隔3~5d施肥1次,每次用碳铵60~75kg/hm2,钙镁磷肥60~75kg/hm2;试验期间补给水来自降雨。养殖塘水源来自龙延河河道。

1.3试验方法原位生态修复:从2010年1月至2011年1月,首先冬歇期对蟹塘干塘清整,维持底泥约5cm,用生石灰2340~2985kg/hm2,全塘泼洒消毒10d,水温为5℃以上,选择伊乐藻为春季先锋种,轮叶黑藻为夏秋季主要植物。伊乐藻移栽时,按照2m×3m行间距扦插,扦插深度3~5cm,栽种密度为5~7g/L,随着伊乐藻生长,逐步加水,使水深为1.2~1.5m。2月下旬投放中华绒鳌蟹,3月投放苦草籽1kg/0.07hm2,6月开始分阶段移除过量伊乐藻,使苦草、轮叶黑藻主要发挥净化水质的功效。每月中旬10:00在蟹塘定点处的水面下50cm处采集水样2L进行检测,同时观察伊乐藻、苦草与轮叶黑藻生长状态,并及时补种或收割。原位生态修复和异位湿地处理相结合措施:从2010年11月下旬中华绒鳌蟹捕捞后,有序分批地抽取鱼塘与鱼苗塘的养殖废水至蟹塘,进行净化处理,其间鱼塘异位处理20d,然后鱼苗塘异位处理20d。12月17日开始,先用2d时间抽取鱼塘中(50%)的养殖废水(水位降低0.5m、水量减少4002m3)至异位湿地处理场所蟹塘中净化处理,将净化处理后的水排回鱼塘再利用。1月10日开始,用1d时间抽取鱼苗塘(50%)的养殖废水(水量2335m3),排至异位湿地处理场蟹塘中,净化处理后,将水排回至鱼苗塘再利用,削减养殖废水排放。鱼塘与鱼苗塘每批抽水完成后,每隔5d定点采集水样2L,共采样5次。

1.4检测指标及方法主要检测指标为pH值、溶解氧含量、高锰酸盐指数、硝态氮含量、亚硝态氮含量、铵态氮含量、总磷含量、总氮含量。检测方法:高锰酸钾指数,酸性高锰酸钾滴定法;亚态硝氮含量,重氮-偶氮比色法;硝态氮含量,紫外分光光度法;铵态氮含量,纳什试剂比色法;总磷(tp)含量,钼酸铵分光光度法;总氮(tn)含量,碱性过硫酸钾消解紫外分光光度法;活性磷(po3-4-p),钼锑抗法;叶绿素a含量,单色分光光度法。

2结果与分析

2.1苦草、伊乐藻与轮叶黑藻组合群落对蟹塘的净化效果2010年1月至2011年1月对蟹塘(原位生态修复)、鱼塘、鱼苗塘和龙延河(水源)水质情况开展定时、定点监测(表1),试验区域水质氮、磷与有机物污染较严重。蟹塘水质优于其他相邻养殖塘。

2.1.1蟹塘n、p含量全年变化趋势水体中高浓度的氮、磷是水体富营养化的主要表现,控制水体富营养化的根本措施在于削减水体中氮、磷浓度[6]。试验结果表明,蟹塘tn、tp含量整年都较稳定,且较鱼塘、鱼苗塘和水源低(图2、图3)。这说明苦草、伊乐藻和轮叶黑藻能有效降低蟹塘水体的氮、磷含量,并能使其维持在一定范围内。蟹塘总磷含量全年保持稳定,在0.15mg/L上下波动,特别是6—9月,总磷含量明显低于鱼塘,达到国家地表水Ⅲ类标准(图2)。蟹塘总氮含量明显低于其他塘水质,并且全年变化范围不太大(图3)。蟹塘水体氮、磷含量全年保持稳定,为中华绒鳌蟹生长提供了良好的生境。

2.1.2蟹塘CoDmn含量全年变化趋势利用植物削减富营养化水体有机污染也有大量研究[7-8],本研究利用苦草、伊乐藻与轮叶黑藻组合群落削减蟹塘养殖水体中的CoDmn取得较好的效果。CoDmn反映水体中有机污染程度的综合指标,由图4可知,蟹塘CoDmn全年较稳定,平均为10mg/L,低于未种植苦草、伊乐藻和轮叶黑藻的鱼塘、鱼苗塘和水源。说明伊乐藻与轮叶黑藻对水体具有净化功能,能有效削减养殖水体中的有机污染物。

2.1.3蟹塘叶绿素a含量全年变化趋势叶绿素a含量是衡量水体藻类生物量的一个重要指标[9]。沉水植物具有克藻效应,能降低水体叶绿素a含量[10]。试验结果表明,蟹塘叶绿素a含量全年基本稳定,在夏季藻类滋生的高温季节,蟹塘叶绿素a含量平均为15mg/m3,仅约为其他水体含量的1/5(图5),并且透明度在晴好天气高达0.8m。而没有种植沉水植物的鱼塘及鱼苗塘,在相同水源情况下,叶绿素a含量在6—9月之间发生明显变化。说明苦草、伊乐藻和轮叶黑藻对控制蟹塘水体藻类生长发挥了很大作用,明显降低了水体叶绿素a含量,并且提高了水体透明度。

2.2异位湿地生态修复对水质净化效果

2.2.1异位湿地生态修复期间水质变化情况表2和表3为鱼塘和鱼苗塘养殖废水异位生态修复水质净化效果。由图6和图7可知,养殖水排放到蟹塘时各主要水质指标有较大波动,但每批经过异位处理10d后,主要检测指标几乎不再有波动,且浓度持续降低,说明该系统稳定性较高,净化能力较强。鱼塘和鱼苗塘分别经过20d异位修复后,鱼塘养殖废水高锰酸盐指数、铵态氮、总磷、总氮和叶绿素a含量分别降至7.55、0.19、0.20、1.16、11.63mg/m3。鱼苗塘养殖废水高锰酸盐指数、铵态氮、总磷、总氮和叶绿素a含量分别降至8.93、0.33、0.28、1.64、12.16mg/m3。水质指标低于生态修复前浓度,说明异位湿地生态修复起到较好的水质净化作用。#p#分页标题#e#

2.2.2异位湿地生态修复对氮、磷、高锰酸盐指数的削减率研究结果表明,水体中总氮、铵态氮、总磷和硝氮越高,伊乐藻与轮叶黑藻对其去除效果越明显[11-12]。从图8中可见,鱼塘异位生态修复期间,通过第1、2次采样检测发现,铵态氮、总氮、总磷去除效果明显,而第3、4次采样检测发现,各去除率下降较小,鱼塘废水经20d处理后,CoDmn、铵态氮、总磷、总氮、叶绿素a去除率均已超过50%,其中,总氮含量由3.14mg/L下降到1.16mg/L,削减养殖废水中63%的总氮含量,基本满足了养殖用水的要求。此时,异位生态修复(蟹塘)还可继续作用于鱼苗塘养殖废水的净化。由图9中可见,在进行异位生态修复期间,鱼苗塘主要理化指标去除率前期变化没有处理鱼塘时那么明显。但是,前期去除率同样较高,且2次异位生态修复期间各指标去除率均稳定上升,说明该原异位生态修复系统稳定性较高。鱼苗塘2335m3养殖废水处理20d后,CoDmn、铵态氮、总磷、总氮、叶绿素a去除率均超过45%,其中,铵态氮去除率高达54.79%。异位生态修复净化能力强,体现出该系统良好的污水净化性能与稳定性。总体上本序批式养殖废水生态净化循环处理系统,HRt为30~40d,处理6336m3养殖废水时,水力负荷为0.02~0.03m3/(m2•d)。水质连续处理能力较强,能将劣Ⅴ类的养殖废水净化至Ⅲ类标准,并保持相对稳定。

3讨论

沉水植物的恢复与重建能力已成为环境领域和水生态学研究的重点内容之一[13]。有研究证明,利用水生植物进行水污染控制具有投资、维护和运行费用低,管理简便,污水处理效果好,可改善和恢复生态环境,回收资源和能源以及收获经济植物等诸多优点,在污水处理和富营养化水体净化等方面均表现出良好的效果[14]。水体中氮、磷分为有机和无机2种形态[15]。氮元素在养殖塘内的循环是开放式的,水生生物、水生植物、池塘微生物等构成水态系统的食物网,各种生物通过同化作用使得氮元素在营养级中自下而上进行传递[16-19]。受污水体中的磷元素多易沉积于池塘底部,成为难以去除的营养物质。苦草在生长期能显著降低沉积物中各形态磷的含量,沉积物总磷、naoH提取磷、HCl提取磷、无机磷和有机磷含量分别降低了65.71、39.06、11.65、52.86、11.28mg/kg[20]。伊乐藻和轮叶黑藻对养鱼污水中氮、磷等物质有着较好净化效果[21]。苦草、伊乐藻与轮叶黑藻种植密度为3g/L时,对水体中tp的去除率均超过68%[22]。本试验在蟹塘种植苦草、伊乐藻与轮叶黑藻,使其根部直接吸收底泥中的磷元素,从而去除水中磷元素。苦草生态适应性广,吸附污物及营养盐能力强,是减少水体污染、缓解水体富营养化程度的重要沉水植物。苦草繁殖速度快,再生能力强,收割后恢复时间短,被收割的苦草仅15d就可恢复生长到收割前水平,可从水体中带出大量营养盐。因此,苦草常被作为沉水植物恢复主要选用品种之一[23]。轮叶黑藻生存范围广,适应能力强,生长速度快、富集能力强,是净化养殖废水的理想植物,同时轮叶黑藻的根、茎、叶都是河蟹的适口性青饲料,能够提高河蟹的品质;另外,轮叶黑藻既可移植也可播种,栽种方便,并且枝茎被河蟹夹断后还能正常生根长成新株,不会对水质造成不良影响[24]。伊乐藻具有发芽早、长势快、耐低温等特点,所以伊乐藻与轮叶黑藻常在富营养化水体植被恢复工程中作为先锋物种[25]。本试验在蟹塘种植苦草、伊乐藻与轮叶黑藻,不仅可以给中华绒鳌蟹生长提供饲料与避难场所,同时在净化水质方面具有重要作用。

养殖水体藻类大量生长会导致水体溶氧量减少并降低水体透明度,造成鱼蟹大量死亡,所以控藻对水产养殖来说同样具有重要意义。不少研究表明,沉水植物是养殖塘水体中的初级生产者,与藻类属于竞争关系,而沉水植物在营养物质、光照等方面更具优势,从而能抑制藻类的生长,此外沉水植物会分泌化感物质抑制其生长[26-33],还能提高水体溶氧与透明度[34]。伊乐藻光合放氧使水体溶氧量和pH值升高,促进开放系统铵态氮的挥发[35]。轮叶黑藻对水中悬浮物的吸附量可达自身重量的2.59~5.52倍[11]。不同生物量伊乐藻对河水中其他藻类均具有较强抑制作用,并且随着生物量增加,其克藻效应更加明显[36]。苦草在水环境中能产生并释放具有抑藻活性的物质,以抑制多种浮游或附着藻类的生长[37]。本试验结果表明,通过在蟹塘种植苦草、伊乐藻和轮叶黑藻,蟹塘叶绿素a含量全年基本稳定,在夏季藻类滋生的高温季节,蟹塘叶绿素a含量平均为15mg/m3,仅为其他水体含量的约1/5,并且在晴好天气透明度高达0.8m。苦草、伊乐藻和轮叶黑藻的种植能明显控制蟹塘藻类的生长,为中华绒鳌蟹的生长提供较良好的生境。

水产养殖中,投入池塘饲料通常不能被鱼蟹完全摄食[38]。据调查,直湖港胡埭龙延村段每年鱼类养殖投入1200t颗粒饲料,投入养蟹塘颗粒料20t、鲜活冰冻鱼片42t,以及玉米、小麦粉等,残留饵料与养殖对象的排泄物会沉积到池塘底部,这加剧了池塘水体富营养化程度,造成水中浮游生物数量增加,鱼类病害泛滥。试验区鱼塘养殖水体氮、磷含量较高,如果直接排放会导致自然水体富营养化,对生态环境造成破坏。本研究根据中华绒鳌蟹养殖周期短、秋季收获、不同养殖对象养殖水资源需求与排放时间差异的规律特征,利用中华绒鳌蟹上市后蟹塘闲置期,建立陆域养殖废水排放异位湿地处理场所,将其他养殖污染较严重的污水通过一定水量有序分批式直接引入蟹塘净化处理,节约了净化处理设施与土地,这样既能有效转化池塘多余氮磷、填补蟹塘水草缺乏营养需求状况,又为来年养殖提供了饵料,同时通过净化处理后的水又可循环回用,有利于发展高密度养殖,提高水产品品质。鱼塘和鱼苗塘养殖废水经异位生态修复均得到较好的净化效果,鱼塘CoDmn、铵态氮、总氮、总磷、叶绿素a去除率均超过50%。鱼苗塘CoDmn、铵态氮、总氮、总磷、叶绿素a去除率均超过45%。异位生态修复时,鱼塘修复水力负荷较大,不过养殖废水得到较好的净化效果。经过20d鱼塘污水净化,蟹塘对鱼苗塘污水净化能力有所下降,但是其总氮、总磷去除率仍然高达46.84%、49.09%。说明该系统的稳定性和持续净化能力强。异位生态修复时,由于抽水和排水会导致水体曝气,从而会影响铵态氮等营养盐含量变化,造成结果的部分误差。但从结果来看,本系统通过综合调控与合理利用水资源,实现养殖过程中养殖废水的净化和“零排放”,及水资源循环利用,提高水资源利用的综合效应,具有低碳高效、节约型循化水养殖的特点,对实际的生产应用有一定的推广价值。目前,限于试验条件对蟹塘、鱼苗塘和鱼塘养殖废水的原位、异位湿地生态修复处理研究分析,今后将进一步完善沉水植物筛选与群落配置,扩大试验规模,并筛选指示植物,提高预警,防止病害传播造成交叉污染等潜在危险,建立长期稳定的养殖废水序批式循环处理与再利用系统。#p#分页标题#e#