首页范文量子力学概述十篇量子力学概述十篇

量子力学概述十篇

发布时间:2024-04-25 19:41:11

量子力学概述篇1

摘要:

物理概念作为物理学知识体系的支柱,对其理解和掌握的程度直接影响到教学质量。对物理概念教学的实施原则和方式进行了探讨:实施要求在知识传授过程中不仅仅停留在概念本身,更需要从物理概念的需求背景、本质内涵和外延、适用范围、缺陷和改进等诸多方面进行讲解,使学生形成一个完整清晰的物理图像。实施方式要求创造好的学习环境来激发学生的兴趣以及调动学生的主观能动性和创造力。通过有效启发学生的思考,并使其受到科学精神的感染,达到有效理解和掌握物理概念的目的。

关键词:

物理学概念;科学素质;科学精神;教学方法;教学效果

物理学是研究宇宙中存在的各种基本物质结构及其运动和相互作用规律的学科,是人类认识自然和改造自然的工具。大学开设的物理基础课,可培养学生的科学素质和品质,也为后续专业课程学习奠定基础[1]。物理基本概念用于概括、归纳、表述事物变化的基本规律,是学科基础,对其深入学习可培养学生物理学的研究方法和思维[2]。

1物理概念教学的意义

大学物理通过向学生传授基础物理知识,培养学生基本的物理思维能力、科学品质以及物理学研究方法[3]。物理学概念(包括原理、定理、定律)是针对学科发展需要,在实验和理论基础上,通过反复的概括、抽象和归纳得到的,体现了学科的思维和发展方向,相应的学习和掌握至关重要[2]。

1.1培养解决和分析问题的能力

物理概念是物理学发展的支柱,任何一门物理学分支的发展都离不开特有物理概念的引入。如力学的发展,离不开力、力矩、动量、能量等基本物理概念的支撑。为了描述阻止物体的力,引入摩擦力,根据物体运动方式不同,又分为滚动和滑动摩擦力;为了研究物体的形变特性,引入了压力、剪切力等概念[4]。

1.2培养物理学的辩证和统一研究思维

有些物理概念是矛盾的结合体,如光的本质,即“波粒二象性”,对其认识一波三折。最早笛卡尔、牛顿的微粒学说,成功解释了光的直线传播现象。波动学说起源于胡克,认为光是类似水波振动,惠更斯提出光是纵波。“牛顿环”体现了光的波动性,却以微粒和以太进行解释。随着托马斯•杨干涉、菲涅耳衍射、麦克斯韦电磁场理论研究,以及赫兹(Hertz)对光的电磁波本质实验证明,人们逐步接受了光的波动性。直到19世纪末,在光电效应研究基础上,爱因斯坦提出了光的“波粒二象性”[5],为新学说奠定了基础,如康普顿效应,德布罗意物质波、测不准原理、薛定谔波动方程等。

1.3培养融会贯通、触类旁通能力

很多物理概念会经历提出、实验或理论证实,逐步推广和深化,甚至扩展到其他领域的过程。这说明该概念的思维反映事物本质,精确描述了对象特征。如热学里“熵”概念,最先由克劳修斯(Clausius)基于描述热机循环状态的需要而提出,后来分子运动论将其解释为不可逆热力学过程是趋向于概论增加的态变化(波耳兹曼熵)。经过多年沉淀,又被控制论、数论、概率论、生命科学、天体物理等领域引入并应用,说明其思维方式被认同[6]。教学中可以把熵作为专题进行讲解,从不同学科集中阐述物理思维。

2物理概念教学的方法

大学物理学的教学目的如下:

1)通过掌握基础物理知识,为学习后续专业知识打好基础;

2)全面了解物理学研究方法、基本概念、物理图像以及历史渊源、发展等;

3)培养和提高大学生科学素质、思想、品质、精神等,通过了解科学发展的曲折和艰辛,科学研究的合作和乐趣等,培养学生科学思维方法、求真务实的科学品格,使其初步具备科学研究能力[1,7]。下面结合物理学特点以及教育理论和实践,对物理概念教学方法进行探讨。

2.1引入物理概念背景的教育需求

介绍物理学概念背景帮助学生充分理解概念引入的意义和作用。在此基础上,设计问题引导学生进行自我思考,如:若你们在此背景下引入新概念,应该采用什么概念来描述物质特性或规律,它与现有概念相比有哪些优缺点?通过学生的深入思考和讨论,使其充分认识和理解所引物理学概念的意义和重要性。这也是启发式教学的常用方式[8]。如讲解微粒比表面时,根据背景提问:对于一个物体而言,表面原子存在大量断键而很不稳定,表现为较强活性,是不是体积越大活性越强?通过讨论发现单纯的体积特征不合理,体积越大,内部包含原子数越多。进一步提问:如何描述微粒活性,并进行相应对比?这会激发学生的兴趣,出现类似单位质量的物质表面等答案。最后,指出微观粒子的尺寸效应最为重要,引出单位体积的表面积概念,即比表面积。

2.2讲清物理概念的本质内涵和外延物理概念的发展

体现在内涵不断丰富和外延在不同领域的扩展。温度概念的发展就体现了内涵的丰富,从表征“环境的冷热程度”到“分子平均平动动能的量度”,再到“物体内部分子的无规则热运动剧烈程度”,最后推广到“粒子集居数的反转现象”,也就是“系统处于总能量高于平均能量的状态”,并提出负温度的概念。折射率的概念则体现了其外延的扩展,最初表征不同材料之间的偏折,后表征传播速度。其实光传输的速度决定于材料原子之间电场的大小,也体现了原子结合力的高低,所以所承载的外延信息很多,包括光学、原子物理以及物质结构等不同学科。一些物理学概念是联系不同领域的纽带,如阿伏伽德罗常数是联系宏观与微观的桥梁,对其内涵的理解比单纯数值更有意义。

2.3循序渐进和系统性的教学

有些概念贯穿于整个物理学体系中,需要多学科的共同学习才能深入和系统地认识。以物理学中极其重要的“场”的概念为例,最先由法拉第(Faraday)基于电磁相互作用的超距观点提出并进行直观描述;随后麦克斯韦从数学上推导了电场和磁场强度的波动方程,深刻地阐述了电磁场能量的分布[9];列别捷夫(Lebedev)通过对光压的观测证明了电磁场动量特性;爱因斯坦狭义相对论的创立,证明场是物质存在的一种形式,具有能量、动量和质量;量子力学体现了场的“波粒二象性”;电磁场量子理论证明光子是电磁场的基本微粒,可与正负电子对相互转化,具有实物转化性,丰富了场的物理本质和内涵[10]。“场”在电磁学、力学、相对论、量子力学等领域都有体现。教学中要从“场”的基本特性、规律和共性出发,逐步深入:最初通过力学中重力(万有引力)引入重力场强、重力势能(引力场强、引力势函数),初步建立场的概念;电磁学或电动力学则通过电荷库仑力场引入库仑场强和库仑势,通过场矢量的通量分析和环流分析分别得到高斯定理和安培环路定理;相对论和量子力学通过波函数分析进一步加深对场的理解。

2.4引入必要的物理学史教育

物理学的发展过程是科学家为了解决自然界遇到的新问题而不断探索的过程,所提物理概念是对所描述对象的高度概括[11]。新概念的提出、完善和修正需要科学检验和论证,错误的被或修正,正确的被采用或推广,这体现了物理学思维方式。结合物理学史,对成功或失败的物理概念进行分析和对比,有助于培养学生理性思维。成功实例:原子物理中“紫外灾难”催生了普朗克(planck)的量子概念,后来爱因斯坦的光量子说,成功地解释了光电效应,开启了量子力学新篇章;描述基本粒子单元的夸克(quark)概念,被逐渐证实。失败实例:描述光传输的“以太”概念被实验否定。当前还有很多概念亟待进一步论证,波尔(Bohr)与爱因斯坦关于量子力学的著名论战就是一个很好的证明。这可以培养学生思辨的习惯、求实的精神和相互包容的优良品质。

2.5构建清晰物理图像

很多概念的提出都基于不同的研究思路和思维,需要建立完整清晰的物理图像再现其物理思维和描述意义[12]。以麦克斯韦方程组为例,它体现了电磁学基本研究思路:对电场和磁场进行曲面和曲线积分,得到相应的源。学科适用范围体现了不同思维,如电磁学规律是基于宏观的分析,量子力学是处理微观世界的规律,具有完全不同的研究思路和适用范围。以电磁波发射为例,电动力学基于LC振荡,量子力学电子跃迁。对比讲解对构建知识体系和正确应用很有益。形象化表述是构建物理图像的主要方法之一,如在光学中讲述菲尼尔圆孔衍射的光强空间分布规律时,可以采用半波带法、矢量图解法等进行分解,达到获得清晰物理图像的目的[13]。加强实验教学有助于构建物理图像,可分为重建性和探究性,通过实验再现物理知识或根据预设要求通过实验得到结果。

3教学措施和效果

为了有效开展物理概念教学,我们对教学方法进行了改革,主要涉及到:分组讨论式教学、改革考试方式、推行非标准化答案、重建基本概念、推荐内容丰富的教材和参考书、加强实验教学等。分组讨论式教学是创造机会使学生对物理概念的提出背景、必要性、可以解决的问题进行深入讨论,在争论中增强对概念本质的认识。典型问题有:物理概念需求背景、自我设想和构建、解决问题程度和预期目标、现有物理概念对比等。通过以上教学,学生在考试中对基本概念的描述正确率大大增加,平均得分率由72%提高到83%。非标准化答案旨在锻炼学生想象力和发散性思维,围绕物理概念进行问题设计,采用多种表述方式进行分析。采用撰写论文形式进行考试,要求学生通过文献查询、收集信息等方式来阐述物理概念的内涵和外延等,全面锻炼学生能力:信息查询、归纳总结以及写作表述能力等。考试成绩比重由原来的15%增加到30%,更能体现学生能力水平。随着学习不断深入,需要通过扩展物理概念的内涵或外延对新事物及其特性规律进行描述。如随着激光光强的增加,对材料的光电离会由单光子电离扩展到多光子电离,由线性光学扩展到非线性光学以及激光等离子体物理[14]。推荐内容丰富的教材和参考书也是一种很好的方式。如原子物理教学中可推荐杨福家的《原子物理学》[15],该书图文并茂,有很多经典故事,同时设计了很多启发式问题,使用者反映良好。光学教学中可推荐冯国英、周寿桓编写的《波动光学》[16],该书内容丰富,主要物理概念和定律后面附有matlab应用实例,有利于学生学以致用和形象化理解物理概念。另外,美国学者artHobson编写的《物理学的概念与文化素养》等,都能为物理学概念的学习提供很好的参考。

4结语

物理学概念是物理学发展和前进的基石,体现了研究过程中遇到的新问题,反映了为了解决问题提出的新思维和方法,表征了物理学发展的趋势和方向。物理学概念学习主要体现在基础知识的掌握、科学品质和精神的培养、科学素质的锻炼等方面。从教学方法上需要从构建物理图像出发,结合物理学史的引入,激发学生主动性,达到全面掌握物理概念内涵和外延的目的。具体实施方式上,可以结合考试改革、非标准化答案、推荐优秀教材等来实现。

参考文献:

[1]包景东.理论物理教学应在培养学生批判性思维能力上发挥作用[J].大学物理,2014,33(1):1-5.

[2]张玉峰,郭玉英.围绕学科核心概念建构物理概念的若干思考[J].课程•教材•教法,2015,5(35):99-102.

[3]秦吉红,梁颖.在大学物理教学中应加强科学素养的案例剖析:纪念黄祖洽先生[J].大学物理,2015,34(2):15-18.

[4]乔通.科学教育中重要概念教学的国际比较研究:以“力学”概念教学为例[J].全球教育展望,2015,5(44):118-124.

[5]甘永超.波粒二象性研究中的历史学与方法论思考[J].湖北大学学报(哲学社会科学版),2002,29(3):90-95.

[6]孙会娟.熵原理及其在生命和社会发展中的应用[J].北京联合大学学报(自然科学版),2007,21(3):1-4.

[7]濮春英,周大伟.大学物理教学中学生创新素质的培养[J].南阳师范学院学报,2014,13(3):47-48.

[8]吴波.物理概念教学的改革与发展研究[J].上饶师范学院学报,2003,23(6):23-28.

[9]杨振宁,汪忠.麦克斯韦方程和规范理论的观念起源[J].物理,2014,43(12):780-786.

[10]雷蒙德•塞尔维,克莱门特•摩西.近代物理学[m].3版.北京:清华大学出版社,2008:65-106.

[11]申先甲,李艳平,刘树勇,等.谈谈物理学史在素质教育中的作用[J].大学物理,2000,19(11):36-40.

[12]李明.对加强和改进大学物理教学中多媒体技术的探讨[J].大学物理,2005,24(12):48-50.

[13]吴颖,徐恩生,罗宏超.振幅矢量法与半波带法分析光栅衍射的比较[J].沈阳航空工业学院学报,2005,22(1):70-73.

[15]杨福家.原子物理学[m].2版.北京:高等教育出版社,1985:218-219.

量子力学概述篇2

关键词:化学表述能力;化学实验;能力培养

一、问题的提出

在日常化学课堂教学中,许多初三老师都有同感:每带一届学生,往往都出现这样的现象:开始化学课的几周,学生对学习化学兴趣很大,充满了新鲜感和神秘感,特别是有化学实验的课,课堂气氛十分活跃,教学效果也非常好。但随着时间的推移,部分学生对学习化学兴趣越来越小,甚至怕学厌学,究其原因之一,与化学用语的教学关系很大。从教学经验看,部分学生对学习化学兴趣减小的时段,出现在物质结构知识显现的时间,学生普遍怕微粒结构示意图,怕离子符号,怕化合价,当化学方程式出现时,怕学现象更趋明显。此外,中考化学卷中,对考生的科学语言的表述能力已成为考试重点考察能力之一。学生在化学表述中存在的问题有:①难以用简练的化学语言来描述一个化学操作。②难以用简练的化学语言来描述一个化学情景,或是分析一个化学现象。③化学计算题的解题格式不规范,甚至纯数学化。出现上述问题的原因主要有:①学生主观上不重视。②与语文相关的能力欠佳。③对化学语言认识不够。因此,学生用科学、准确的语言文字表达既是最大的教学实际要求,也是考试的“瓶颈”。中学化学教师应积极引导学生运用语言或文字进行表达和交流,强化化学用语规范性训练,提高学生的表述能力。

二、化学表述能力的概念界定

化学表述能力是指学生在化学学习的过程中充分发挥“五官”的功能,对物质的制法、反应的过程和现象、以及对累积的知识和经验等特定的知觉和感觉素材进行重组、加工和整合,概括成为能反映素材本质特征的口头表达、文字表白、肢体语言或媒体表示的能力。学生在学习生活中累积起来的化学表述能力,其形成过程受到生理因素、心理因素、环境因素等的影响,其中学校课堂学习环境的影响因素最大。因此,教师在化学教学过程中,要结合课堂教学实际,利用各种途径进行悉心训练和培养。

三、化学表述能力的培养途经

(一)注意学生化学阅读能力,培养提炼信息能力

化学阅读能力是指学生通过阅读化学资料,获取化学知识,并用所学知识解决化学问题的能力。让学生多阅读教材和化学科普书籍,对其中精彩的语言表述,由学生齐声朗读,可使学生在阅读中欣赏化学之美,在阅读中学习他人的正确表述。要指导学生在阅读中找出关键性词句,要求学生熟记一些关键性词句,并能模仿关键性词句答题,以提高学生的正确表述能力。

例如,“原子”一课(课程标准实验教材・沪教版p66)有这么一段叙述:“当水分子分解时,生成氢原子和氧原子,每两个氢原子结合成一个氢分子,每两个氧原子结合成一个氧分子”。课堂上让学生反复读这段文字,找出关键性词“分解”“结合”,让学生对着微观示意图去体会、理解。然后布置练习题让学生训练:用分子、原子的知识解释氢气在氧气中燃烧是化学变化。在老师提示下,学生模仿课本表述,并让学生用笔写下来。

又如,学生在解答物质鉴别题时,往往表述不完整或词不达意,有时现象和结论倒置。老师在教学中可先让学生阅读例题,由学生在阅读思考中悟出物质鉴别题答题表述的一般格式:操作―现象―结论。对固体、液体类鉴别题,一般表述为:“取样于……中,滴入(或通入)……试剂(气体),出现……现象,是……物质”;对气体类鉴别题,一般表述为:“在……瓶中,滴入(或加入)……,出现……现象,是……气体。”通过这样反复读、多次练,使学生从模仿到变成自己的表述。

(二)重视对概念、规律的理解,夯实基础知识和基本技能

俗话说:“心中有,口上才有。”要培养学生的表述能力,首先要给学生奠定坚实的知识基础,提高学生的知识储备。而化学概念是整个化学知识的核心内容,因此在概念教学中,教师一定要讲清概念的内涵和外延,提高学生对概念的正确理解和记忆,并注意与相近的概念加以区分。例如,在学习化合物的概念时,教师可用“化合物中不只含一种物质”“化合物中不只含一种元素”“含两种元素以上的物质一定是化合物”等问题让学生辨析,引导学生分析问题要认真细心,思考问题要全面准确,养成思维缜密的习惯。对规律的教和学,要立足于观察和实验,全面理解规律建立的过程,找出书本中有关规律表述的关键词,认真咀嚼,深刻体会。

(三)解读化学图像,发展化学表述能力

化学图表是化学信息的重要载体,是获取科学知识的信息源,是学生化学表述能力发展的重要工具。学生化学图表与文字、实验相互转化能力的强弱,直接影响着化学学习的效果。读图时必须抓住有关概念和有关物质的性质、反应规律及图象特点等,析图的关键在于从定性和定量两个角度进行综合思考,其重点是弄清“起点”“交点”“转折点(拐点)”“终点”及各条线段的化学含义。

例如,用相同质量的铁和锌跟一定量的稀硫酸反应,其反应过程如图1所示(横坐标表示反应时间t,纵坐标表示产生H2的质量m)。试回答:

图1

(1)曲线a表示的是________(填铁或锌)跟稀硫酸反应的情况。

(2)上述曲线图除能说明①的结论外,还可以得出另外两个结论,它们是__________、__________。

根据图示可知,在它们停止反应时,金属a所利用的时间比金属B的少(即金属a的反应速度比金属B的快),说明金属a的活动性大于金属B,又因锌的活动性比铁强,所以金属a为锌。图示曲线上待反应停止后,所得氢气质量相等,而相同质量的铁、锌完全反应,铁生成氢气量大于锌,所以可以得出铁未完全反应或两种金属均未完全反应的结论。故答案为:(1)锌;(2)①反应生成了相同质量的氢气,②该实验中金属铁有剩余,③锌比铁活泼。

(四)抓住化学实验的契机,培养化学表述能力

教师要抓住实验契机,对学生的表述能力进行训练和培养。在教学实践中应创造条件鼓励学生多说。多说是提高学生表述能力的重要途径。课堂教学中多说应做到“三多”:①多复述,引导学生多次复述教材实验的结果和结论。②多进行提问,在做实验时,老师要有意识地多进行提问,要求学生根据实验回答问题,要求简述实验过程中的结果、分析实验结论等。③多讨论,给学生各抒己见的空间,引导学生展开激烈讨论,让学生在讨论中取长补短,在教师的指导下纠正自身存在的不足。

例如,在学习饱和溶液时,让学生做这样的实验:把饱和的硝酸钾溶液分成两份,向其中一份中加入少量硝酸钾,向另一份中加入少量食盐,分别搅拌(保持温度不变),学生观察发现,加进去的硝酸钾没有溶解,而加进去的食盐不见了。在此基础上让学生说出饱和溶液的性质之一:“在一定温度时,饱和溶液还能溶解其他溶质。”这种表述,只有当学生观察了实验,有了亲身的体验才能有恰如其分地表述。但如果只注重做实验、看实验、而不强调学生的正确表述“规律”,那么所“学”到的知识也将容易漂浮失去,不能为学生所“积淀”。

[参考文献]

[1]顾弘.对沪教版新教材“化学用语”教学策略的思考[J].化学教学,2013(1).

[2]蔡红,龚正元.化学方程式教学策略有效性的实验研究[J].化学教与学,2012(9).

量子力学概述篇3

量子力学是当代科学发展中最成功、也是最神秘的理论之一。其成功之处在于,它以独特的形式体系与特有的算法规则,对原子物理学、化学、固体物理学等学科中的许多物理效应和物理现象作出了说明与预言,已经成为科学家认识与描述微观现象的一种普遍有效的概念与语言工具,同时也是日新月异的信息技术革命的理论基础;其神秘之处在于,与其形式体系的这种普遍应用的有效性恰好相反,量子物理学家在表述、传播和交流他们对量子理论的基本概念的意义的理解时,至今仍未达成共识。量子物理学家在理解和解释量子力学的基本概念的过程中所存在的分歧,不是关于原子世界是否具有本体论地位的分歧,而是能否仍然像经典物理学理论那样,把量子理论理解成是对客观存在的原子世界的正确描述之间的分歧。

在量子力学诞生的早期岁月里,这些分歧的产生主要源于对量子理论中的波函数的统计性质的理解。因为量子力学的创始人把量子力学理解成是一种完备的理论,把量子统计理解成是不同于经典统计的观点,在根本意义上,带来了量子力学描述中的统计决定性特征。而理论描述的统计决定性与物理学家长期信奉的因果决定论的实在论研究传统相冲突。在当时的背景下,对于那些在经典物理学的熏陶下成长起来的许多传统物理学家而言,对量子力学的这种理解是难以容忍的。这些物理学家仍然坚持以经典实在观为前提,希望重建对原子对象的因果决定论的描述。这种观点认为,现有的量子力学只是临时的现象学的理论,是不完备的,将来总会被一个拥有确定值的能够解决量子悖论的新理论所取代。量子哲学家普遍地把这种实在论称之为定域实在论,或者称为非语境论的实在论。从epr悖论到贝尔定理的提出正是沿着这一思路发展的。这种观点把量子论中的统计决定论与经典实在论之间的矛盾,理解成是量子论与传统实在论之间的矛盾。

但是,自从1982年阿斯佩克特等到人完成的一系列实验,没有支持定域隐变量理论的预言,而是给出了与量子力学的预言相一致的实验结果以来,量子论与传统实在论之间的矛盾焦点,由对量子理论中的统计决定性特征的质疑,转向了对更加基本的量子测量过程中的“波包塌缩”现象的理解。因为量子测量问题是量子理论中最深层次的概念问题。冯•诺意曼在本体论意义上引入量子态的概念来表征量子实在的作法,直接导致了至今难以解决的量子测量难题。到目前为止,所有的量子测量理论都是试图站在传统实在论的立场上,对量子测量过程作出新的解释。玻姆的本体论解释在承认量子力学的统计性特征,把量子世界看成是由客观的不确定性、随机性和量子纠缠所支配的世界的前提下,通过假设非定域的隐变量的存在,寻找对量子测量过程的因果性解释。量子哲学家把这种实在论称为非定域的实在论。[1]多世界解释在承认现有的量子力学的形式体系和基本特征是完全正确的前提下,通过多元本体论的假设来对具有整体性特征的量子测量过程作出整体论的解释。量子哲学家把这种实在论称为非分离的实在论。[1]

量子测量现象的非定域性和非分离性所反映的是量子测量过程的整体性特征。问题是,相对于科学哲学研究而言,如果把量子测量系统理解成是一个包括观察者在内的整体,我们将永远不可能在观察者与被观察系统之间作出任何形式的分割。而观察者与被观察系统之间的分界线的消失,将会使我们在不考虑观察者的情况下,对物理实在进行客观描述的梦想彻底地破灭。这是因为,一方面,如果我们认为量子力学的形式体系是正确而完备的理论,那么,就能够用量子力学的术语描述包括观察者在内的整个测量过程。这时,观察者成为整个测量系统中的一个组成部分参与了测量中的相互作用;另一方面,如果我们仍然渴望像以可分离性假设为基础的经典测量那样,在以整体性假设为基础的量子测量系统中,也能够得到确定而纯客观的测量结果,那么,他们必须要在观察者与被观察的量子系统之间作出某种分割,观察者才有可能站在整个测量系统之外进行观察。然而,在量子测量的具体实践中,这个重要的“阿基米德点”是永远不可能得到的。因为对量子测量系统进行的任何一种形式的分割,都必然会导致像“薛定谔猫”那样的悖论。这样,关于量子论与实在论之间的矛盾事实上转化为,在承认量子力学的统计性特征的前提下,如何解决量子测量的整体性与传统实在论之间的矛盾。

以玻尔为代表的传统量子物理学家在创立了量子力学的形式体系之后,并不追求从量子测量现象到量子本体论的超越中提供一种本体论的理解。而是在认识论和现象学的意义上做文章。玻尔认为,观察的“客观性”概念的含义,在原子物理学的领域内已经发生了语义上的变化。在这里,客观性不再是指对客体在观察之前的内在特性的揭示,而是具有了“在主体间性的意义上是有效的”这一新的含义。这种把“客观性”理解成是“主体间性”的观点,在认识论意义上,所隐藏的直接后果是,使“客观性”概念失去了与“主观性”概念相对立的基本含义,从而使量子力学成为支持科学的反实在论解释的一个重要的立论依据。与此相反,近几十年发展起来的多世界解释,试图以多元本体论的假设为前提,恢复对客观性概念的传统理解;玻姆的本体论解释则是以粒子轨道与真实波的二元论假设为代价,把测量过程中的整体性特征归结为是量子势的性质。这两种解释虽然在理解量子测量现象时坚持了传统实在论的立场。但是,这些立场的坚持是以在量子力学中增加某些额外的假设为代价的。这正是为什么近几十年来,反思与研究量子力学与量子测量的概念基础问题,成为不计其数的论著和论文所讨论的中心论题的主要原因所在。

到目前为止,在量子物理学家的心目中,微观客体的非定域性特征和量子测量的非分离性特征已经成为不争的事实。如果我们站在科学哲学的立场上,像当初接受量子统计性一样,也接受量子力学描述的微观系统的这种整体性特征。那么,量子测量过程中被测量的系统与测量仪器(包括观察者在内)之间的整体性关系将会意味着,在微观领域内,我们所得到的知识,事实上,总是与观察者密切相关的知识。这个结论显然与长期以来我们所坚持的真理符合论的客观标准不相容。因此,接受量子力学的整体性特征,就意味着放弃真理符合论的标准,需要对传统实在论的核心概念——理论和真理的性质与意义——进行重新理解。这样,现在的问题就变成是,能否在接受量子力学的统计性和整体性特征的前提下,阐述一种新的实在论观点呢?如果答案是否定的,那么,科学实在论将永远不可能得到辩护;如果答案是肯定的,那么,与理论的整体性特征相协调的实在论是一种什么样的实在论呢?这正是本文所关注的主要问题所在。

2.认识论教益:隐喻思考与模型化方法的突现

自近代自然科学产生以来,公认的传统实在论的观点是建立在宏观科学知识基础之上的一种镜像实在论。在宏观科学的研究领域内,观察者总是能够站在整个测量系统之外,客观地获得测量信息。在有效的测量过程中,测量仪器对测量结果的干扰通常可以忽略不计。测量结果为理论命题的真假提供了直接的评判标准,使命题和概念拥有字面表达的意义(literalmeaning)或非隐喻的意义和指称。因此,镜像实在论是以观察命题的真理符合论为前提的。

真理符合论的最实质性的内容是,坚持命题与概念同实际的事实相符合。长期以来,科学家一直把这种观点视为是科学研究活动的价值基础。

维特根斯坦在其著名的《逻辑哲学导论》一书中,把真理的这种符合论观点表述为:就像唱片是声音的画像并具有声音的某些结构一样,命题所描述是事实的画像,并具有与事实一致的结构。因为用语言来思考和说话,就是用语言来对事实作逻辑的模写,它类似于画家用线条、色彩、图案来描绘世界上的事物。所以,用语言描述的图象与世界的实际图象之间具有同构性。1933年,塔尔斯基对这种真理观进行了定义。在当前科学哲学的文献中,人们习惯于用“雪是白的”这一命题为例,把塔尔斯基对真理的定义形象地表述为:“雪是白的”是真的,当且仅当,雪是白的。

普特南把塔尔斯基对真理的这种定义概括为“去掉引号的真理论”。塔尔斯基认为,要想使“‘雪是白的’是真的”,这个句子本身成真,当且仅当,“雪是白的”这个事实是真实的,即我们能够得到“雪是白的”这一经验事实。这个看似简单的句子隐含着两层与常识相一致的符合关系:第一层的相符合关系是,语言表达的命题与实际事实相符合;第二层的相符合关系是,观察得到的事实与真实世界相符合。在日常生活中,像“雪是白的”这样的经验事实是非常直观的,只要是一个正常的人,都有可能看到“雪确实是白色的”这个实际存在的事实。因此,人们对它的客观性不会产生任何怀疑,能够作为“‘雪是白的’是真的”这个句子的成真条件。

然而,量子力学揭示出的微观测量系统中的整体性特征,既限制了我们对这种理想知识的追求,也向传统的客观真理标准的价值观提出了挑战。这是因为,在量子测量的过程中,对命题的这种理想的描述方式和对对象的如此单纯的观察活动,已经不再可能。以玻尔为代表的许多物理学家虽然在量子力学诞生的早期就已经意识到这一点。但是,在科学哲学的意义上,他们在抛弃了真理符合论之后,却走向了认识论的反实在论;冯•诺意曼的测量理论以真理符合论为基础,要求在观察者与测量仪器之间进行分割的做法,直接导致了量子测量中的“观察者悖论”;现存的非分离与非定域的实在论解释,也是以真理符合论为基础,在量子力学的形式体系中增加了某些难以令人接受的额外假设,来解决量子测量难题。从哲学意义上看,这种借助于额外假设来使量子力学与实在论相一致的作法并没有唯一性。它不过是借助于各种哲学的想象力来解决量子测量难题而已。

由此可见,量子测量难题的产生,实际上是以真理符合论为基础的传统实在论的观点,来理解量子测量过程的整体性特征所导致的。现在,如果我们像放弃经典的绝对时空观,接受相对论一样,也放弃真理符合论的实在论,接受现有的量子力学。那么,在当代科学哲学的研究中,我们需要以成功的量子力学带给我们的认识论教益为出发点,对理论、概念和真理的性质与意义作出新的阐述。量子力学所揭示的微观世界与宏观世界之间的最大差异在于,我们对微观世界的内在结构的认知,不可能像对宏观世界的认知那样,使观察者能够站在整个测量语境的外面来进行。

这就像盲人摸象的故事一样,不同的盲人从大象的不同部位开始摸起,最初,他们所得到的对大象的认识是不相同的,因为每个人根据自己的触摸活动都只能说出大象的某一个部分。只有当他们摸完了整个大象时,他们才有可能对大象的形状作出客观的描述。然而,虽然他们对大象的描述始终是从自己的视角为起点的,并建立在个人理解的基础之上。但是,不可否认的是,他们的触摸活动总是以真实的大象为本体的。在微观领域内,量子世界如同是一头大象,物理学家如同是一群盲人,有所区别的是,物理学家对微观世界的认识不可能是直接的触摸活动,而只能借助于自己设计的测量仪器与对象进行相互作用来进行。在这个相互作用的过程中,包括观察者在内的测量语境成为联系微观世界与理论描述之间的一个不可分割的纽带。

如果把这种量子力学的这种整体性思想延伸外推到一般的科学哲学研究中,那么,可以认为,科学家所阐述的理论事实上是一个产生信念的系统。科学家借助于模型化的理论,把他们对世界的认知模拟出来。理论模型所描述出的世界与真实世界之间的关系是一种内在的、整体性的相似关系。这种相似分为两个不同的层次:其一,在特定的语境中,模型与被模拟的世界在现象学意义上的初级相似。这种相似是指,在这个层次上,我们只是能够通过某些关系把现象描述出来,但是,对现象之所以发生的原因给不出明确的说明;其二,在特定的语境中,模型与被模拟的世界在认识论意义上的高级相似。这种相似是指,理论模型达到了与真实世界的内在结构与关系之间的相似。所以,现象学意义上的相似最后会被成熟理论所描述的认识论意义上的结构相似所包容或修正。

这两个层次之间的相似关系是建立在经验基础之上的,而不是建立在逻辑或先验的基础之上。这样,虽然科学家在建构理论模型的过程中,总是不可避免地存在着许多非理性的因素。但是,在根本的意义上,他们的建构活动是以最终达到使理论描述的可能世界与真实世界之间的结构与关系相似为目的的。因此,测量语境的存在成为科学家建构活动的一个最基本的制约前提。建构理论模型的活动是一种对世界的认知活动。建构活动中的虚构性将会在与公认的实验事实的比较中不断地得到矫正,直至达到与真实世界完全一致为止。或者说,在一定的语境中,当从理论模型作出的预言在经验意义上不断地得到了证实的时候,类比的相似性程度将随之不断地得以提高;当科学共同体能够依据理论模型所描述的可能世界的结构来理解真实世界时,相似性关系将逐渐地趋向模型与世界之间的一致性关系。

在这种理解方式中,真理是物理模型与真实世界之间的相似关系的一种极限,是在一定的语境中完善与发展理论的一个最终结果。这样,在科学研究中,真理成为科学研究追求的一个最终目标,而不是科学研究的逻辑起点。或者说,把真理理解成是在科学的探索过程中,成熟的物理模型与世界结构之间达成的一致性关系。对真理的这种理解,使过去追求的客观真理变成了与语境密切相关的一个概念。超出理论成真的语境范围,真理也就失去了存在的前提和价值。这样,与玻尔把理论的客观性理解成是主体间性的观点所不同,本文是通过改变对真理意义的理解方式,挽救了理论的客观性。

如果把科学活动理解成是对世界的模拟活动,那么,在理论的建构活动中,科学理论的概念与术语所描述出的可能世界,只在一定的语境中与真实世界具有相似性。所以,相对于不可能被观察到的真实世界而言,科学的话语(scientificdiscourses)将不再具有按字面所理解的意义,而是只具有隐喻的意义。只有当理论与世界之间的关系趋向于一致性关系时,对某些概念的隐喻性理解才有可能变成字面语言的理解。所以,在科学研究的活动中,研究对象越远离日常经验,科学话语中的隐喻成份就越多。这也许是为什么在量子理论产生的早期年代,物理学家在理解微观现象时,不可能在微观对象的粒子性和波动性之间作出任何选择的原因所在。实际上,微观粒子的波——粒二象性概念只是在现象学意义上的一种典型的隐喻概念,它们并不拥有概念的字面意义,而只具有隐喻的意义。因此,它们不是对真实世界的基本结构的实际描述。正如惠勒的“延迟实验”所揭示的那样,物理学家不可能选择用其中的一类图象来解释另一类图象。只有当关于微观世界的内在结构在可能世界的模型中得到全部模拟时,原来的波——粒二象性的概念才被一个更具有普遍意义的新的量子态概念所取代。

如果科学语言只具有隐喻的意义,科学理论所描述的是可能世界,那么,物理学家对测量现象的描述,也只是一种隐喻描述,而不是非隐喻的按照字义所理解的描述。这种描述既依赖于观察者的背景知识,也依赖于当时的技术发展的水平。就像格式塔心理学所阐述的那样,同样的图形、同一个对象,不同的观察者会得出不同的结论。在这个意义上,测量与观察不再是纯粹地揭示对象属性的一种再现活动,而是观察者与对象发生相互作用之后,受到测量语境约束的一种生成活动。在这个活动中,就现象本身而言,至少包含有两类信息:一是来自对象自身的信息;二是包括观察者在内的测量系统内部发生相互作用时新生成的信息。

从这个意义上看,微观粒子在测量过程中表现出的波——粒二象性只是一种现象学意义上的相似,而不是微观粒子的真实存在。在大多数情况下,现象还不等于是证据,把现象作为一种证据表述出来,还要受到物理学家的背景知识和社会条件的制约,甚至受到已接受的可能世界的基本理念的制约。按照对理论、真理和测量的这种理解方式,由“波包塌缩”现象所反映的问题,就变成了提醒物理学家有必要对过去所忽视的物理测量过程的各个细节,对宏观与微观之间的过渡环节,进行更细致的理论研究的一个信号,成为进一步推动物理学发展的一个技术性的物理学问题,而不再是观念性的与实在论相矛盾的哲学问题。

玻姆的量子论是试图用非隐喻的字面语言对真实的量子世界进行描述,而现有的量子力学在它的产生初期则是用隐喻的语言对量子世界的一种模拟描述。正是由于理论模型具有的相似性,才使得薛定谔的波动力学与海森堡等人的矩阵力学能够得出完全相同的结果,并最终证明两者在数学上是等价的。在量子力学的语境中,不论是波动图象,还是粒子图象都只是理论与世界之间的现象学意义上的初级相似。在以后的发展中,量子力学所描述的可能世界的预言与真实世界的实验现象相一致的事实说明,当冯•诺意曼在希尔伯特空间以量子态为基本概念建立了量子力学的公理化体系之后,这些现象学意义上的相似已经上升到认识论意义上的结构相似,说明量子力学描述的可能世界与真实世界在微观领域内是一致的。这时,以波——粒二象性为基础的隐喻图象被整体论的世界图象所取代。这也许正是物理学家可以在抛开哲学争论的前提下,只注重量子物理学的技术性发展的一个原因所在。而相比之下,玻姆的理论不过是追求传统意义上的非隐喻的字面图象和传统哲学观念的一种理想产物。

在对理论、概念和真理的意义的这种理解方式中,理论与世界之间的一致性关系不是建立在命题与概念的层次上,而是以测量语境为本体,建立在物理模型与真实世界之间从现象学意义上的初级相似到认识论意义上的结构相似的基础之上的。测量语境的本体性,成为我们在认识论意义上承认科学理论是一个信念系统的同时,拒绝后现代主义者把理论理解成是可以随意解读的社会文本的极端观点的根本保证。所以,真理的意义不是取决于词、概念和命题与世界之间的直接符合,而是在于理论整体与世界整体之间在逼真意义上的一致性。由于可能世界与真实世界之间的这种一致性关系在一定程度上是依赖于社会技术条件的动态关系。因此,以一致性为基础的真理是依赖于语境的真理,它永远是一个动态的和可变的概念,而不是静止的和不变的概念。这显然是对“把科学研究的目的理解为是追求真理”这句话的最好解答。

3.从思维方式的变革到语境实在论的基本原理

当我们把对理论、真理和意义的这种理解方式应用于对真实世界的认识时,也可以在测量语境的基础上,对理论进行实在论的解释。所不同的是,这种实在论不再是把科学理论理解成是提供关于世界的某种镜象图景的、以强调语言与命题的真理符合论为基础的那种实在论,而是把科学理论理解成是通过先对世界的模拟,然后,与真实世界趋于一致的、依赖于测量语境的实在论。不同的理论模型和测量语境可以提供对世界的不同描述。但是,通过进一步的观察或实验,我们可以判断哪一个模型能够更好地与世界相一致。在这里,理论模型与世界之间的关系是一种相似关系,而不再是相符合的关系;测量结果与对象之间的关系是在特定条件下的一种境遇性关系,而不再是一种纯粹的再现关系。我们把这种与量子力学的整体性特征相一致的量子实在论称为“语境实在论”。用语境实在论的观点取代传统实在论的观点,必然带来思维方式的根本转变。需要以整体性的语境论的思维观取代传统思维观。这种思维方式的逆转主要通过下列几个方面体现出来:

首先,在本体论意义上,用普遍的本体论的关系论(global-ontologicalrelationalism)的观点取代传统的本体论的原子论(ontologicalatomism)的观点。承认关系属性或倾向性属性的存在,承认概率的实在性,承认世界中的实体、属性与关系之间的整体性。传统的原子本体论总是把世界理解成是由可以进行任意分割的部分所组成,整体等于部分之和,牛顿力学是这种本体论的一个典型范例;关系本体论则把世界理解成是一个不可分割的整体,整体大于部分之和,量子力学是这种本体论的一个典型范例。与原子本体论中认为实体可以独立地拥有自身的属性所不同,在关系本体论中,实体及其属性总是在一定的关系中体现出来。这里存在着两层关系:一层是实体之间的内在关系属性;另一层是实体固有属性表现的外在关系条件。前者具有潜存性,后者为潜存性向现实性的转变创造了有利条件。

其次,在认识论意义上,用理论模型的隐喻论的观点取论模型的镜象论的观点。传统的模型镜象论观点把理论理解成是命题的集合,命题与概念的指称和意义是由对象决定的,它们的集合构成了对对象的完备描述;而模型隐喻论的观点虽然也认为理论能够以命题的形式表示出来,但是,理论不是命题的集合,而是包含有模仿世界的内在机理的模型集合。理论与世界之间的关系不是传统的相符合关系,而是在一定的语境中,理论描述的可能世界与真实世界之间以相似为基础的一致性关系。理论系统的模型与真实系统之间的相似程度决定理论的逼真性。这样,真理不再是命题与世界之间的符合,而是成为理论的逼真性的一种极限情况。或者说,当理论所描述的可能世界与真实世界相一致的时候,理论的真理才能出现。这是对基本的认识论概念的倒转:传统的逼真性理论是用命题或命题集合的真理作为基本单元,来衡量理论距真理的距离,即理论的逼真度;而现在正好反过来,是通过对逼真性概念的理解来达到对真理的理解。

第三,在方法论意义上,用语义学方法取代传统的认识论方法。在传统的认识论方法中,是用命题的真理或图象与世界之间的逼真度的术语来表达科学实在论的一般论点。然而,这种方法使我们从开始就需要清楚地辨别对一些解释性描述的理解。例如,在相同的研究领域内,我们为什么能够说,一个理论比与它相竞争的另一个理论更逼近真理或更远离真理?对于诸如此类的问题,如果没有一个明确的和可辩护的回答方式,那么,逼真性概念要么是空洞的;要么就是不一致的。结果,对理论的逼真性的论证反而成为对“认识的谬误(epistemicfallacy)”的证明,并在某程度上支持了认识论的怀疑论观点。但是,如果我们在语义学的语境中,通过对逼真性概念的分析与辩护,然后,衍生出理论的真理,对上述问题的理解方式将不会陷入如此的认识论困境。并且从认识论的怀疑论也不会推论出语义学的怀疑论。

第四,在经验的意义上,用现象生成论的测量观取代现象再现论的测量观。所谓现象再现论的测量观是指,把物理测量结果理解成是对对象固有属性的一种再现,测量仪器的使用不会对对象属性的揭示产生实质性的干扰,它扮演着一个单纯意义上的工具角色。理论术语能够对这些观察证据进行精确的表述。观察证据的这种纯粹客观性成为建构与判别理论的逻辑起点;而现象生成论的测量观则认为,测量是对世界的一种透视,测量结果是在对象与测量环境相互作用的过程中生成的。测量结果所表达的经验事实,不是纯粹对世界状态的反映,因为经验事实存在于我们的信念系统之中,而不是独立于观察者的意识或论述之外与世界的纯粹符合,只是在特定的测量语境中的一种相对表现,是相互作用的结果。或者说,测量语境构成了对象属性有可能被认识的必要条件。

所以,理论的逼真度与科学进步之间的联系,应该在经验的意义上来确立。科学进步的记录并不是真命题的积累,而是从模型系统与真实系统之间的相似性出发,用逼真度的概念衡量科学研究纲领接近真理的程度。在这里,相似性不是一个命题,也不是两个世界之间的一种固定不变的关系,而是依赖于语境的一个程度性的概念。它的内容将会随着我们对世界的不断深入的理解而发生变化。所以,科学进步不是真命题积累的问题,而是理论的成功预言与经验事实的函数。

第五,在语义学的意义上,用整体论或依赖于语境的隐喻语言范式取代非隐喻的字面真理范式(literal-truthparadigm)。从17世纪开始,非隐喻的字面真理的范式就已经被科学家广泛地接受为是理想的语言。其动机是期望把理论模型的言语和论证,建立在优美而简洁的数学和几何的基础之上。当时的理性论者和经验论者把科学语言当成是理想的合乎理性的语言,或者说,把科学的经验和知识看成是人类经验和知识的典范。这种观点认为,所有的知识与真实世界之间的关系是根据表征知识的命题方式来讨论的,科学语言与概念的意义由它所表征的世界来确定,它们不仅在本质上具有固有的字义,而且语言本身的字面意义就是使用词语的标准。语言的意义不仅与语言的用法无关,而被认为是客观地对应于世界的各个方面。科学的话语总是关于自然界的现象、内在结构和原因的话语。

然而,在整体论的隐喻语言范式中,理论所讨论的是由科学共同体提出的关于世界的因果结构的信念,知识与真实世界之间的关系是根据可能世界与真实世界之间的相似关系来讨论的。在这里,两个世界之间的相似程度的提高是它们共有属性的函数。在隐喻的意义上,语言与概念的意义是极其模糊的和语境化的,隐喻的表达通常并不直接对应于世界中的实体或事件:即,按照字面的意义理解隐喻的陈述常常是错误的。例如,在理解量子测量现象时,实验已经证明,或者强调使用粒子语言,或者强调波动语言都是失败的。这也是玻尔的互补性原理在量子力学的时期岁月里容易被人们所接受的高明之处。从本文的观点来看,关于微观世界的粒子图象或波动图象只不过是传统思维惯性的一种最显著的表现而已。事实上,这两种图象都只是一种隐喻意义上的图象,而不代表微观世界的真实图象。隐喻与其它非字面的言词是依赖于语境的。正如后期维特根斯所言,语言与概念的意义依赖于活动,使用一个符号的充分必要条件必须包括对活动的描述。

在这种整体论的思维方式的基础上,我们可以把语境实在论的主要观点,总结为下列六个基本原理:

本体论原理:在物理测量的过程中,物理学家所观察到的现象是由不可能被直接观察到的过程因果性地引起的。这些不可能被直接观察到的过程是独立于人心而自在自为地存在着的。

方法论原理:对一个真实过程的理论模型的建构,是对不可能被观察到的真实世界的机理和结构的模拟。对于真实世界而言,它在现象学意义上的表现与它的内在结构或机理在定性的意义上具有一致性。即,理论模型具有经验的适当性。

认识论原理:理论描述的可能世界与真实世界只具有的相似性,它们之间的相似程度是它们具有的共同特性的函数。这些共性是在实验与测量语境中找到的。

语义学原理:在一定的语境中,理论模型与真实系统之间的相似关系决定理论的逼真性。在理想的情况下,真理是理论描述的可能世界逼近真实世界的一种极限。

价值论原理:科学理论的建构在最终意义上总要受到实验证据的制约,科学理论的发展总是向着越来越接近真实世界机理的方向发展的。

伦理学原理:包括人类在内的自然界具有不可分割的整体性,关于人类行为的评价标准应该建立在人与自然的整体性关系上。

4.科学进步的语境生成论模式

探讨科学进步的模式问题一直是科学哲学研究中的重大理论问题之一。不同的学派提出了不同的观点。逻辑实证主义者继承了自培根以来的哲学传统,认为科学的发展在于对经验证实的真命题的积累。理论所包括的真命题越多,它就越逼近真理。波普尔把理论逼近真理的这种性质称为“逼真性”,逼真性的程度称为“逼真度”。他认为,理论是真内容与假内容的统一,理论的逼真度等于理论中的真内容与假内容之差。而真内容由理论中那些得到经验确认的真命题所组成。真命题越多,理论的逼真度就越高。在所有这些观点中,逼真性的主要特性是用命题与事实的符合作为近似真理的基本单元。换言之,是用命题真理的术语来理解理论的逼真性。在这里“符合”没有程度上的差别;逼真性与真理之间的关系是部分与整体之间的关系。这种“符合”或“与事实相符”包含着四个方面的关系:其一,句子的主语与谓词之间处于相互联系的状态;其二,事态(thestateofaffairs)与主语之间的指称关系;其三,谓词表达与被选择的事态之间的指称关系;其四,说话者所选择的对象与事态之间的相适合关系。[1]

然而,这种以真命题的多少来衡量理论的逼真度的方法,似乎没有办法回答诸如下面的那些问题:如果一个理论最后被证明是与事实不相符,那么,这个理论怎么可能接近真理呢?比如说,在当前的情况下,量子场论还是一个不成熟的理论,它在未来一定会被加以修改,那么,我们能够说,量子场论不如牛顿力学与事实更相符吗?此外,“符合事实”这个概念也会遇到同样的问题:如果某个理论根本就是错误的,我们又怎能说,它与事实符合的更好或更糟呢?也许有些在表面上曾经显示出具有某种逼真性的理论,实际上,它却在根本意义上就是错的。例如,化学中的“燃素说”、物理学中的“地心说”,等等,这些理论都曾经在科学家的实际工作中,起到过积极的作用。但是,后来的发展证明,它们都是错误的假说。另一方面,这种方法还无法解释为什么在前后相继的理论中使用的同一个概念,却具有不同的内涵这样的问题。例如,经典物理学中的质量概念不同于相对论力学中的质量概念;量子力学的中微观粒子概念也比经典物理学中的粒子概念拥有更丰富的内涵。库恩在阐述他的科学进步的范式论模式时,为了避免上述问题的出现,走向了彻底的相对主义。

如果我们用强调理论描述的物理模型与世界之间的相似性比较,取论中包含的真命题的比较来理解理论的逼真性,那么,上述问题就很容易得到解决。在特定的语境中,并存着的相互竞争的理论,分别描绘出几个相互竞争的可能世界,这些可能世界与真实世界之间的相似程度决定理论的逼真性。逼真度越高的理论,将会越客观、越接近于真理。真理是理论的逼真度等于1时的一种极限情况。例如,牛顿力学比伽里略的力学更接近真理的真正理由是,因为牛顿物理学所描绘的世界模型比伽里略物理学所描绘的世界模型与真实世界更相似。而不应该把这个结论替换成是,在每一个方法中通过真命题的计数来使它们与精确地说明真实世界的真命题的总数进行比较后作出的选择。前后相继的理论中所使用的共同概念的意义也是依赖于可能世界的。不同层次的可能世界虽然赋予同一个概念以不同的内涵。但是,由于更深层的可能世界更接近真实世界的内在结构,所以,对为什么同一个概念会有不同内涵的问题就容易理解了。

我们把由理论描绘的可能世界逼近真实世界的过程,以及前后相继的理论之间的更替关系总结为:

前语境阶段——语境确立阶段——语境扩张阶段——语境转换阶段

——新的语境确立阶段……

在科学进步的这个模式中,前语境阶段是指,当科学进入一个新的研究领域时,面对不可能被旧理论所解释的有限数量的实验证据和存在的重要问题,科学家首先是进行大胆的创新和积极地猜测,提出可能与证据相一致的相互竞争的理论或假说。这些理论或假说分别描绘出了相互竞争的各种可能世界的图象。这个时期,科学家在建构理论时,通过模型与现象的比较来约束他们的想象。或者说,他们的富有创造性的想象力是一种意向性的想象,而不是完全随意的想象。这种意向性的信息直接来自不可能被直接观察到的对象本身。科学家在相互竞争的理论中作出选择时,依赖于两个主要的归纳根据:其一,相信任何一个理论模型的建构都是为了尽可能准确地模拟真实世界的结构和机理;其二,依据模型所产生的信念能够作为成为设计新的实验方案的基础,这个实验方案的设计是为了探索世界,和检验模型与它所表征的世界之间的类似程度。在特定领域内和一定的历史条件下,根据一个理论的信念所设计的实验越新颖,在得到应用之后,越能够证明理论的成功性。同时,理论的调整总是向着与新的实验结果相一致的方向进行的。而新的实验结果是由自然界中某种未知的因果机理引起的。

然而,说明的成功(explanatorysuccess)只是理论逼近真理的一个象征或一个结果,或者说,说明的成功只是理论逼近真理的一个必要条件。凡是逼真的理论都必定能够对实验现象作出成功的说明。但是,并不是每一个拥有成功说明的理论都是逼真的理论。在理论的说明中,理论的逼真性与不断增加的成功之间的联系应该是一个认识论问题,而不是一个语义学问题。一个完整的科学理论从产生到成熟通常要经过三个阶段:其一,对现象的描述阶段,这个阶段得到了在经验上恰当的模型。例如,在量子力学之前,玻尔等人提出的各种原子模型;第二个阶段是建立一个理论的说明模型。例如,现有的量子力学的数学形式体系。第三个阶段是为成功的说明模型寻找一种可理解的机理,或者说,对说明模型提供语义学的基础。相对于一个成熟的科学理论而言,现象——模型——机理三者之间的相互关系具有内在的不可分割的整体性。这也就是为什么原子物理学家在理解量子力学的内在机理的问题上没有达成共识时,产生了量子力学的解释问题的原因所在。

在这里,我们所说的模型是指物理模型而不是仅仅指数学模型。物理模型除了包括数学模型之外,还包括理解世界的构成机理的模型。物理模型是为数学模型提供一个语义学基础。例如,分子运动论模型是解释压强公式的语义学基础;场的观点是理解引力理论的语义学基础。所以,物理学中的模型是指真实物理系统的替代物,它既具有解释的作用,也能够把抽象的数学系统翻译为一个可理解的论述。正是在这个意义上,物理学模型是指一个模型簇。由这些模型簇所描绘的可能世界的结构与真实世界的结构之间的相似关系,在选择理论时是很重要的。一方面,它能够使理论在科学实践中被不断地修改和扩展以适应新的现象,而不是静止的和孤立的;另一方面,它使相互竞争的理论之间的选择在科学实践的规则与活动之内自然地得到了求解。这时,被淘汰掉的理论并非必须要被证伪(尽管证伪也是因素之一),而是如同生物进化那样是自然选择的结果。

在这里,把逼真度作为选择理论的标准,与要么强调经验证实,要么强调经验证伪的标准不同,它永远是动态的和依赖于研究语境的概念。它既有助于把淘汰掉的理论中的某些合理化因素进行再语境化,也能够确保科学描述和与此相关的实验技巧与独立于人心的世界之间建立起一种物理联结,从而坚持了存在着一个不可能被观察到的独立于人心的世界的本体论的实在论观点。大体上,衡量可能世界与真实世界之间的结构或机理的相似程度可以通过它们之间的共有属性(或共同特征)来进行。如果用s(a,b)表示两个世界之间的基本特征的相似关系,用a∩b表示共有属性,a–b和b-a表示它们之间的差异,那么,在定性的意义上,这些量之间的关系可以定性地表示为:[1]

s(a,b)=c1f(a∩b)-c2f(a-b)-c3f(b-a)

这个公式说明,两个世界之间的相似关系是它们的共性与差异的函数。当c1远远大于c2和c3时,两个系统之间的共性将比差异处于更重要的支配地位。其中,三个系数c1、c2和c3的值是通过实验来确定的。这样,我们就有可能在经验的意义上来研究相似关系。在经验的意义上,如果相互竞争的理论中的某个理论的描述和说明模型能够完全依据当前的实验结果和本体论概念被加以校准,那么,我们就可以认为,这个理论是似真的(plausible)。理论越拟真,它就越逼真。

在一个特定的语境中,当一个理论的说明与理解模型能够完全经得起经验的考验时,科学共同体将认为理论描绘的可能世界与真实世界之间达到了某种一致性。这时,科学的发展进入了语境确立的阶段。这个阶段相当于库恩的常规科学时期或范式形成时期。这时,科学家不仅拥有共同的信念和共同的语言,而且拥有对真实世界的共同图象。他们相信,理论描绘的可能世界代表了真实世界的内在机理;理论描绘的图象就是不可观察的真实世界的图象。为了进一步探索真实世界的精细结构,科学家常常会根据现有理论提供的信念和约定,设计新的实验规划,预言新的实验现象,特别是运用成熟理论中的理论实体进行实验操作,从而形成了一个相对稳定的语境阶段。但是,这个相对稳定的语境边界是非常不确定的。

当科学家把成熟理论所揭示的世界机理作为一个范式和信念的基础,延伸推广到解释其它相关领域的现象时,科学的发展进入到语境的扩张阶段。其中,既包括理论研究的信念与方法的扩张,也包括以它的基本原理为基础的技术与实验的扩张。例如,在牛顿理论确立之后,不论是物理学还是化学家,他们都用牛顿力学的基本思想解释他们所面临的其它领域内的新的实验现象,并且成功地制造出了许多测量仪器;同样,现代技术的崛起和分子生物学、量子化学等学科的产生都是量子力学的基本原理成功应用的结果。所以,语境扩张的过程实际上是已有语境膨胀的过程。当科学共同体在语境扩张的过程中,遇到了与理论信念相矛盾的而且是他们料想不到的实验事实时,他们才有可能开始对理论的信念产生怀疑,这时,理论的应用边界,或者说,语境扩张的边界逐渐地变得明确起来,科学的发展开始进入语境转换阶段。在这个阶段,旧语境的扩张受到了限制,新的语境处于形成与培育当中。新的理论竞争也就随之开始了。随着新理论竞争的开始,科学共同体的信念也在不断地发生着改变,直到一个全新的语境形成为止。

当新的语境确立之后,不仅科学家确立了新的信念,而且他们对问题的求解值域也随之发生了改变。这时,原来前语境中的一些不合理的偏见,在新语境中得到了纠正。在前语境中是真理的理论,在后语境中失去了它的真理性。后语境的形成是伴随着新理论的确立而完成的。由于新语境比旧语境揭示出了更深层次的世界结构或机理。所以,它在理论信念、方法和技术层次的扩张与渗透力将会比旧语境更强、更彻底。这也就是,为什么量子力学的产生所带来的理论、方法与技术革命会比牛顿力学更深刻、更广泛的原因所在。但是,前后语境之间的界线是连续的。这时,就像新理论是对旧理论的一种超越一样,新语境也是对旧语境的一种超越。由于语境的变迁和运动是不断地向着揭示世界的真实机理的方向发展的。因此,在语境中生成的理论也使得科学的发展与进步向着不断地逼近真理的方向进行。本文把科学发展的这种模式称为“语境生成论模式”。

这里包括两个层次的生成,其一,理论的形成与完善是在特定的语境中进行的;其二,科学进步也是在语境的变更中完成的。但是,值得注意的是,强调语境化并不意味着使科学进步成为无规则的游戏。把理论系统放置于特定的语境当中,强调了系统的开放性和连续性。在这个意义上,语境论的事实也是一种客观事实。运用语境论的隐喻思考与模型化方法,不仅能够使科学进步过程中的微观的逻辑结构与宏观的历史背景有机地结合起来,而且能够使基本的内在逻辑的东西在历史的发展中内化到新的语境当中,从而使得语境在自然更替的同时,一方面,完成了理论知识的积累与继承的任务;另一方面,揭示出更深层次的世界机理。所以,语境生成论的科学进步模式既不会像库恩的范式论那样,走向相对主义,也不会像普特南那样,走向多元真理论。科学进步的语境生成论模式,既能够包容相对主义的某些合理成份,又能够坚持实在论的立场。

5.结语

从量子力学的认识论教益中抽象出的语境实在论的观点,是一种具有更广泛的解释力,并且有可能把许多观点有机地融合在一起的实在论观点。它不仅能够赋予量子力学以实在论的解释,而且为解决科学实在论面临的许多责难,理清上世纪末围绕“索卡尔事件”所发生的一场震惊西方学坛的科学大战,[1]提供了一条可能的思路。法因曾经在《掷骰子游戏:爱因斯坦与量子论》一书中断言“实在论已经死了”。[2]然而,我们通过对量子力学与实在论的分析,在放弃了传统的真理符合论之后,运用隐喻思考与模型化方法所得出的结论则是,“实在论还活着,而且活的很好”。

[1]d.bohmandb.j.hiley,theundivideduniverse:anontologicalinterpretationofquantumtheory,routledgeandkeganpaul,london(1993).

[1]jeffreyalanbarrett,thequantummechanicsofmindsandworlds,oxforduniversitypress(1999).

[1]jerroldl.aronson,romharré&eileencornellway,realismrescued:howscientificprogressofpossible,geraldduckworth&co.ltd(1994):136-137.

[1]jerroldl.aronson,romharré&eileencornellway,realismrescued:howscientificprogressofpossible,geraldduckworth&co.ltd(1994):133.

量子力学概述篇4

摘要:凝聚态物理学作为物理学的一大分支,其研究前景十分广泛。凝聚态物理学是研究凝聚态物质的物理性质以及它们的微观结构的学科。其通过分析构成凝聚态物质的电子、离子、原子、分子的运动形态和运动规律,从而对凝聚态物质的物理性质进行认知。凝聚态物质是固体物理学的一个拓展方面,研究的物质的典型特征之一是其具有多种形态。同时,凝聚态物理学也为材料研究引入了新的体系。本文就目前凝聚态物理学发展情况,对其中的基本概念的产生、含义及其发展进行阐述。

关键词:凝聚态物理学;基本概念;特点阐述

凝聚态物理学的基本概念需根据物质世界的层次化进行阐述效果会更加明了。作为一门至今仍然拥有丰富生命力的研究学问,凝聚态物理学时时刻刻影响着我们生活的方方面面。例如,液态金属、溶胶、高分子聚合物等等物质的研究都和凝聚态物理学有着密不可分的联系。凝聚态物理学发展历史和其理论支撑,是对凝聚态物理学的基本概念进行阐述的基础。

一、凝聚态物理学发展历史

1、物质世界层次化

为了对凝聚态物理学基本概念进行阐述,首先就需要提到物质世界层次化的研究方式。纵观二十世纪的物理学发展,在二十世纪初,两大划时代的物理理论突破的出现,拉开了宇观物理学和微观物理学的探究序幕。两大理论即是相对论和量子论,相对论和量子理论是对传统物理学的质疑和挑战。其中,狭义相对论修正了经典物理学当中的电磁学和力学之间存在的矛盾;广义相对论则是为近代物理学当中的天体运行研究做出了巨大的贡献。量子论的建立正式拉开了现代物理学对于微观世界的研究,使得基于原子乃至更小系统的探究成为可能。现代物理学的研究方式正是基于这一种将物质世界进行分层的观点进行的,因为物理学当中的理论使用范围都有区别。例如,在宏观世界当中,牛顿力学成立;在微观世界当中,牛顿力学就难以支撑实验事实了。

2、凝聚B物理学的步步发展

从科学家开始探索微观世界开始,凝聚态物理学就悄然发展开来。科学家从原子物理出发,深入到原子核内外空间的研究,为了探索微观世界粒子的基本特性,建立了多代高能粒子加速器,使得近代微观物理学探索出中子、夸克、轻子类的微观粒子。同时,近代物理学的一条研究途径也是将原子物理作为基本主线。在这条研究主线当中,量子力学和统计物理学向结合,奠定了固定物理学的基础。固定物理学的逐渐发展扩大,演变为了凝聚态物理学。凝聚态物理学的研究发展从简单到复杂,从宏观到微观。其结合到其他学科(材料学、化学、生物学等)共同创新,取得了巨大成果。

二、凝聚态物理学的基本概念阐述

1、基本理论

凝聚态物理学基本概念中最重要的基础则是构建这门学科的理论支撑。其基本理论当中的核心即是量子物理和经典物理。根据凝聚态物理学的发展历史来看,量子物理理论推动了凝聚态物理学的发展,使其对众多实验研究成为可能。经典物理理论在凝聚态物理学中并非一无是处,仍在一些研究方面起着不可忽视的作用。两种理论知识在凝聚态物理学当中的应用都存在着自身的适用范围,下面对其进行比较说明。在中学物理中我们初步了解到,物质粒子具有二象性――粒子与波。在粒子的二象性当中,粒子所具有的波动性使得量子力学有别与经典力学。二者的适用范围的界限通常是一些临界温度、直径、场(电场、磁场)强等方面。

2、凝聚现象

凝聚态物理学的基础概念即是凝聚现象,然而凝聚现象在我们日常生活当中是随处可见的。大家都知道,气体可以凝结成固体或者是液体,液体和固体之间最明显的区别是液体的流动性。根据量子力学等理论分析,在某些临界温度附近,物质之间就发生凝聚现象。发生凝聚现象的物质往往具备一些新的物理性质。例如物质原有的沸点、导电性、光敏性等发生改变。

3、凝聚态物质的有序化

根据中学物理和化学的知识可知,物质反应在平衡状态时,其系统能量内能与熵等因素的影响。系统物质内能的上升使得系统趋于不稳定性,使得熵值增加。当温度下降时,凝聚态物质则趋于熵值下降和系统稳定,研究发现,凝聚态物质往往是某一种有序结构的物相。大量物质粒子所组成的系统表现出来的直观特征即是位置序,这也说明不同的粒子直接是存在着相互联系的。当然,也存在着粒子相互作用较弱的情况,其宏观表现即是粒子无序分布。在经典粒子系统当中,使得系统有序化的物理基础则是粒子和粒子之间的相互作用,这可当作是量子力学当中的一个问题处理。根据中学知识我们知道,在量子力学当中,物质粒子存在着位置不确定性和动量不确定性。根据上述进行总结,凝聚态物质是空间当中的凝聚体,而相对空间往往是分为两个方面。一方面是位置形态空间,另外的一方面是抽象的动量空间。凝聚态物质的有序化在这两个空间当中的存在形态极为丰富。

三、研究概念阐述

凝聚态物理学当中基本的研究概念在于以下几个方面。第一是固体电子论。对固定系统当中电子的行为研究是凝聚态物理学一直在努力的方向,按照电子行为的相互作用的大小,又将其分为三个小的区域。首先是弱关联区,这个区域的研究已经取得了巨大进展,也是构成半导体物理学的理论基础。其次是中等关联区域,主要研究对象包括的是一般的金属和强磁性的物质,其构成了磁铁学的物理基础。强关联区受能带理论发展的影响,目前其研究还有待开拓。第二是宏观量子态。宏观量子态研究当中对某些物质的超导现象的研究是一个重点,一些非常规的超导体研究也是目前科学家所努力的方向。第三是纳米结构与介观物理,凝聚态物理学对于一些简单物质的研究已经较为清楚。按照不同物质材料的结构尺度进行探究是凝聚态物理学研究的新方向之一,纳米结构和介观物理需要量子理论进行支撑,研究目的主要是为了获取材料和器件的复合体,同时创造出一些具有优良性能的物理材料。

四、总结

凝聚态物理学的理论基础是量子力学,目前量子力学的发展已经趋于完备。由于凝聚态物理学设计大量微观粒子的研究,其复杂程度较高,需要研究者从实验、计算、推演等方面开展研究。凝聚态物理学作为一门高新技术,其研究前景十分广阔。只要充分结合其他相关学科知识,加以探究,一定会取得更加丰硕的研究成果。

参考文献

[1]冯端,金国钧.凝聚态物理学中的基本概念[J].物理学进展,2000,20(1):1-21.

量子力学概述篇5

物理概念是物理教学的基石,是正确理解和掌握物理规律的基础。学生只有在正确领会概念,抓住概念本质特征的基础上,才能学好物理知识,提高学生分析问题、解决问题的能力。那么,如何搞好物理概念的教学呢?根据自己的教学实践,简单谈谈个人的一些看法。

一、要揭示概念的本质特征

概念是对客观事物本质属性的抽象和概括,要正确地理解概念,就必须引导学生找出概念的本质属性,让学生真正理解概念的内涵和外延,从而正确地掌握概念,切不可只进行文字说明,让学生死记硬背。例如:“电容”这一概念的教学,通常用公式C=Q/U来定义,倘若不讲清楚其本质意义,学生会受数学公式的影响,认为C与Q成正比,从而形成错误的认识。教师只有抓住“电容”概念的本质特征,讲清其只与自身的性质有关,学生才能真正地掌握“电容”这一概念。

二、从不同的角度阐述物理概念,可以深化学生对概念的理解

物理概念是可以从不同角度定义的,但教科书往往只从正面单一方式叙述,教师倘若只是机械地照本宣科,会使学生对概念的理解有片面性,缺乏立体感。如果教师在讲概念时,能够从正面,反面,侧面等方面多角度地去剖析,阐述,定可深化学生对概念的理解。例如,在讲解“加速度”这一概念时,除按教科书上叙述外,还可以从以下几个方面进行阐述:加速度是描述速度快慢地物理量;是单位时间内速度的变化量;是速度对时间的变化率;其大小等于合外力与物体质量的比值;是物体运动状态发生变化的标志。

三、通过比较、辨析概念,明确概念,理解概念

比较法是物理教学中较为常用的教学方法。对既有相同,又有不同的概念进行比较,容易让学生接受,且能够加深他们对概念的理解。

例如,对“蒸发”和“沸腾”加以列表对比,一目了然、通俗易懂。

四、利用变式突出概念的关键特征

例如,“功”的概念。功包含两个必要因素:一是作用在物体上的力,二是物体在力的方向上通过的距离。在教学中,我是通过这样的变式来突出它的特征,加深学生对“功”的理解:

吊车吊货物:1、匀速吊起;2、静止;3、水平移动。

提出疑问:吊车是否做功?

五、通过解题训练强化物理概念,抓好概念的应用

只有抓好概念的应用,才可能加深理解,形成自然记忆,并借此促进学生思维的积极性,及时暴露概念学习中问题,使教学及时得到反馈信息。

在实际教学中,我们常常设计一组选择题或判断题,通过解题训练,加深强化学生对物理概念的理解和掌握。例如:“磁感应强度”这一概念的教学,我们可以设计下列一组判断题供学生分析判断:(1)磁感应强度是描述磁场强弱的物理量;(2)某点磁感应强度的方向就是磁场的方向;(3)磁感应强度的大小,与所受磁场力成正比,与通电导线的长度和通电电流的乘积成反比;(4)磁感应强度的大小等于单位面积上穿过的磁力线条数。

量子力学概述篇6

关键词:认知同化;物质的量;先行组织者

“物质的量”作为基本物理量,是高中必须学习的概念,它广泛应用于工农业生产和科学研究的各个领域,更贯穿于化学教学和科研的始终。在新课改下,所有版本的教材都将其安排在必修i的第一部分,把“物质的量”概念作为引领学生学习高中化学的开始,成为学生学习物质性质前最先接触的重要概念。但在教学实践中,师生普遍感到“物质的量”难教、难学。笔者认为有以下几方面的原因:

第一,“物质的量”是用来计量原子、离子、分子等微观粒子的物理量,它把人们的研究视野从宏观引入微观。在微观的世界里,需要人们更多地使用发达的抽象逻辑思维来重新认识事物的本质,但刚刚进入高中的学生抽象逻辑思维和演绎能力不强,善于从宏观的角度思考所要解决的问题。

第二,由于物质的量这个概念与日常生活基本无联系,实验室又没有相应的测量仪器,因此缺乏感性经验的直接支持,造成学生在接触之后感觉天方夜谭般难以接受。

第三,三套教材在“物质的量”的概念引入时无一例外地先介绍“物质的量”与“阿伏加德罗常数”。如此安排对学生而言,没有初中化学知识的铺垫,总是太过突兀与深奥。

基于上述因素,导致学生不易从心里真正体会物质的量的系统给解决问题带来的方便,反而使畏难情绪、抵触情绪占了上风,测查成绩总是很不理想。

在教学实践中,许多化学教师都针对以上问题对这一章的教学改革做过有益的尝试,而本文就是一例。利用认知同化论,从学生熟悉的初中化学知识及日常生活中的概念出发,突破物质的量教学的重难点,并取得了较好的教学效果。

认知同化理论是当代美国认知心理学家奥苏贝尔提出的,其理论核心可以用他所著书的扉页中的一句话概括:如果我不得不把全部教育心理学归纳为一条原则的话,我将会说,影响学生唯一的最重要的因素是学习者已经知道了什么,并且根据学生原有知识进行教学。由此他提出了重要的学习理论——认知同化论,即意义学习论。他认为学生能否获得新信息,主要决定于他们认知结构中已有的有关概念;意义学习是通过新信息与学生认知结构中已有的有关概念的相互作用才得以发生的;由于这种相互作用的结果导致了新旧知识的意义的同化。

那么在教学中如何协调与整合学生学习的内容,使新旧知识很好地联系起来呢?奥苏贝尔提出了认知同化的具体策略——先行组织者。组织者的主要功能是在学生能够有意义地学习新内容之前,在他们“已经知道的”与“需要知道的”知识之间架设起桥梁,同时还可以在促进学生建立学习心向方面起到积极作用。

【展示】国际单位制中的基本物理量

物理量名称长度质量时间电流物质的量

单位名称米千克千克安培摩尔

目的是通过将新概念与已有概念建立联系,初步理解新概念的涵义。但是对大部分学生而言,这种概念“抽象”的特点并不是通过一次简单是类比就能理解的。任何学生都有其丰富的生活经验,在这种经验中蕴藏着已有的认知结构,教师要善于从学生这种已有的认知经验出发,帮助其形成对新的学习知识的同化,从而达到对新知识的结构化,即学习者必须对新知识与原有知识进行精细分化。

【过渡】物理量一般都会有其物理意义,像长度可以描述物体的长短,温度可以描述它的冷热程度,那么物质的量的物理意义又是什么呢?

【展示】两只烧杯,里面盛水,一多一少。

【讲解】描述物质的多少,人们一般会想到比较它们的质量、体积。其实还可以从另外一个侧面去描述它,那就是从微观的角度来比较这两杯水中水分子数目的多少。假设a杯水是2万个水分子,B杯水是1万个,显而易见装2万个水分子的烧杯的水要多。所以物质的量的物理意义在于它可以像质量、体积一样来描述物质的多少,而且它侧重于描述物质所含微观粒子数目的多少。

【设置情景】微观世界里的粒子数目是非常庞大的。通过测定,一滴水中含有1.67×1021个水分子,所以用物质的量直接来计量分子数是很不方便的,那么物质的量应怎样来计量分子数目才是切实可行的呢?

设置问题,促使学生积极地搜索已有认知结构中的知识,激发了学知识的愿望,使学生建立较强的学习心向,这是有意义获得新知识的必要条件。

【引导】生活中,我们如何购买面粉?为什么不买一颗或几粒面粉?

【讲述】“买面粉”的记数思路是“将微小的不可直接称量的物体(面粉)‘集合’成大量可称的质量”,这个思想就可以用来解决前面遇到的问题。我们可以这样来理解摩尔:将规定数目的微观粒子堆在一起,将这个集合作为一个单位,用以计量物质的粒子的多少。

从感性的原有生活经验出发,并由已知的物理量引入物质的量的概念,实现宏观世界向微观世界的过渡,很快就可以建立起对物质的量这个抽象的物理量的认识。

【设疑】用什么样的微粒集体作为标准来联系宏观与微观世界最为适合,它的具体数目是多少?

【解析】对于这一难点,通常教学设计中认为由于摩尔概念本身缺乏具有统摄性上位概念,难以寻求有效的先行组织者,后续学习中阿伏加德罗常数总是以已知条件的形式出现等原因,教学往往由学生自行从教材中寻找现成陈述,教材这样的处理方式试图将教材结构作为定论形式加入学生的认知结构,必然造成学生机械学习,从概念同化角度看是不适合的。所以,笔者通过设计平行的比较性组织者以期用同化方式完成“摩尔的规定”的教学。

【展示】“相对原子质量规定”的短片。

【讨论】“微粒集体”应该如何规定。

【解析】学生应用原有的相似概念学习新概念的同化方式,无疑有助于新旧知识的综合与巩固,从而在有意义学习中形成、完善自身的认知结构。将新概念与原有概念进行精确类比,这是新旧概念间建立联系的过程,是同化策略的关键。学习心理学认为正面的、相似的概念有利于形成概括的信息,而反面的、相异的信息则有利于提供辨别的信息。“物质的量”概念和其他概念(如物质质量、数量等)具有较多相似属性,下一步应将教学重点集中在相似概念的比较上,并适当通过简单计算找出“物质的量”、“微粒数目”之间的关系。

【讨论】1.一盒粉笔50支粉笔;一打羽毛球12支羽毛球;一箱啤酒24瓶啤酒;一摩尔微粒个微粒。

2.以下说法正确吗:1mol大米约含有6.02×1023个大米,试计算1mol大米平均分给10亿人,则每人可得多少斤大米。

总之,正如奥苏贝尔所说的:“影响学习的最重要的因素是学生已知的内容。因此在概念教学实践中,要关注学生原有的认知结构,并采用多种方法,提供各种直观的、具体的范例,为新学的概念找到固定点;帮助学生将新学概念融入原有的认知结构中,使之相互作用,构建新的完善的认知体系。

参考文献:

量子力学概述篇7

批改作业时,常常发现有学生写出诸如“一棵大树高5厘米”“一张桌子长10厘米”“一根香肠长1米”等错误答案,令人啼笑皆非。仔细分析其中的原因,不得不对长度概念的教学过程进行回顾和反思。

教学片断一:估测线段有多长

教学中,我出示两条长度不同的线段,让学生采用直尺来测量:“这两条线段的长度各有几厘米?”学生经过测量后发现,第一条线段比8厘米长一些。“那么,到底如何表示这个长度呢?”学生表述为“比8厘米多一些”。我继续问道:“这样表述并不准确,能否用一个更好的词语来表示呢?”学生提出用“大约”一词,即第一条线段表述为“大约长8厘米”。而后,学生发现第二条线段比8厘米稍短一点。“那么,如何准确地表述这个长度呢?”学生提出也用“大约”一词表述,这样第二条线段的长度也表述为“大约长8厘米”。此时,我进行追问:“这两条线段都表述为‘大约长8厘米’,那么是否两条线段一样长呢?”有学生认为,“大约长8厘米”并不是两根线段的准确长度,而是一个估测的大概数据,不具有准确性,如果想要进行比较,就需要进行准确的测量。经过小组讨论后,学生还认识到:对于估测的这个8厘米而言,线段的长度有可能比8厘米长一点,也可能短一点。这样教学,使学生明白当不需要知道物体的准确长度时就可以采用估测的方法,说它大约有多长;当需要知道物体的准确长度时,则需要进行准确的表述。“现在大家拿出学具中的绿色小棒,先估一估它大约有几厘米长,然后用尺子量一量,测出具体有多少厘米,看看估计的长度与具体的长度差别有多少。”学生动手操作后,小组讨论交流。

上述教学,引导学生展开对线段长度的估测,使他们不知不觉中认识到估测的价值,不仅有效建立厘米这一长度概念,而且对厘米有了更深入的体验和了解,为下一步在生活实践中运用厘米单位打好基础。

教学片断二:巧用身上的秘尺

师:生活中要想知道一个物体的长度,就离不开尺子来测量。实际上,每个人都带着几把隐形的神秘尺子,你知道那是什么吗?(学生立刻有了体验和交流的话题,提出身体上有以下隐形的尺子:一柞、一脚底、一个大步、一个手指的长度、一巴掌的长度)

师:那么,该如何使用这些隐形的秘尺呢?

生1:可以先通过直尺测量,记住这些隐形秘尺的大概长度,然后运用它们来进行估测。

师:如果要估测数学课本的大概长度,你怎么测量呢?

生2:可以用自己的一拃来量。(学生的一拃为14厘米,课本比一拃长一些,估测大概有23厘米)那么,具体到底是多少厘米呢?(学生用直尺测量后得到24厘米)

……

通过运用身上的秘尺来估测物体的长度,使学生积累了直观的估测经验,体验到估测的价值,对长度概念的认识和理解就更深入了一层。

教学片断三:使用残尺测量长度

师:如果给你一把烧坏的尺子(一部分烧坏,但起点0还在),你能用它来测量吗?

生1:只要起点0还在,就能够用来测量。

师:那如果这把尺子不够量呢?

生2:可以量两次。

师:那如果起点0也没有了呢?

生3:还可以测量,将刻度“1”当作起点。

师:那如果刻度1也没有了呢?

生4:将刻度2当作起点。

师:现在用这把残尺测量这把小刀的长度,你怎么测量?

生5:起点是2厘米,终点是6厘米,小刀的长度就是6厘米减去2厘米,得到4个1厘米。

……

上述教学,通过创设用残尺测量长度的教学情境,引导学生深入体验,经历“大数减小数”这一计算方法的形成过程,使学生明白测量长度必备的两个条件——起点和测量标准,从而深入理解测量的原理和本质。

思考:

对于长度概念教学而言,教师要从学生的思维认知特点出发,找准切入点,使其经历体验的过程。

1.从生活入手,培养估测意识

“大约”这个估测术语的形成和运用,对于小学生来说,需要一个适应的过程。因此,教师要引导学生将估测运用到自己的实际生活中,如估测自己走一步的长度、文具盒的长度等,从而培养学生的估测意识,使他们体验并感受到估测的价值。

2.由活动渗透,提高估测能力

数学活动是一个集体交流的过程,对于学生的体验大有帮助。教师教学中要引导学生结合生活实践和活动经验进行总结与反馈,使他们获得科学、合理的估测方法,发展学生将数学运用于生活的能力。

3.灵活应变,提高测量能力

量子力学概述篇8

一、物理课程标准的教学目标陈述的一般方式

一个完整的教学目标的构成要素包括四个条件,即行为主体、行为动词、行为条件和行为程度。好的教学目标能够清晰表达学生“学到什么”,明确学生具体的学习结果。通常教学目标的设定应通过一定的教学活动后引起学生在行为上产生实际变化,而不是教师应该怎样做,做什么。评价教学是否成功,其直接依据应该是学生收获了什么,学生在自己原有的基础上获得了什么,其具体的进步怎么样,而不是教师完成了什么任务。教学目标的设定行为主体应该是学生而不是教师;行为动词是可观察、可测量的具体行为;行为条件是影响学习结果的特定限制或范围等,主要有辅助手段或工具、提供信息或提示、时间、次数、空间等数量的限制、完成行为的情景等;行为程度是学生达到目标的最低表现水准,用以评量学习表现或学习结果所达到的程度。

《物理课程标准》中“内容标准”是对学生物理学习结果的基本要求。综合各类学者的研究成果,一般内容标准和科学探究涉及五类目标,即结果性目标、生成性目标、表现性目标、通识性目标和能力目标。

结果性目标的陈述方式,主要说明学生的学习结果是什么,所采用的行为动词要求具体明确、可观测、可量化。这种方式指向可以结果化的课程目标,主要强调“知识与技能”维度,如:“能根据电路实物图识别出对应的电路符号图”,“知道声音由振动产生”。

生成性目标的陈述方式,主要描述学生自己的心理感受、情绪体验,所采用的行为动词往往是历时性的、过程性的,因而也称过程性目标、体验性目标。这种方式指向难以或无需将结果量化的课程目标,主要强调“过程与方法”或“情感态度与价值观”维度,如:“用平面镜改变光的传播方向,描述自己对改变光路的感受。”“以神舟八号与天宫一号对接成功为例,体会和认识人类探索宇宙空间的意义。”

表现性目标的陈述方式,主要是明确安排学生各种各样的表现机会,所采用的行为动词通常是与学生表现什么有关的或者结果是开放性的。这种方式指向结果开放的课程目标,如:“说出自己喜欢的生活中常见物态变化。”“能利用生活中常见物品,制作简单的声音发生器件。”

通识性目标的陈述方式,这种目标的特点是把一般教育宗旨或原则与教学目标等同起来,因而具有普遍性、内隐性、规范性。这种方式可适用于多个课程领域,如:“表现出科学探究意识和一定人文精神”、“形成水资源保护需要从我做起的意识”。

能力指标的陈述方式,描述的是一种能力,包含了知识与技能、过程与方法、情感态度与价值观三个维度。比如:“提高分析与论证能力。”

二、物理课程标准中教学目标的分解策略

教师进行课程标准中内容标准和科学探究(水平或学段目标)的分解,目的是界定清晰的教学目标,为教师选择和组织学习内容、设计教学评价内容提供依据。

学者朱伟强认为,课程标准内容标准的常见的分解策略一般包括以下三种。

一是替代策略。通常是“一换一”的形式,将原内容标准a通过另一种清晰的目标B形式进行表述。如“了解液体温度计的工作原理”可以用以下目标进行替代:了解生活中常见的液体温度计是利用液体热胀冷缩性质工作的。

二是拆解策略。通常是“一拆多”,就是把一个内容标准表述过于笼统的,拆分成几个目标进行描述。比如:“初步认识质量的概念”一条内容标准,可以进行拆解和具体化,比如:知道质量是物体含有物质的多少;知道不同物体的质量一般不同,所含有的物质也不相同;知道质量的国际单位是千克,还有其他常用单位吨、克、毫克;知道1千克等于100克,1克等于10毫克,1吨等于1000千克;知道生活中常见物品鸡蛋、苹果的质量大约是多大;知道质量测量的常用工具是天平,了解生活中还有电子称等其他测量质量的工具。

三是联结与聚焦策略。采取“多对一”,就是将几个教学目标根据其内在的学科逻辑关系,进行聚焦、整合,形成一个总目标。这种课程目标的拆解策略一般在单元复习课或阶段性复习课中用到。如“能用动摩擦因数计算摩擦力”、“用力的合成与分解分析日常生活中的问题”,可以联结、聚焦,形成“分析斜坡停车问题”这一教学目标。

三、物理课程标准中内容标准的分解方法与基本步骤

学者朱伟强认为,分解物理课程标准中内容标准目标的方法,就是分析一条内容标准目标的表述结构中是否具备了教学目标的四个基本要素。若有,则依据前述课程目标内容分解的一般策略,或替代、或拆解、或聚焦、联结,对其进一步扩展或剖析;若无,则须结合具体情境界定、补足,以形成课堂层面的教学目标。由于课程标准中的内容标准存在不同陈述方式,因此内容标准目标的分解思路不尽相同。比如:结果性目标一般采用教学目标四要素分析的基本方法。体验性目标一般分解成:认知、动作技能、行为表现(过程)、成果。表现性目标一般分解成:认知、动作技能、行为表现(任务)、成果。通识性目标一般采用简单枚举法,列举各种用于间接推论的必要不充分条件:行为表现(通常表现或最优表现)。能力指标分解成:认知、技能、情意态度、行为表现、成果。

朱伟强指出,课程标准中内容标准的目标分解,一般包括以下五个步骤。

第一步,判断内容标准的陈述方式、表述结构和关键词。判断一条课程标准的陈述方式、表述结构,找出动词和这些动词所指向的核心概念(名词),或修饰它们的形容词、副词等和规定性条件,作为关键词,并予以分类。一般关键词拓展与剖析要合乎学科逻辑,分解所得细化教学目标与内容标准应保持对应,避免过度分解和拓展。比如,“能用实例说明机械能和其他形式的能的转化”这条内容标准,行为动词为“说明”,核心概念是“其他形式的能”。从整个内容条目看,“说明”和“其他形式的能”是这一内容标准的关键词。

第二步,分解或剖析核心概念。通常可采用概念认知展开等方式。比如“能用实例说明机械能和其他形式的能的转化”这条内容标准中的核心概念是“其他形式的能”。从物理概念来讲,相对于“机械能”而言的“其他形式的能”有“电能”、“热能”、“光能”、“化学能”等。若采用概念认知展开的方式,同时考虑到学生的具体特征,“其他形式的能”对初中八年级学生而言大致可分为“声能”、“光能”、“动能”、“弹性势能”等四类。

第三步,分解或剖析行为动词。可采用词汇意义展开或教师经验展开等方式。一般描述教学行为表现的动词要合理、具体、明确、可直接观察和测量。比如“通过实验理解密度的概念”。“理解”是这条内容标准中的行为动词。《物理课程标准》附录中提供了知识技能目标、体验性要求的目标行为动词的水平含义与解释。根据《物理课程标准》“附录”中行为动词界定,“理解”的水平含义包括:把握内在逻辑联系;与已知知识建立联系;进行解释、推断、区分、扩展;提供证据;收集、整理信息等。若采用词汇意义展开的方式,可将它拓展为“区别、说明、解释、估计、分类、计算”等。再比如:若针对“能用实例说明机械能和其他形式的能的转化”采取教师经验展开的方式,“说明”是这条内容标准中的行为动词。在教学实践中,教师经常发现学生喜欢采取口语表达、书面描述、绘制图表、动手制作等“说明与解释”的方式。因此“说明”可以扩展为“通过言语说明”、“画出图表说明”、“制作模型说明”、“实验演示说明”等。

第四步,确定行为条件与行为表现程度。结合学情、校情、资源等条件确定目标分解,此过程可以根据某种逻辑绘制成剖析图,以便于目标能够清晰地对应于具体的学生,符合学校的教学条件。通常行为条件分解要合理、必要,没有多余,有利于指导学习活动的设计。而行为程度的分解则要合理、明确,能为课时内的形成性评价提供评估依据。

第五步,写出教学目标。依据重点组合以及目标陈述的规范,叙写明确的教学目标。

四、典型案例评析

案例1:

某老师将《物理课程标准》“物质”主题中“物质的结构与物体的尺度”其中一条的内容标准“知道物质是由分子和原子组成的”做了如下分解:可以将“知道物质是由分子和原子组成”这一内容标准分解为以下教学目标。

1.学生通过科学探究能说出分子是组成物质的最小微粒,分子是由原子构成的。

2.学生能说出分子是由原子构成的,原子是由原子核和带负电的电子组成。

3.学生能够用语言描述出原子、分子模型。

4.学生能够用图形绘出原子、分子的模型。

5.让学生通过了解人类探索微观世界的历程,了解研究微观世界的科学方法。

【点评】以上教学目标的叙述,从目标分解的角度看,没有呈现出分解的步骤,但是有了初步的分解意识,无法判断过程的合理性。从陈述的五条教学目标来看,第1、第2条目标部分内容有重复,第3、第4条教学目标指向的目标领域和学习内容相同,第5条教学目标的主体“让学生”是教师而不是学生。另外以上教学目标中没有清楚地说明目标行为的条件和行为程度,不利于对目标进行测量。

案例2:

1.课程标准中“内容标准”要求

知道物质是由分子和原子组成。选自:《九年义务教育物理课程标准》第20页,该条目属于课标主题一“物质”中“物质的结构与物体的尺度”中内容标准的条目1。

2.教材内容

苏科版八年级下册第七章《粒子与宇宙》内容主题“第一节”看不见的粒子。

3.分析陈述方式、表述结构和关键词

该条目的陈述方式是属于“行为目标”的陈述方式。它直接说明了学生的学习结果是知道物质是由分子和原子组成。

表述的结构:四种表述结构中的第一种,即采取了行为表现,具体表现为“行为动词+核心概念”的表述结构。

本条目中的关键词涉及两个方面,一是行为动词是“知道”,二是表述的目标行为条件,反映了学习程度是“物质是由分子和原子组成”。

4.核心概念的扩展策略

核心概念的分解是采取了“拆解”的策略。

5.行为动词的扩展或剖析

行为动词是“知道”。从行为动词的类型看,属于“知识”的类别,其行为水平属于“了解”水平。具体要求是:学生能够再认或回忆原子和分子的相关经验,能辨认生活中有关分子、原子的事实,会用图形、文字或语言描述原子与分子的模型,具体说出原子、分子模型的特征。

6.行为表现程度的确定

学生学习的行为表现程度与结果是:学生要知道物质由分子或原子组成。具体指,学生要认识到物质结构是可分的。了解物质微观结构的工具可以是电子显微镜等。能够知道分子和原子是微小颗粒,尺度的大小约10~10m数量级。不同物质可以由分子或原子组成,组成物质的分子间是有间隙的。金属是由原子组成。物质的分子和原子可以由更小微粒组成。人类认识微观世界是一个渐进的过程,了解卢瑟福的原子行星结构模型。

7.分解后的教学目标

(1)学生通过石墨在白纸上书写文字,酒精与水试管混合实验操作,能认识到物质间是有间隙的。通过归纳和推理,能够提出分子模型。

(2)通过分子模型的建立,认识到物质是有结构的。通过文字说明,学生能认识到分子是组成物质的最小微粒,分子是由原子构成的。学生能了解到金属是由原子组成。

(3)通过物质微观世界的探索和物理学史的介绍,学生能了解到认识微观世界的工具是电子显微镜。了解人类认识微观世界的过程是渐进的。

(4)通过阅读材料,学生能说出分子是由原子构成的,原子是由原子核和带负电的电子组成。

(5)通过分组的讨论和阅读材料,学生能够用物理的语言描述出原子、分子的模型特点,并能识别原子、分子的模型示意图。

【点评】以上案例基本上能够按照课程目标的分解基本步骤进行初步分解,分解的思路比较清晰,但是行为动词、核心概念等关键词的分解没有采取列表的方式。从目标的评价看,分解的目标具有很强的可测量性,行为程度表述也比较到位,但是行为条件的分解没有独立分解,还需要进一步明确。

五、基于物理课程标准的教学目标分解应注意的问题

基于《物理课程标准》的目标分解不仅是提高物理常态教学质量的重要途径,也是强化物理教师目标意识和提升教师专业能力的重要手段。通过课程标准中“内容标准”目标的分解训练,能够让普通教师精准地叙写课堂教学的目标,很好地把握课堂教学的方向,真正地改变课堂教学的方式。因此要做好《物理课程标准》中任何一条“内容标准”或“科学探究”内容的目标分解,必须注意以下几点。

一是要符合学生身心发展阶段,且应为大多数学生能达成的。

二是要在充分解读物理课程标准本身的基础上,从整体上把握这一标准的内涵。内容标准的分解不是简单地将目标进行拆解和细分,需要关注同一学习阶段不同领域目标间的横向联系,也要分析同一领域目标不同学习阶段间的纵向衔接。

三是要适当地兼顾全国各地区教育行政部门或教研机构的“考纲”、“学科教学指导意见”的要求。

量子力学概述篇9

关键词:初中数学概念教学

数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式。[1]数学概念是数学知识的基础,是数学教材结构的最基本的因素,是数学思想与方法的载体。正确理解数学概念,是掌握数学基础知识的前提。学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题。因此,抓好数学概念的教学,是提高数学教学质量的关键。数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的。在教学过程中,一些教师不注意结合学生心理发展特点去分析事物的本质特征,只是照本宣科地提出概念的正确定义,缺乏生动的讲解和形象的比喻,对某些概念讲解不够透彻,使得一些学生对概念常常是一知半解、模糊不清,也就无法对概念正确理解、记忆和应用。下面就如何做好数学概念的教学工作谈几点体会。

一、利用生活实例引入概念

概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物入手,比较容易揭示概念的本质和特征。例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识。再如,讲“数轴”的概念时,教师可模仿秤杆上用点表示物体的重量。秤杆具有三个要素:①度量的起点;②度量的单位;③明确的增减方向。这样以实物启发人们用直线上的点表示数,从而引出了数轴的概念。这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻。

二、注重概念的形成过程

许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。例如,负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1,2,3…表示;一个物体也没有,就用自然数0表示;测量和计算有时不能得到整数的结果,这就用像,等这样的分数。②观察两个温度计,零上3度,记作+3°,零下3度,记作-3°,这里出现了一种新的数――负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。

三、深入剖析,揭示概念的本质

数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延,也就是从质和量两个方面来明确概念所反映的对象。如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵。②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延。③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能。另外,要让学生学会运用概念解决问题,加深对概念本质的理解。如,“一般地,式子(a≥0)叫做二次根式”这是一个描述性的概念,式子(a≥0)是一个整体概念,其中a≥0是必不可少的条件。又如,讲授函数概念时,为了使学生更好地理解掌握函数概念,我们必须揭示其本质特征,进行逐层剖析:①“存在某个变化过程”――说明变量的存在性;②“在某个变化过程中有两个变量x和y”――说明函数是研究两个变量之间的依存关系;③“对于x在某一范围内的每一个确定的值”――说明变量x的取值是有范围限制的,即允许值范围;④“y有唯一确定的值和它对应”――说明有唯一确定的对应规律。由以上剖析可知,函数概念的本质是对应关系。

四、通过变式,突出比较,巩固对概念的理解

巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。[2]巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。如“有理数”与“无理数”的概念教学中,可举出如“与”、“π与3.14159”、“与3.030030003…(每两个3之间一次多一个0)”等,通过这样的变式训练,能有效地排除外在形式的干扰,对“有理数”与“无理数”的理解更加深刻。最后,巩固时还要通过适当的正反例子比较,把所教概念同类似的、相关的概念比较,分清它们的异同点,并注意适用范围,小心隐含“陷阱”,帮助学生从中反省,以激起对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。

五、注重应用,加深对概念的理解,培养学生的数学能力

对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延。课本中直接运用概念解题的例子很多,教学中要充分利用。同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻。

总之,数学概念教学对整个数学教学起着至关重要的作用,教师在数学概念教学中应努力通过揭示概念的形成、发展、巩固和应用的过程,培养学生的辩证唯物主义观念,完善学生的认知结构,发展学生的思维能力,从而提高数学教学质量。

参考文献:

[1]李祖选.初中数学概念教学探微[J].宁波教育学院学报,2006,(6).

[2]黄惠娟.在概念教学中培养学生的探究意识[J].教学研究,2005,(4).

量子力学概述篇10

数学概念是反映现实世界的空间形式和数量关系的本质属性的思维形式。数学概念是数学知识的基础,是数学教材结构的最基本的因素,是数学思想与方法的载体。正确理解数学概念,是掌握数学基础知识的前提。学生如果不能正确地理解数学中的各种概念,就不能很好地掌握各种法则、公式、定理,也就不能应用所学知识去解决实际问题。因此。抓好数学概念的教学,是提高数学教学质量的关键。数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的。在教学过程中,一些教师不注意结合学生心理发展特点去分析事物的本质特征。只是照本宣科地提出概念的正确定义,缺乏生动的讲解和形象的比喻,对某些概念讲解不够透彻,使得一些学生对概念常常是一知半解、模糊不清,也就无法对概念正确理解、记忆和应用。下面就如何做好数学概念的教学工作谈几点体会。

一、利用生活实例引入概念

概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。例如,在讲解“梯形”的概念时,教师可结合学生的生活实际,引入梯形的典型实例(如梯子、堤坝的横截面等),再画出梯形的标准图形,让学生获得梯形的感性知识。再如,讲“数轴”的概念时,教师可模仿秤杆上用点表示物体的重量。秤杆具有三个要素:①度量的起点;②度量的单位;③明确的增减方向,这样以实物启发人们用直线上的点表示数,从而引出了数轴的概念。这种形象的讲述符合认识规律,学生容易理解,给学生留下的印象也比较深刻。

二、注重概念的形成过程

许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。例如,负数概念的建立,展现知识的形成过程如下:①让学生总结小学学过的数,表示物体的个数用自然数1,2,3…表示;一个物体也没有,就用自然数0表示:测量和计算有时不能得到整数的结果,这就用分数。②观察两个温度计,零上3度。记作+3°,零下3度,记作-3°,这里出现了一种新的数——负数。③让学生说出所给问题的意义,让学生观察所给问题有何特征。④引导学生抽象概括正、负数的概念。

三、深入剖析。揭示概念的本质

数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。如,掌握垂线的概念包括三个方面:①了解引进垂线的背景:两条相交直线构成的四个角中,有一个是直角时,其余三个也是直角,这反映了概念的内涵。②知道两条直线互相垂直是两条直线相交的一个重要的特殊情形,这反映了概念的外延。③会利用两条直线互相垂直的定义进行推理,知道定义具有判定和性质两方面的功能。另外,要让学生学会运用概念解决问题,加深对概念本质的理解。如。“一般地,式子(a≥0)叫做二次根式”这是一个描述性的概念。式子(a≥0)是一个整体概念,其中a≥0是必不可少的条件。又如,讲授函数概念时,为了使学生更好地理解掌握函数概念,我们必须揭示其本质特征,进行逐层剖析:①“存在某个变化过程”——说明变量的存在性;②“在某个变化过程中有两个变量x和v”——说明函数是研究两个变量之间的依存关系;③“对于x在某一范围内的每一个确定的值”——说明变量x的取值是有范围限制的,即允许值范围;④“v有唯一确定的值和它对应”——说明有唯一确定的对应规律。由以上剖析可知,函数概念的本质是对应关系。

四、通过变式。突出比较。巩固对概念的理解

巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。如“有理数”与“无理数”的概念教学中,可举出如“π与3.14159”为例,通过这样的训练,能有效地排除外在形式的干扰,对“有理数”与“无理数”的理解更加深刻。最后,巩固时还要通过适当的正反例子比较,把所教概念同类似的、相关的概念比较,分清它们的异同点,并注意适用范围,小心隐含“陷阱”,帮助学生从中反省,以激起对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。

五、注重应用。加深对概念的理解,培养学生的数学能力