首页范文逆向思维和方法训练十篇逆向思维和方法训练十篇

逆向思维和方法训练十篇

发布时间:2024-04-25 19:25:22

逆向思维和方法训练篇1

关键词:互逆;训练;逆向思维

中图分类号:G632文献标识码:a文章编号:1002—7661(2012)19—0065—01

在教学实践中,学生往往正向思维较为活跃,而逆向思维相对薄弱,任其发展,久之久之会形成思维定势,不利于学生智力的开发、能力的培养和素质的提高。一般的学生从正向思维转向逆向思维是存在着一定的困难的,而有能力的学生在完成这种转变时是迅速且自如的,这就是能力不同的学生在思维的运动性方面的素质差异。这种思维的运动性,是创造性思维的一个重要组成部分。所以注重对学生的逆向思维训练,是培养学生创造性思维能力的一个重要方面。

一、关注“互逆”、“对应”的知识

数学知识有许多“相反、互逆”的概念、公式、法则和定理,若能恰当地引导学生对它们进行双向思考,关注这些数学知识,无疑会提高学生的逆向思维能力。

1、关注“互逆”关系

对数学中的互逆关系,在教学过程中要下工夫把它们讲清楚,使学生知道互逆关系的两个实体是相互依赖,互为存在的。并引导学生对互逆关系进行“由此及彼”的思考、研究和比较。例如,在学习“相反数”概念时,像+6和—6这两个数,只有符号不同,一正一负,我们说+6的相反数是—6,反之,—6的相反数是什么呢?(+6)。就是说+6和—6“互为相反数”,它们是成对出现的。这样,在对知识和技能产生正迁移的同时,也为灵活运用知识打下了坚实的基础。

2、关注“对应”关系

数学中对应的思想方法为训练逆向思维提供了有利条件。为了训练学生的逆向思维,在教学中,可有意识地编排顺、逆双向配对的练习题供学生训练。如:

4的相反数是____;____的相反数是4

—5的倒数是____;____的倒数是—5

以上练习题,由于顺、逆双向对比,学生通过练习,可以逐步养成逆向思维的习惯,提高逆向思维的能力。在逆向思维过程中有诸多的抑制和干扰因素,不利于学生逆向思维的正常进行,因此在教学过程中要注意强化训练。

二、注意知识的逆向运用

关注了可以逆向运用的知识,就要注意在教学中对这些可逆知识加以运用,以提高学生逆向思维的能力。

1、注意公式及法则的逆运用

在公式及法则中,不乏具有可逆的公式和法则的存在。在教学中要抓住机遇,强化公式及法则的逆运用,训练学生逆向思维。如:讲授因式分解时x2(a+b)x+ab=(x—a)(x—b);与整式乘法(x—a)(x—b)=x2(a+b)x+ab进行比较。由于教学中有意识地强化了它们互逆运用训练,学生将来用因式分解法解一元二次方程时,便水到渠成了。

2、注意定理及命题的逆运用

在已学习某些定理及典型命题以后,引导学生思考它们的逆命题,并判断其真假,再进行逆向灵活运用,是培养学生逆向思维的又一途径。如:如果同位角相等,那么两直线平行;如果两直线平行,那么同位角相等。

三、训练“反面求解”的方法

1、训练反面求解方法

在解题过程中经常遇到顺向求解较为困难的习题,若采用“正难则反”、“反面求解”方法,往往会达到事到半功倍之效。

例,a为何值时,x=1不是方程2x—a=3x+5的根?

析:本题正面思考有相当难度,如改用反面求解则显得简单。假设x=1是原方程的根,则a=—6。显然,当a≠—6时,x=1不是原方程的根。

2、训练反面论证方法

虽初中学生接触反证法不多,但对于培养他们用反证法去解决问题仍然很重要。

例,证明:一个三角形至少有一个角大于或等于60°。

析:如果用正向思维,对每一个三角形都去进行证明,这是不可能做到的,但采用逆向思维,我们可以把它等同于其反问题的不成立(反问:一个三角形的三个角可以都小于60°)。然后,我们只要证明这个反问题是错的,那么原题即可得证:若这个反问题成立,则至少有一个三角形的三个角的和小于3×60°=180°,这与三角形的三个角的和等于180°的定理是违背的,因此,反问题不成立,原题得证!

3、训练逆向推理方法

逆向推理法(逆推法)就是从结论出发,逐步逆推,从而找出符合条件的结论,它是逆向思维的表现之一。

例,将抛物线y=ax2+bx+c向左平移2个单位,再向下平移3个单位,得一新抛物线y=2x2+8x+3。试确定a、b、c之值。

析:这道题目按原图象变化进行思考,运算复杂,且有难度。若从结论出发,进行逆向推理,则简单易解。现在如下推理,依题意将抛物线y=2x2+8x+3=2(x+2)2—5(结论)向右平移2个单位,再向上平移3个单位,即得原抛物线(已知),然后利用比较系数确定原解析式中的a、b、c。

四、营造逆向思维的氛围

训练逆向思维不是一朝一夕的事情,在教学中,要注意多选编些逆向思维的习题供学生练习,以营造逆向思维的氛围,达到训练逆向思维的目的。

1、鼓励学生倒过来想问题,以构造逆向思维情境

对一些数学问题,要注意引导学生将它们倒过来想,放在新的数学情境中去认识、去思考,使学生对旧问题产生新情趣,对数学产生浓厚的学习兴趣。例如,给出一个方程(组),要求学生编拟不同类型的应用题。这样的数学活动,一则可激发学生学习的积极性,使学生觉得数学大有学头;二则可培养学生思维的深刻性,使学生认识到思得愈深,造得愈绝,解得愈妙;三则充分营造了逆向思维的氛围,使学生在愉快的情境中进行逆向思维的活动。

2、利用课外园地,创建逆向思维的环境

逆向思维和方法训练篇2

关键词:教学;培养;逆向思维;运用

逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维,是发散思维的一种形式。逆向思维具有反向性、新颖性、批判性、突破性和悖论性等特征。逆向思维在中学数学教学方法中有着十分广泛的应用,教师应注重培养学生的逆向思维能力。正确运用逆向思维,对学生学好数学是十分有益的。

现阶段学生思维能力薄弱,大部分教师在传统课堂教学中只是关注学生的认知水平,培养学生的模仿能力,很难做到从思维的角度去解决问题,总结学习方法。学生对于公式定理只是进行死记硬背,生硬套用。缺乏观察、分析、研究的能力。其实在我们构建知识框架时,不难发现逆向思维无处不在,无论是概念、定义、公式、法则,还是定理、定律及性质等都蕴含着逆向思维。因此,教师应充分发掘教材中互逆因素,有机训练和培养学生运用逆向思维来解决问题,提高学生解决和分析问题的能力,培养他们的创新思维。

一、数学概念、公式、法则的可逆性教学

在教学中我们发现,学生对于定理概念只会顺向应用,而逆向应用难度却感觉很大,如,线段的垂直平分线的性质和判定相比,二者的条件和结论正好相反,他们构成一对互逆定理,通常把性质定理称为原定理,判定定理称为逆定理,教师可以帮助学生分析原定理是从点的位置特征知道线段的大小数量关系,而逆定理是从线段的数量关系知道点的位置特征。因此,在解决问题时可以借此特征记忆、理解、分析、运用。

初中数学中有些公式也含有可逆思维,如,完全平方公式和平方差公式、整式的乘法和因式分解等,教师也可以运用上述方法进行教学。

二、数学命题(定理)的可逆性教学

在中学阶段,我们会见到很多类型的题目就是写出原命题的逆命题,可是发现有些学生在写逆命题的时候没有把握知识的结构从而产生错误,如,命题“同角的余角相等”,很多学生把它的逆命题写成“如果是同角,那么它们相等”这样错误的答案,不难发现学生只是表面上认为逆命题就是反过来写,而没有分析其中的条件和结论,所以,教师在教学时应重视帮助学生分析,再进行逆向思维训练。

三、重视逆向变式训练

逆向训练就是将题目中的已知和求证调换着进行训练,如,在等腰三角形中证明角相等,我们可以利用“等边对等角”的定理进行证明;反过来我们也可以利用“等角对等边”,通过角相等来证明三角形是等腰三角形,在教学中可以多进行训练,锻炼学生的逆向思维。

在几何证明题的教学中,教师也可以教学生从需要证明的结论出发,逆向推理,从而得出完整的证明过程,这样的教学需要发挥教师的主导作用。

逆向思维和方法训练篇3

关键词:高中数学逆向思维培养

俄罗斯著名教育家加里宁说:“数学是思维的体操。”正如体操锻炼可以改变人的体质一样,通过数学思维的恰当训练,逐步掌握数学思维方法与规律,既可以改变人的智力和能力,也可以培养学生的创新精神和创新意识。学生的思维能力一般是指正向思维,即由因到果,分析顺理成章,而逆向思维是指由果索因,知本求源,从原问题的相反方向着手的一种思维。加强从正向思维转向逆向思维的培养,能有效地提高学生思维能力和创新意识。因此,我们在课堂教学中必须加强学生逆向思维能力的培养。传统的教学模式往往注重正向思维而淡化了逆向思维能力的培养。课堂教学结果表明:许多学生之所以处于低层次的学习水平,有一个重要因素,即逆向思维能力薄弱,定性于顺向学习公式、定理等并加以死板套用,缺乏创造能力、观察能力、分析能力和开拓精神。为全面推进素质教育,加强对学生的各方面能力的培养,打破传统的教育理念,在此我从以下几方面谈谈学生的逆向思维的培养。

一、逆向思维在数学概念教学中的思考与训练

高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:集合a是集合B的子集时,a交B就等于a,如果反过来,已知a交B等于a时,就可以知道a是B的子集了。因此,在教学中应注意这方面的训练,以培养学生逆向应用概念的基本功。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时训练学生。

二、逆向思维在数学公式逆用的教学

一般数学公式从左到右运用的,而有时也会从右到左运用,这样的转换正是由正向思维转到逆向思维的能力的体现。在不少数学习题的解决过程中,都需要将公式变形或将公式、法则逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,在教学中应注意这方面的训练,以培养学生逆向应用公式、法则的基本功。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在三角公式中,逆向应用比比皆是。如两角和与差公式的逆应用,倍角公式的逆应用,诱导公式的逆应用,同角三角函数间的关系公式的逆应用等。又如同底数幂的乘法的逆应用,这些公式若正向思考只能解决部分问题,但解答不了全部问题,如果灵活逆用公式,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、逆向思维在数学逆定理的教学

高中数学中每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理

的重要途径。在立体几何中,许多的性质与判定都有逆定理。如:三垂线定理及其逆定理的应用,直线与平面平行的性质与判定,平面与平面的平行的性质与判定,直线与平行垂直的性质与判定等。注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维是非常有益的。

四、强化学生的逆向思维训练

一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面入手解决不了就考虑从问题的反面入手;探求问题的可能性有困难就考虑探求其不可能性;用一种命题无法解决就考虑转换成另一种等价的命题……总之,正确而又巧妙地运用逆向转换的思维方法解数学题,常常能使人茅塞顿开,突破思维的定势,使思维进入新的境界,这是逆向思维的主要形式。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

五、通过逆向思维的培养进一步加强灵活的教学方法

高中数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),教师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。通过这些数学基本方法的训练,使学生认识到,当一个问题用一种方法解决不了时,常转换思维方向,可进行反面思考,从而提高逆向思维能力。

六、加强举反例训练,培养逆向思维

逆向思维和方法训练篇4

关键词:逆向思维;数学基础知识

一、逆向思维在数学中的应用

逆向思维反映的是思维过程的间断性和突变性,意即强调使学生突破思维定势和固有的思考框架,产生新的思考方法,找到新的解题途径.这是创立新科学理论的重要思维方法.数学教学中最基本的“设定未知数‘x’”即是逆向思维的一种最为普遍的应用.即,将原本未知待解的数“x”设定为已知数代入到公式中,通过“x”在公式中的关系反向推导出结果.逆向思维在数学中的实际应用早在19世纪就催生出了非欧几何,包括后来在20世纪60年代建立发展起来的模糊数学,均是逆向思维在数学领域成功运用的典型案例.

二、实际教学中逆向思维的培养和训练

对于逆向思维在初中教学中的培养和应用,应主要从两个方面入手.

1 加强基础知识的逆向教学.初中阶段,数学仍然是一门基础学科.在教学过程中强调对基础知识牢固掌握的同时,顺势导人逆向思维,不仅更加巩固了学生对基础知识的熟练掌握程度,也锻炼了学生的思维,拓展了思考模式.在基础知识中,应在对概念的理解和运用上加强逆向教学.在数学中存在诸多“互为”关系的概念:比如,“互为相反数”、“互为倒数”等等,通过这些简单的概念,教师可以引导学生从正反两方面去思考,培养其逆向思维的能力进而建立起双向的思维模式.比如,对于原命题、逆命题这一概念,学生往往只重点记住了逆命题是原命题的逆命题,却忽视了原命题也是逆命题的逆命题.在教学过程中,教师若能适时地引导学生从命题的反面进行思考,则会在早期的基础阶段就打下良好的逆向思维根基.

2 注意解题方法上的逆向思维训练.(1)分析法解题。分析法就是从命题的结论出发,顺藤摸瓜追溯充分条件,直到推导出已知条件的方法,可以充分培养学生的逆向思维能力.“执果溯因”是分析法的本质特征,关键是整个解题过程必须是可逆的.(2)反证法.反证法是一种间接证法,是从特征结论的反面出发,推出矛盾,从而否定要证明结论的反面,肯定特征结论(即双重否定等于肯定),是许多数学问题在直接证法相当困难时常用到的方法之一.加强反证法的训练,有利于学生思维广度的拓宽和深度的加深,对逆向思维的培养有着非常重要的作用.(3)举反例.在数学命题中,给出一个命题要判断它的错误,只要给出一个满足命题的条件但结论不成立的例子,即可否定这个命题.这就是通常意义说的反例.加强举反例的训练,可以有机地做到训练和培养学生的逆向思维能力.

三、逆向思维在数学解题中的实际应用

1.立体几何命题.立体几何中的概念、定理除了直接应用外,可以根据题目的特点和要求反过来应用.例如,求证:分别在两个平面内的两条不平行直接是异面直线.根据题目和条件,由已知得这两条直接不平行,接下来只要证明这两条直接不相交,便意味着它们为异面直线.由此可见,利用反证法解此题轻而易举.2.概率命题.例如,全班40名学生,求至少有2人同月同日生的概率.在这则著名的“生日怪论”命题中,引导学生用其对立的事件的概率来求解便显得易如反掌.先求出40名学生都不同月同日生的概率,然后根据对立事件的概率和为1,得到至少有两人同月同日生的概率数值.利用对立事件进行逆向思维,能使复杂的概率问题得到简化.3.不等式命题.例如,a,b,c,d均为正数,求证:(a/b+c/d)(b/a+d/c)≥4.分析:欲证该命题即为证:1+ad/bc+bc/da≥4,就是要证:ad/bc+bc/ad≥2,即证:(ad)2+(bc)2≥2abcd,即:(ad-bc)2≥0.由实数性质可知成立,从而找到证题起点.在数学中,互逆定理、互逆公式、互逆运算等等比比皆是,如能熟练掌握并适时运用逆向思维,则会使一时阻塞的思路豁然开朗,也由此可见培养学生的逆向思维是如何重要.

逆向思维和方法训练篇5

求异思维主要是指学生能够大胆设想,对于同一个已知条件能够从多方面进行思考,追求在解题思维上面的标新立异,这是学生创新思维能力提升的另一个关键点,倘若学生能够通过求异思维,便能够将很多数学问题简单化,增强学生的创新能力,激发学生的数学学习兴趣。例如,证明:等腰三角形底边上任意一点到两腰的距离纸盒等于一腰上的高。如图,给出了条件有:在aBC中,aB=aC,D是出现在BC上的随意一点,DeaB,DFaC,垂足确定为e、F,BG是一条垂直在aC上的线段。求证:De+DF=BG。这道题,我们可以明白,求证的方法较多,可以用边求证,也用意用角来求证,此题可以用面积法与图形法来进行求证。法一,根据已知条件利用面积法:并将a点和D点连接起来,通过条件得出SaBC=SaBD+SaCD可以推出BG•aC=De•aB+DF•aC,因为aB=aC,那么BG=De+DF。法二,可以结合之前学习过的相似三角形知识,BeD∽CFD∽C,可以推测出De、Be=BD、BC,DF、BG=DC、BC。由此可见,De+DF、BG=BD+DC、BC=1,也就可以得出De+DF=BG。法三、运用直角三角形知识,可以得出的是,De=BD•sin∠aBC,De=BD•sin∠aBC,DF=DC•sin∠C,BG=BC•sin∠C又∠aBC=∠C,可以得出的是De+DF=BD•sin∠aBC+DC•sin∠C=BD+DC)•sin∠C=BG。题中通过运用多种思维,就能够得出遗体多种解法和多种答案,不仅能够增加学生的数学知识,还能够培养学生的创新思维。

二、加强学生逆向思维训练来培养学生的创新思维

逆向思维其实也是求异思维中的一种形式,通常是指对某种常用的思维方式进行反向思维,已取得最终答案的一种思维方式,在初中数学教学过程中,要求学生在遇到问题时运用逆向思维,但不是让学生对正向解决问题的举措进行否定。调查显示,现阶段很多学生在解题中总是按照常用解题思维来解题,即读题——了解题意——套用公式等,但是随着经济的发展,社会的进步,课本和教学手段的改革,很多教师在出题上也有所变化,题型也越来越具有灵活性,部分题已经不是正向思维就能够得出结论,而是需要“反其道而思之”,方可知道结论。部分题型正向解答会异常复杂,而方向思维后可轻而易举的得出答案,针对现今的考题倾向,教师在教学中就应该加强学生的逆向思维训练,平时的课后作业中多选择一些需要运用逆向思维才能够解决的练习题,引导学生学习逆向思维分析问题、解决问题。例如,在三角形中,∠a+∠B=90。,那么可以了解的是∠a与∠B互余,倘若通过逆向思维也可以得出∠a与∠B两角互余,那么∠a+∠B=90。由此可见,学生在解题的过程中,往往可以通过运用这些相关逆向定理来解决相关问题,从而逆向问题逆向解决。

逆向思维和方法训练篇6

一、逆向思维在数学概念教学中的思考与训练

高中数学中的概念、定义总是双向的,不少教师在平时的教学中,只注意了从左到右的运用,于是形成了思维定势,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:集合a是集合B的子集时,a交B就等于a,如果反过来,已知a交B等于a时,就可以用a是B的子集了。因此,在教学中应注意这方面的训练,以培养学生逆向应用概念的基本功。当然,在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时训练学生。

二、逆向思维在数学公式逆用的教学

一般数学公式从左到右运用的而有时也会从右到左的运用,这样的转换正是由正向思维转到逆向思维的能力的体现。在不少数学习题的解决过程中,都需要将公式变形或将公式、法则逆过来用,而学生往往在解题时缺乏这种自觉性和基本功。因此,在教学中应注意这方面的训练,以培养学生逆向应用公式、法则的基本功。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在三角公式的逆向应用比比皆是。如两角和与差公式的逆应用,倍角公式的逆应用,诱导公式的逆应用,同角三角函数间的关系公式的逆应用等。又如同底数幂的乘法的逆应用。这组公式若正向思考只能解决部分问题,但解答不了全部问题,如果灵活逆用公式,则会出奇制胜。故逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、逆向思维在数学逆定理的教学

高中数学中每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。逆命题是寻找新定理的重要途径。在立体几何中,许多的性质与判定都有逆定理。如:三垂线定理及其逆定理的应用。直线与平面平行的性质与判定,平面与平面的平行的性质与判定,直线与平行垂直的性质与判定等,注意它的条件与结论的关系,加深对定理的理解和应用,重视逆定理的教学应用对开阔学生思维视野,活跃思维是非常有益的。

四、强化学生的逆向思维训练

一组逆向思维题的训练,即在一定的条件下,将已知和求证进行转化,变成一种与原题目似曾相似的新题型。在研究、解决问题的过程中,经常引导学生去做与习惯性思维方向相反的探索。其主要的思路是:顺推不行就考虑逆推;直接解决不了就考虑间接解决;从正面人手解决不了就考虑从问题的反面人手;探求问题的可能性有困难就考虑探求其不可能性;用一种命题无法解决就考虑转换成另一种等价的命题。正确而又巧妙地运用逆向转换的思维方法解数学题,常常能使人茅塞顿开,突破思维的定势,使思维进入新的境界,这是逆向思维的主要形式。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

逆向思维和方法训练篇7

传统的教学模式和现行数学教材往往注重正向思维而淡化了逆向思维能力的培养。为全面推进素质教育,如何培养学生的逆向思维能力呢?在教学中我认为有以下几点:

一、在概念教学中注意培养反方向的思考与训练

数学概念、定义总是双向的,我们在平时的教学中,只秉承了从左到右的运用,于是形成了定性思维,对于逆用公式法则等很不习惯。因此在概念的教学中,除了让学生理解概念本身及其常规应用外,还要善于引导启发学生反过来思考,从而加深对概念的理解与拓展。例如:讲述:“同类二次根式”时明确“化简后被开方数相同的几个二次根式是同类二次根式”。反过来,若两个根式是同类二次根式,则必须在化简后被开方数相同

二、重视公式逆用的教学

公式从左到右及从右到左,这样的转换正是由正向思维转到逆向思维的能力的体现。因此,当讲授完一个公式及其应用后,紧接着举一些公式的逆应用的例子,可以给学生一个完整、丰满的印象,开阔思维空间。在代数中公式的逆向应用比比皆是。逆向思维可充分发挥学生的思考能力,有利于思维广阔性的培养,也可大大刺激学生学习数学的主观能动性与探索数学奥秘的兴趣性。

三、加强逆定理的教学

1.每个定理都有它的逆命题,但逆命题不一定成立,经过证明后成立即为逆定理。

在平常的教学中,教师本身应明确哪些定理的逆命题是真命题,才能适时给学生以训练。逆命题是寻找新定理的重要途径。在平面几何中,许多的性质与判定都有逆定理。如:平行线的性质与判定,两条平行的直线一定没有交点,但是没有交点的两条直线一定平行吗?(否,因为在空间中的两条不相交的直线不一定平行!像这样的反问,学生可能一时答不出来,但只要教师略加点拔,学生就可通过自己的思考获得正确答案。通过反向逆推,引导学生利用逆向思维去发现问题、提出问题,进一步扩大和完善学生的认知结构,深化和升华所学的课本知识。)线段的垂直平分线的性质与判定,平行四边形的性质与判定等,注意它的条件与结论的关系。

四、多用“逆向变式”训练,强化学生的逆向思维

“逆向变式”即在一定的条件下,将已知和求证进行转化,

变成一种与原题目似曾相似的新题型。例如:已知,如图,直

线aB经过0上的点C,且oa=oB,Ca=CB,求证:直线aB是

o的切线。可改变为:已知如图,直线aB切o于C,且

oa=oB,求证:aC=BC。或直线aB切o于C,且aC=BC,求证:aC=BC。

再如:不解方程,请判断方程的根的情况。

可变式为:已知关于的方程,当K取何值时?方程有两个不相等的实数根。经常进行这些有针对性的“逆向变式”训练,创设问题情境,对逆向思维的形成起着很大作用。

五、强调某些基本教学方法,促进逆向思维

数学的基本方法是教学的重点内容。其中的几个重要方法:如逆推分析法,反证法等都可看做是培养学生逆向思维的主要途径。比如在证明一道几何命题时(当然代数中也常用),老师常要求学生从所证的结论着手,结合图形,已知条件,经层层推导,问题最终迎刃而解。养成“要证什么,则需先证什么,能证出什么”的思维方式,由果索因,直指已知。反证法也是几何中尤其是立体几何中常用的方法。有的问题直接证明有困难,可反过来思考,假设所证的结论不成立,经层层推理,设法证明这种假设是错误的,从而达到证明的目的。

通过这些数学基本方法的训练,使学生认识到,当一个问题用一种方法解决不了时,常转换思维方向,可进行反面思考,从而提高逆向思维能力。

六、逆向思维训练

1.设计互逆式问题,培养学生逆向思维的意识。

在课堂教学中,除了正面讲授外,还要有意识地挖掘小学数学教材中蕴含着丰富的互逆因素,精心设计互逆式问题,打破学生思维中的定热,逐步增加逆境向思维的意识。如在教学“小数点位置移动引起小数大小变化”时,当学生总结出第一个结论:“小数点向右移动一位、两位、三位……原数就扩大10倍、100倍、1000倍……”后,教师可提出“根据这个结论,反过来想一想可得出什么结论呢?”(生小数点向左移动一位、两位、三位……原数就缩小10倍、100倍、1000倍……)以上提问旨在打破学生思维的定势,使学生的思维一直处于顺向和逆向的积极活动之中。这样,不仅使学生对此知识辩析得更清楚,而且还逐步培养了学生逆向思维的意识。

2.引导学生学会逆向思考,促进逆向思维习惯的形成。

为进一步打破学生禁锢于正向思维的定势,培养双向思维的良好习惯,教师在教学中应逐步启发引导,适时点拨,提高学生互逆思维的转换能力。在教学中,充分利用课本中的教材,进行逆向思维训练。在学生完成作业后,要求必须还要回过头来验算其解法是否正确,如学生解出一道应用题后,则要求学生以求出的问题为已知条件,把原题的一个已知条件当作问题验算此题。

(1)分解转化思想:一个多项式分解成几个整式的积的形式是一种恒等变形,通过这种变形,使一个高次多项式转化为几个简单多项式(或单项式与多项式)的积的形式。在将来的工作和生活中若遇到很辣手的问题,我们也可以把这一问题分解成几个能简单处理的问题各个击破,最终使问题得到解决。

(2)换元思想:“换元”是重要的数学思想,换元可以使一些复杂的多项式转化为我们所熟悉的知识,使问题迎刃而解

3.解题方法上的逆向思维训练,培养学生用逆向思维解题的能力

著名数学教育家波利亚指出:掌握数学就意味着善于解题。因此注意指导、训练学生解题的思考方法是培养学生思维能力不可替代的一个重要方面。这种方法上的逆向训练有分析法、反证法、逆证法等。

分析法就是从命题的结论出发,逐步追溯充分条件,直到推导出已知条件的一种逆向思维方式。基本思想简言之:由未知看需靠拢已知。“执果索因”是分析法的本质特征。数学中几乎所有证明题都可以用分析法进行推理,与综合法比较分析法更能训练学生的思维,它可以帮助我们迅速找到证题思路。

例如:某池塘的睡莲每天长大一倍,28天就把整个池塘遮住,问睡莲遮住半个池塘,需要多少时间?

逆向思维和方法训练篇8

1.专题讨论和随机讨论

按照讨论的内容在教学目标中的地位以及讨论教学法采用的预见性程度可以把讨论划分为专题讨论和随机讨论。如果讨论的内容复杂且有系统性,比较抽象,讨论的主题是课堂教学的基本内容,讨论法教学是教师备课时拟选的主要教学方法,这种形式的讨论就是专题讨论。例如:“汇率变动对国际国内经济的影响。”如果讨论的内容简单,是否采用讨论法教学在教学过程中具有不确定性,这种讨论我们称之为“随机讨论”。例如:“个别劳动生产率提高,等量劳动在等量时间内创造的价值总量是否发生变化,”有的学生认为有变化,有的认为无变化,如果分歧较大,教师可放手让学生自由讨论,在讨论中自己认识问题、解决问题。

2.分组讨论和集体讨论

以讨论的组织形式为标准可以把讨论划分为分组讨论和集体讨论。把全班同学划分为若干小组,以小组为单位进行讨论,这种形式的讨论就是分组讨论。分组讨论,有时是按座位关系自然分组,前后左右邻里关系自由进行组合。有时按学生的学习程度和接受层次统一搭配分组。全班同学集体参与讨论,提出问题,集中讨论解决,这种形式的讨论,就是集体讨论,无论是集体讨论还是分组讨论,它们都不是独立存在的,而且是经常结合在一起的。分组讨论是集体讨论的前提,集体讨论是分组讨论的综合,有利于各种层次的学生在认识解决问题时互相补充,互相促进,合作学习,共同提高。

3.发散式讨论和定向式讨论

讨论过程总是在一定的思维状态中展开,论题的结论就是这种思维状态的结果。以讨论过程中的思维形式为标准可以把课堂讨论划分为发散式讨论和定向式讨论。所谓发散式讨论是指讨论的结论是不确定的或不唯一的,学生思维可以自由发散,从不同角度对讨论论题作出解释和说明。例如:“影响商品价格的因素”,学生可以从价值,供求关系、币值,宏观调控等不同角度进行讨论说明。如果论题的结论是确定的、唯一的,而且这种确定的结论是由确定的逻辑思维才能讨论得出,这种定向思维形式下进行的讨论称为定向式讨论,例如前面提到的命题“个别劳动生产率与等量劳动在等量时间内创造的价值总量的关系”。其结论是确定的:成反比例关系,其讨论时遵循的逻辑思维是这样的:

①个别劳动生产率提高②单位商品所耗费的个别劳动时间减少而社会必要劳动时间未变③单位商品的价值量未变④等量劳动在等量时间内生产出的商品数量增加⑤所以等量劳动在等量时间内创造的价值总量增加⑥因此个别劳动生产率与等量劳动在等量时间内创造的价值总量是成正比例。

学生必须遵循这样的思维链条,就各个环节展开讨论,这种思维状态是确定的,我们称之为定向式讨论。这种定向式讨论虽不能象发散式讨论那样进行求异思维的训练,但理论性强,逻辑严密,学生讨论时能体现出很强的探究性。

在概念教学中培养学生逆向思维能力

成洁

陕西省大荔县羌白初级中学大荔715103

人们的思维按照思维过程的指向性来划分,可分为正向思维(常规思维)和逆向思维两种形式,在初中数学教学中,教师往往只注重对定义、定理、性质、公式、法则等的正向推理,而忽视逆向思维的训练,使学生形成定势思维,影响学生解题思路和数学思维能力的发展,在教学时,除了要利用教材中已有的可逆素材外,还要有意识地加强对学生逆向思维能力的训练,进而拓宽学生的解题思路,提高他们分析问题、解决问题的能力。

1.在概念教学中培养学生的逆向思维能力

概念的定义是课本内容之一,其逆命题总是成立的。所以在平时教学中既要注重让学生记住定义内容并用它判定和解题外,也要注意应用其逆命题解决问题。从初中教学的起始阶段,就应注意学生逆向思维的培养。如“同类项”是初一代数中的一个重要概念,为了加深学生对此概念的理解和掌握,可举下例:如果amb,与Zazbn是同类项,那么m=

________________________________________

、n=

________________________________________

。开始不少学生无从下手,如果教师加强对定义的逆向运用,学生就可根据定义逆向得出m=2、n=3。析:根据一元二次方程根的定义的逆向应用。在几何概念的定义中,定义的逆命题显得十分重要,它是培养学生逻辑思维能力的第一步,在教学中教师应反复加强对学生这方面的训练,以强化学生的逆向思维。

我们来看下面例子:如果点o是线段aB的中点,那么ao_Bo,aB=_ao=_Bo,ao=_aB。例2,如果oC是角aoB的平分线,那么,你能得出哪些结论?等等。这种逆向运用定义的训练,可以为学生以后几何的证明打下良好的基础。

2.在命题教学中培养学生的逆向思维能力

现行教材中有不少可逆的素材,如整式的乘法公式和因式分解、平行线的性质定理和判定定理、乘方和开方等,但不可能面面俱到。因此,教师应注意总结这些可逆素材,并对学生进行强化训练,以培养学生熟练地分析和解决问题的能力。

分析:若从正面求解至少要分三种情况考虑:

(1)其中的一个方程有实根;(2)其中的两个方程有实根;(3)三个方程都有实根。解法势必较为烦琐,如果反向考虑,三个方各程都没有实根,则:

(1)运用定理如《几何》(第二册)多边形内角和定理的应用讲完后,应让学生练习已知多边形的内角和,求多边形的边数。例如:一个多边形的内角和是1440°,则这个多边形的边数n=

________________________________________

。这类问题的训练有助于提高学生的逆向思维能力。

(2)应用性质、公式和法则我们结合例子加以说明。如果平时教学中不注意对学生逆向运用性质、公式和法则这方面的训练,学生要计算此类题目是非常困难的,但是,如果教师注意培养学生逆向运用同底数幂的运算性质和积的乘方法则,那么此类题目可迎刃而解。

3.在解题教学中培养学生的逆向思维能力

在解决数学问题中,我们常常用分析法、反证法,实质上就是逆向思维在解题中的应用。在几何证明的方法上,分析法是培养学生逆向思维能力的有效方法。因此,教师在几何教学中应注意对学生分析法思想的传授。在《几何》(第一册)中由公理“同位角相等,两直线平行”出发推证平行线判定定理2、3时,第一次正式渗透了分析法思想,教师在教学中应予以充分的重视。在《几何》(第二册)三角形全等判定的教学中,教师要结合课本例题给出示范分析,通过多次示范,使学生理解分析方法,从而提高他们逆向寻求解题方法的能力。

例3已知aB=CD,BC=Da,e、F是aC上的两点,且ae=CF。求证:BF=De。引导和启发和学生写出分析过程:

逆向思维和方法训练篇9

一、什么是逆向思维

逆向思维是人们重要的一种思维方式。逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。当大家都朝着一个固定的思维方向思考问题时,而你却独自朝相反的方向思索,这样的思维方式就叫逆向思维。

二、逆向思维的培养

教学实践证明,重视对学生创造性思维和逆向思维的训练,可以提高学生解题的灵活性,提高学生分析问题、解决问题的能力,帮助学生克服局限思维和单向思维所导致的解题方法的呆板,有利于培养学生思维的敏捷性和科学性。

(一)在概念定义教学中培养学生的逆向思维

数学中有许多概念定义是互逆的,定义是对一个数学名词的解释,它提示某一概念的本质属性,一般可以“双向互推”。因此在几何证明中,定义既可以作为判定又可以作为性质来用。对于这些互逆的教学,可采取先正向,后逆向,再正逆联用的办法,这样不仅可使学生对概念辨析很清楚,理解得更透彻,而且能养成双向考虑问题的良好习惯,培养学生逆向思维的意识。

如在教完勾股定理及其逆定理后,在原定理想到逆定理,同时想象推出以下新结论:已知aBC中a,b,c分别为∠a,∠B,∠C的对边,当∠C>90°,则a2+b2

(二)注意公式的逆向运用、训练逆向思维基础

学生对公式的逆向应用不习惯,思维常定势在顺向应用公式上,所以教学中应强调公式逆用。

例:利用公式:sin2a+cos2a=1(0°

解:■=■=■

=|sina-cosa|

这里利用1=sin2a+cos2a。

当然,对于有些公式在进行可逆性教学时,应首先注意它们“顺向”与“逆向”在形式上的差别,最后还应该说明在“顺向”与“逆向”在效果上的差异,目的不同。对公式的“顺向”与“逆向”加以研究,才能够使学生深刻理解其实质,并灵活运用。

(三)定理教学中的逆向思维训练

对于定理而言,众所周知,不是所有定理的逆命题都是正确的。但是,在教学中重视引导学生探讨定理的逆命题是否正确,不失是指导学生研究问题的一个有效方法,它对于激发学生的学习兴趣和指导学生正确运用逆定理解题,更具有重要意义。

如在学过定理:“直角三角形斜边的中线等于斜边的一半”以后,教师可引导学生证明它的逆命题的正确性,并用它来判断一个三角形是否为直角三角形。又如通过对定理:“等腰三角形的顶角平分线是底边上的高和中线”的逆命题正确性的研究,可利用它的逆命题成立这一条件,来判断一个三角形是否等腰等等。

(四)运用运算和交换的可逆性进行逆向思维培养

数学中的各种变换和运算是正、逆交替的,如映射与逆映射、函数与逆函数、指数函数与对数函数等,它们都可以相互转化。

(五)充分运用反证法加强逆向思维训练

反正法就是假设结论的反面成立,由此推导出与假设、定义、公理相矛盾的结论,从而假设,肯定结论的证明方法。这种应用逆向思维的方法,可使很多问题处理起来相当简捷。反证法也是一种逆向思维,运用它能够训练学生从未知到已知的逆向思维能力。

反证法不仅能证明直接证法感到困难或用直接证法证明不了的命题,而且也是培养学生逆向思维能力的又一个重要的途径。

(六)逆向排除法培养逆向思维能力

有些数学问题,正面复杂,反面简单,只要逆向分析,进行排除,就能使问题得到简捷的解答,这个也是解某些选择题的有效途径。

例:掷2枚色子,求2枚色子向上的点数乘积为偶数的概率。

逆向思维和方法训练篇10

思维的求异性、积极性、广阔性、联想性都是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。

一、转换角度思考,训练思维的求异性。

发散思维活动的展开,重要的一点是要能改变已习惯了的思维定向,而从多方位多角度——即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。

例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。

在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。如:进行语言叙述的变式训练,即让学生依据一句话改变叙述形式为几句话。逆向思维的变式训练则更为重要。教学的实践告诉我们,从低年级开始就重视正逆向思维的对比训练,将有利于学生不囿于已有的思维定势。

二、激发求知欲,训练思维的积极性。

思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维的极其重要的基矗在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。例如:在一年级《乘法初步认识》一课中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义的依托,虽然是一年级小学生,仍能较顺畅地完成了上述练习。而后,教师又出示3+3+3+3+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。

我们在数学教学中还经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可从几个方向来看,从而使学生的学习情绪在获得新知中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。

三、一题多解、变式引伸,训练思维的广阔性。

思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。

四、转化思想,训练思维的联想性。