粉末冶金行业现状十篇

发布时间:2024-04-26 01:37:27

粉末冶金行业现状篇1

1.1粉末冶金技术特点

粉末冶金技术作为一种应用比较广泛的精密成形技术,具有少无切削加工、材料利用率高、制造过程清洁高效、生产成本低、可制造形状复杂和难以机械切削加工的特点。一般认为,粉末冶金技术工艺的特点如下:

1)不需要或者只需要极少量的切削加工;

2)材料利用率可高达97%以上;

3)零件尺寸的制造公差较小且具有再现性,从而产品可获得很高的尺寸精度和良好的一致性;

4)材料成分、微观组织及组成可以科学调整;

5)零件表面光洁度较好;

6)通过烧结后处理工艺(如烧结后热处理工艺、烧结后表面处理工艺等),可以灵活改善零件的性能(如提高强度、耐磨性等);

7)在技术设计和工艺设计上,形状自由度极高,可以设计和制造出其他金属成形工艺不能制造的形状复杂或奇特的零件;

8)对于自等粉末冶金多孔材料,可通过控制孔隙度来获得材料或产品的性能;

9)适合中等至大批量的零件生产。

1.2粉末冶金技术发展趋势

目前,粉末冶金技术的发展日新月异,随着一系列新技术、新工艺的不断涌现,如粉末冶金注射成形、温压成形、流动温压成形、喷射成形、高速压制成形、微波烧结、烧结硬化等,粉末冶金技术正朝着高致密化、高性能化、集成化和低成本化等方向发展。

1)粉末冶金零部件的少无缺陷的高强度化趋势:通过对材料的组织控制和制造工艺的综合研究,从粉体粒子的流动、烧结机理、断裂力学等方面找到缺陷形成的原因并提出解决方案。

2)粉末冶金成形技术的近净成形和近终成形趋势:着眼于粉体流动、充填成形、烧结过程粉末特性控制、粘结剂等角度,大力发展近净成形和近终成形的高致密化工艺技术,是降低竞争成本、减少制造工序、适应国际化市场的必然要求。

3)粉末冶金零部件的高精度化趋势:通过对粉末冶金工模具、粉末冶金设备、粉末冶金工艺过程的精确设计和控制,实现粉末冶金零部件宏观尺寸的更高精度;通过对粉体特性、粉末冶金过程显微组织、粉末冶金工艺过程的精确设计和控制,实现粉末冶金零部件微观领域的显微精度。

4)粉末冶金材料功能复合化趋势:针对国际化的高端市场,研究和开发出高附加值的新型复合材料或者复合有附加性能的新型材料,是各国粉末冶金工作者努力追求的目标。这就要求在诸如复合材料设计、成行固化、复合材料组织控制、性能评价等方面能够做出开创性的突破。

5)粉末冶金设计的微观化趋势:由宏观的尺寸———形状———性能设计层面,结合到显微组织———微观结构———性能的设计层面,粉末冶金设计也由粉体特性设计、模具设计、产品形状设计等宏观设计体系向显微组织和显微结构设计的微观体系深入和发展。

6)粉末冶金过程控制的数值模拟化趋势:利用数值优化技术、动态测试技术和计算机模拟技术,通过对粉末冶金生产过程进行动态的观测和数值化的控制,可以实现对粉末冶金产品品质的动态检测控制,可以大大提高产品的成品率和生产效率。

7)粉末冶金制造工艺流程集成化和低成本化趋势:近年来,高速压制成形、流动温压成形、微波烧结、烧结硬化等流程集成化技术的产生和应用,极大地降低了粉末冶金零部件的制造成本,提高了粉末冶金生产流程的单位时间效能,是粉末冶金技术的最新发展趋势。

8)粉末冶金制造过程清洁高效和环保的趋势:寻求资源的再生利用和减少生产过程中对环境的污染,是现代产业的发展趋势。因此,针对易再生材料的设计、有害物质的材质控制、剂的煤烟控制、烧结气氛再生方法的开发和烧结零件的轻量化等,从合金设计和工艺设计的角度,进行技术创新,使粉末冶金各项工艺流程符合环保的强制性法规,从而使粉末冶金产业更清洁、更环保。

2我国粉末冶金工业企业的发展现状

关于我国粉末冶金工业企业的发展现状,国内粉末冶金工业界的人士如韩风麟、黄伯云、邹仿棱等从不同的角度,作过多次精辟的分析和论述,大致而言,包括以下几个方面:

1)产业结构和行业布局不合理:我国现有各类粉末冶金企业近千家,分布在不同的行业和区域。由于产业发展历史特殊原因以及不同行业与区域的多头管理,出现了低水平重复建设、大中小企业并存、企业效能和效益较低的产业格局。大部分中小型企业的规模小、条件差、水平低,且存在不同行业间的条块分割,而真正能够形成产业规模的企业还不足十家。据统计,我国规模较大的主要44家硬质合金企业实现的年销售收入仅为SanDVSiK公司的21.4%,其平均利润也仅为SanDVSiK公司的44%。

2)产品结构和市场结构不合理:目前,我国粉末冶金企业的产品技术含量与附加值低、高端产品所占份额极少、中低端产品竞争无序、低端产品出现生产过剩、假冒伪劣产品充斥市场等问题严重制约着我国粉末冶金企业和市场的健康发展。

3)工艺技术和装备总体水平相对落后、自动化程度不高,先进设备少且不配套,生产效率低。我国粉末冶金企业的生产工序仍然是以手工操作或自动化操作与手工操作为主的局面,并且不能形成工程工序自身特色的竞争优势。相反,却表现出生产过程损耗大、产品精度低、合格率低和产品一致性差等较为突出的问题。部分国有大中型企业尽管引进了大量国外的先进装备,但由于耗资巨大,长期造成企业赢利包袱,或者设备使用效率低等原因,事实上并不能形成相对于国外竞争对手甚至是国内竞争对手的相对优势,无法改变市场竞争格局。

粉末冶金行业现状篇2

其他行业,如工业模具和生物医学设备也正在利用这些高度自动化的流程。该流程可降低零件与零件间的变差,减少材料的浪费,并采取更少的步骤。新的流程和多种材料的选择扩大了这些技术的应用,对一些用于商业航空领域的结构部件具有越来越强的吸引力。

汽车产业是粉末冶金(pm)零件最大的消费者,其次是工业发动机和操控系统。金属粉末工业联合会副总裁吉姆·戴尔表示,汽车变速器可能包含多达55个用粉末冶金制成的零件。

GKn Sinter metals 公司美洲销售和市场营销副总裁克里斯·弗兰克斯告诉我们:“我们看到了用于汽车制造的粉末冶金产品的总量每年在不断增加。我们正在改良材料来开发对特定应用程序更有针对性的加工流程。”

该汽车涡轮增压器的叶轮是由德国巴斯夫公司对GHS-4合金进行Catamold催化离散加工制作而成, 其中含有铁、镍、铬、钼、碳、硅、锰、钒和钨。

使用粉末冶金技术创建近似网型的结构部件的制作工艺可以形成具有高温或者高压强的部件。 挤压并烧结的粉末冶金技术使用高压下的自定义模具制成金属粉末,再通过烧结加热零件。另一种方法是用于制作较大型部件的热等静压(Hip)。戴尔说:“粉末冶金技术制成的零件其尺寸限制在42磅左右。”“大多数粉末冶金技术制成的零件其重量不到5磅。现在,当压力机和应用部件体积变得越来越大时,单个零件的体积也越来越大,重量也越来越重了。”

粉末注射成形技术(pim),结合了传统注塑机的功能,利用粉末冶金技术的精度和材料的灵活性来制作复杂的几何形状。粉末注射成形技术能够产生介质来高度容纳形状复杂,表面纹理多样,细节错综复杂的一致性组件。组件可以连接几个部件,消减加工步骤并缩短制作周期。

巴斯夫公司北美洲Catamold产品业务经理斯科特表示,粉末注射成形技术最大的应用领域是医疗、消费类电子产品、机械设备、航空航天、汽车和一般消费品行业。他说,巴斯夫公司不断增加对各行业中粉末注射成形技术的调查,调查结果显示其增长率在不断增加。 “越来越多的公司想做精益生产和持续改进,因此他们更仔细的审查粉末注射成形技术,因为它提供了良好的整体价值。”

粉末注射成形技术可以通过合并多个步骤来降低成本,如纹理和标签,或多个部件。贾斯特斯说:“根据不同的应用,当你分析每部件的用途以及它们为何独立时,你也许可以将其设计成一个单一的部部件。”

贾斯特斯说,与其他粉末注射成形工艺相比,巴斯夫公司的Catamold催化离散工艺有三个主要优点。其更快的生产周期,提高了能力,并实现了一个真正持续的加工过程或者批量制造。 他说:“其他非催化粉末注射成形工艺很难实现这一点,因为他们的生产时间太长了。”“当Catamold集中在部件上时,它提供了更好的空间控制和稳定性。不管是什么合金,它都可以更容易地加工绿色生态部件,来增加那些难以加入注射成型的新形状。”

Capstan atlantic公司凭借该粉末冶金技术制成的合金钢动力输出离合器轮毂,赢得了2012年金属粉末工业基金会工业电机/控制与液压类的优秀设计大奖。这个复杂又多层次的部件,取代了机械加工设计,具有80,000磅/平方英寸的极限抗拉强度和90,000磅/平方英寸的屈服强度,可以承受使用中非常高强度的扭转。

弗兰克斯说,与传统的锻造和铸造工艺相比,粉末冶金材料的设计更加自由。“我们可以将其制成网型来帮助开发减轻车辆重量的新技术和其他节约燃料的技术。”例如,用于大多数汽车应用中可变气门正时技术,先进的行星齿轮和手动变速箱,以及最重要的离合器。否则,这些配置文件和形状需要进行机械加工。

弗兰克斯说,有些形状可以用粉末冶金技术制成,不然将需要进行密集的机械加工,但由于成本、能力和资本等因素,这在工业上是不可行。他说:“如果没有粉末冶金技术,今天很多的汽车创新都是无法实现的。纵观我们服务的所有行业,我们看到它在原始设备制造商和开发粉末冶金技术的企业中越来越多得到认可。”

弗兰克斯说,虽然是一种特殊产品和加工工艺,但铝粉末金属已经不再新奇。GKn看到了用户对扩大其使用的兴趣越来越浓厚,尤其是在汽车领域。在一些依靠粉末冶金技术的产品线上,减轻车辆重量是主要动力。

特别是对使用依靠粉末冶金技术的设计来说,无论是制作其他工艺无法制作的形状还是满足批量生产的需求,粉末冶金制成的铝都是一个很棒的解决方案。“我们还进行材料开发来增加强度、耐磨度和导热系数。”

贾斯特斯说,烧结给金属带来了很多优势,如粉末金属可以很容易地结合,并且在浇注工程中消除金属的偏折问题。

每个粒子都可以被制成独特的或与其它粒子相似化学性质。因此,要么粉末可以被铸成合金,要么所需的材料可熔化在一起作为最终的化学反应,制成颗粒,然后研成粉末。粒径可以被精确控制,带来不同程度的孔隙度。戴尔说:“一旦获得高密度,你将有效地拥有与铸造材料相同的材料性能。”

由于粉量可以控制,单独的部件至部件的重复性非常高,所以模具公差需严格控制。根据部件的大小,每英寸上进行上千次测量。“你可以达到接近机械水平的公差,紧密的无需额外的加工。情况虽不是总是如此,但往往是这样。

弗兰克斯说,与其他金属制造方法相比,粉末冶金技术使用废弃材料的比率很高。它也是一项绿色环保技术,其所有的原料都来自二次废料。

Dynamet technology公司首席执行官Stanley abkowitz说,经过铸锭熔炼和加工,去除30%的材料,得到纯锭。“然后,把它加工成一个轧制成品,如金属条、金属板或者薄片等,并从中加工部件提供给客户。成份购买挥发的比例在飞机制造工业根据形状可高达40或50比1。材料越少,机械加工越少,这个比例越低。加工锭的标准比率是在10:1至15:1之间。

戴尔说,在航空航天领域,虽然为了某些部件不断进行改变,但强度要求往往是粉末冶金的一个难题。一个标准的喷气发动机含有4000磅的粉末冶金材料,其中大部分由热等静压制成网形。然后,切断金属条或者钢坯,并将它们加工成发动机组件的最终形状。

贾斯特斯说巴斯夫公司正在开发一些尚未的粉末金属,特别是镍基合金100和713,它们都是面向航空航天领域的。还有大量跨应用程序的工业研究与开发工作。“主要聚点之一是寻找方法可以使用注射成型的手段制造更大的部件,以提高产量并总体改进加工工艺。”

戴尔说,由于材料的固定组合,导致了一些对加工的限制。例如,航空航天组件包含一些极难获得的高温合金,选择它们是由于其性能和强度。例如,镁可以被铸造,钛也可以,但钛很难进行机械加工。几乎所有钛的制作都是由粉末加工开始的。

Dynamet technology公司是钛粉末冶金技术的领军人。2月,该公司收到来自波音公司的里程碑式的资格认可,为其商用飞机的结构部件提供ti-6al-4V合金产品。这一认可是经过几年在开发和认证上的努力工作得来的。

根据材料规范的条款,Dynamet是唯一有合格为商波音民用飞机集团制造 ti-6al-4V粉末合金产品的公司。波音公司将开始用粉末冶金制成的合金取代标准机械等级的合金,如金属条、金属板、铸件、锻件和挤压产品。

Dynamet的制造技术生产出基本形状和近似网形的粉末金属钛。它包括混合元素钛和合金粉末的冷凝固和真空烧结。之后可能进行也可能不进行热等静压。abkowitz说,例如,其节约成本能是轧制产品的机械加工技术的50%~70%。

粉末冶金行业现状篇3

【关键词】粉末冶金;球磨粉末;ti-45al-5nb合金

【中图分类号】tH【文献标识码】a

【文章编号】1007-4309(2013)07-0055-1.5

tial金属间化合物具有低密度、高强度、优异的高温抗蠕变和抗氧化性等优点,在航空航天以及汽车工业等领域具有广泛的应用前景。高nb含量tial合金保持了tial合金上述一系列优点,同时高含量难熔元素nb的加入提高了合金的熔点及有序温度,降低了扩散系数,改善了高温抗氧化性能,被视为最具有开发潜力的新一代高温结构材料之一。然而,该合金存在严重的室温脆性,断裂韧性和裂纹扩展抗力也很低,且该合金属于难塑性加工材料。这些缺点阻碍着该合金的广泛应用。目前,该合金制备的工艺主要是铸锭冶金,该工艺存在成分偏析和组织粗大等缺点,且成本高,工序复杂。近年来,粉末冶金制备技术引起广泛关注。与铸态合金相比,粉末冶金合金的组织更均匀细小,而且,由于粉末冶金工艺可以实现近净成形,从而避免对合金的后续塑性加工,成为国内外学者制备tial基合金广泛关注的工艺。本文采用元素粉末冶金法制备高nb-tial合金,对组织性能进行了研究。

一、实验

将平均颗粒尺寸小于48μm的高纯ti、al粉以及平均颗粒尺寸小于45μm的高纯nb粉,按ti-45al-5nb(at.%)成分配比,在行星式球磨机中进行机械球磨,球磨参数为:球料质量比为20∶1,转速为400r/min,球磨罐和磨球材料均为不锈钢,球磨时充高纯氩气保护,球磨时间为8h。随后,利用真空热压烧结系统对球磨获得的ti/al/nb复合粉末进行反应烧结,烧结工艺参数为:烧结温度分别为1250℃、1300℃、1350℃,压制力为40mpa,保温保压时间为2h,整个烧结过程中真空度不低于10-2pa,最后得到Φ60×13mm的三种烧结块体材料。

应用XRD分析材料物相组成,利用光学显微镜(om)和配有能谱(eDS)分析系统的场发射环境扫描电子显微镜HitachiS4700(Sem)观测粉末的颗粒形貌演变、烧结块体试样组织。为选择典型粉末形貌,球磨粉末试样首先在烧杯中用酒精分散振荡,用滴管滴到钢制载物台,风干使酒精挥发制得粉末扫描样品。

二、实验结果与分析

1.球磨粉末特性

图1为复合粉末随球磨时间增长形貌演变的扫描和背散射图像。从中可以看出,球磨时间累计至4h,ti、al颗粒均为明显片状形貌,部分片状颗粒已发生破碎和粘合。随时间进一步延长,片状颗粒不断破碎,8h时片状颗粒破碎基本完成,形成了大量的碎小颗粒。通过背散射图像对比可以发现,ti和al的粉末颗粒在变形过程中形成明显的片状结构,而nb元素颗粒则更多以碎小颗粒存在,并粘附在其他两种粉末上。这是由于ti和al的塑性比nb较好,特别是低温环境下nb有很严重的脆性。在巨大外力的快速作用下应力集中严重,从而直接破碎成细小颗粒。

图1不同球磨时间下ti-45al-5nb粉末形貌(BSe)

(a)4h;(b)6h;(c)(d)8h

ti-45al-5nb复合粉末经8h球磨得到的XRD分析结果如图2所示。从图中可以发现,复合粉末中并未产生新相,说明机械球磨过程中ti、al、nb三种元素粉末仅实现机械结合,并未发生合金化反应。在球磨过程中,由于采用间隙球磨方式,粉末和罐体的温度得到很好的控制,这也限制三种元素之间的扩散速度,而且粉末的能量不足以推动ti、al元素之间的扩散反应,另外,nb元素在低温环境中的扩散系数非常低,基本不考虑其反应。利用XRD结果计算复合粉末中三种元素的平均晶粒尺寸为19.7nm,三种粉末的晶粒均得到明显的细化。

2.烧结坯物相分析

利用X射线衍射仪分析三种烧结坯所得结果如图3所示。从图谱可以看出,三种烧结温度下合金中单质元素相完全消失,表明nb元素完全固溶于tial合金中。同时,三种合金新生成的物相均以γ-tial为主,α2-ti3al次之,同时都有少量的B2相形成。对比发现,随着烧结温度提升,α2相含量有所减少,γ相含量增加。另外,1300℃和1350℃烧结合金的衍射峰相对于1250℃烧结合金向左有小角度偏移。这可能是由于nb元素在更高烧结温度下扩散更加充分,其分布更加均匀,使三种物相的晶格常数变化引起的。

图2ti-45al-5nb合金烧结XRD图谱

三、结论

1.采用元素粉末+机械球磨工艺制备ti-45al-5nb复合粉末,充分的细化和均匀了三种元素粉末,ti、al粉末发生塑性变形成细小片状,而nb则破碎成细小颗粒。经过8h球磨可以得到较好的复合粉末。经过球磨的复合粉末未发生合金化反应。

2.采用真空热压烧结工艺制备高致密的ti-45al-5nb合金材料,在1250℃和1300℃烧结得到细小的近γ组织,在1350℃烧结得到的是近片层组织,同时三种烧结坯组织中均有B2相颗粒生成。

【参考文献】

[1]appeLF,oeHRinGm,waGneRR.noveldesignconceptsforgamma-basedtitaniumaluminidealloys[J].intermetallics,2000,8.

[2]DUanQin-qi,LUanQing-dong,LiUJing,etal.microstructureandmechanicalpropertiesofdirectionallysolidifiedHighnbcontainingtialalloys[J].materials&Design,2010,31(7).

[3]王衍行,等.高nb-tial合金粉的制备及其特性[J].航空材料学报,2007,27(5).

[4]LiUB.,LiUY,ZHanGw,etal.Hotdeformationbehavioroftialalloyspreparedbyblendedelementalpowders[J].intermetallics,2011,19(2).

[5]胡连喜,王尔德.粉末冶金难变形材料热静液挤压技术进展[J].中国材料进展,2011,30(7).

粉末冶金行业现状篇4

温压是,在120~150℃温度范围内,将由适量的粘结剂与剂系统和铁粉或低合金钢粉组成的预混合粉压制成形的一种压制工艺。温压最初是将预混合粉与压制的模具都加热到上述的温度范围;在这些温度下,由于铁的压缩屈服强度减低,伴随着软化,在接近pFD的密度情况下,在阴模内产生似等静压,从而使生坯达到了较高密度。值得注意的是,一般添加的剂数量为0.6%;因此,可得到较高的pDF。温粉压制结果表明,整个零件的密度较均匀,而且,和粉末冶金压制相关的中和区最小化。这种中和区减小是一种优势;因为密度的均匀性增大,意味着零件内部的性能较均一,对低密度区和其对最终零件使用性能的影响较少。

1)温压对生坯与烧结件的密度和力学性能的影响:温压可使粉末冶金零件的生坯与烧结件的密度分别增高0.10g/cm3、0.25g/cm3。图3示添加0.6%石墨的FD-0405扩散合金化粉预混合粉的生坯与烧结件的密度的改进结果。温压在较低压力下,可将生坯密度增高较大;其达到了在常规压制时,于较高压力下达到的密度。在较高的压制压力下,阴模型腔中的预混合粉已接近pFD;因此,进一步增高压力时,生坯密度将不会再增高,实际上可能产生过压,并使粉末冶金零件形成微小分层。图4(略)汇总了用常规与温压压制工艺,在410~690mpa的压制压力范围内,压制的扩散-粘结材料的横向断裂强度(tRS)的结果。表3中汇总了由各种预混合粉组成,温压的烧结件的力学性能。温压适用于所有的铁与低合金钢粉的混合粉。烧结件密度增高的多少取决于材料系统和随后的零件加工处理。添加铜的预混合粉在烧结时发生胀大,这对温压工艺无益;因此,认为对于含铜的预混合粉,不适于采用温压压制。在Donaldson等进行的试验研究中[10],将温压的粉末冶金零件,于871℃下进行了预烧结,随后在高达690mpa的压力下,于室温下进行了二次压制(整形)。二次压制后,在1120℃或1260℃下进行了烧结,制得的烧结件的密度达到了7.5~7.6g/cm3。当与密度为7.4g/cm3的烧结件相比较时,这些密度较高的烧结件,横向断裂强度增高了约15%;更重要的是,冲击能量增高了50%~80%。这些研究证明,对于温压零件,采用二次压制/二次烧结(Dp/DS)工艺生产,可显著增高粉末冶金材料的力学性能。这类零件的综合力学性能等同于韧性铸铁和切削加工的碳钢锻件的性能。

2)增高生坯强度:温压工艺的较次要优势是,可增高零件压坯的生坯强度。生坯强度的增高,是由于粉末颗粒变形较大和在温压中使用的独特粘结剂与剂发生的最佳协同作用。生坯强度值的增高,是在密度显著低于pFD值水平下实现的(见图5)。这些数据表明,由于温压可增高生坯密度,其在应用于密度较低的零件时,可减小零件的损坏或零件易碎特征部分的碎裂。由于温压可增高生坯强度,从而使着可对生坯进行切削加工。在汽车变速器的粉末冶金换档拨叉的大量应用中,一直在采用生坯切削加工生产[13]。零件压制成形后,于生坯状态下进行铣削加工,这可减小零件的整个生产成本。用钼预合金化钢粉+2%ni+0.5%石墨+0.6%剂的预混合粉温压后的生坯,通过钻削试验,进行了切削性研究。这项研究证明:在高速与高进给比的切削条件下,可得到令人满意的生坯表面粗糙度;另外,将标准钻头的几何形状从标准的90°横刃钻头改变为135°分裂点钻头,可改进切削表面的粗糙度。在确定生坯切削加工参数之前,建议先进行试验,检验钻头的几何形状、切削速度及切削进给比的效果。粉末冶金零件的生坯切削加工和烧结硬化相结合,可为零件设计者在零件设计与材料选择上提供较大的灵活性。

温模压制

关于用一次压制/一次烧结(Sp/SS)得到较高生坯密度的第二个较新的方法是,仅只对模具加热,而不对粉末进行任何预热,将阴模加热到60~70℃温度范围之内。和温压工艺一样,为将密度比常规的预混合粉压制增高0.05~0.15g/cm3,这种工艺也综合有粘结剂与剂技术。和温压工艺一样,除了增高生坯与烧结件密度之外,此生产工艺还可以减少扬尘,改进流动性及增大阴模的充填量。这些因素都可以增高粉末冶金零件的一致性和质量。图6示用常规压制、温压及温模压制可得到的生坯密度的比较。温模压制的优势在于,可增高密度(0.05~0.15g/cm3)、附属设备较少及可减小粉末的损耗。不足之处有:由于传递到粉末中的热量有限和剂的总含量较低,零件的高度最高不大于25mm[16];要增高密度,压制压力需要>550mpa。对于温热粉末/温热阴模的方法来说,这种零件高度的限制,似乎不是问题,已经成功地生产出了高度高达63.5mm的零件。这两种温压工艺的生坯密度增高,都是依靠对粉末进行加热和减小添加于预混合粉中的剂的数量。就这一点而言,减小预混合粉中剂的含量时,剂必须使着易于脱模;因此,剂都是能满足压制方法要求的独特配方。

模壁

如上所述,减少添加于预混合粉中剂的数量,对增高粉末冶金零件生坯密度与烧结件密度都有重大影响。理论上,最需要添加剂的地方,是阴模模壁处。模壁不是一个新观念,可靠的模壁系统,一直在被研究与开发。过去的使用水基或溶剂基系统的研究成果,在装粉之前都需要一个干燥过程;静电系统的开发消除了干燥过程,并使着可将内部剂的总含量减小到0.2%~0.4%。依照图2(略)中的结果,这使着可将生坯密度增高0.15~0.25g/cm3,同时生坯与烧结件的强度也相应增高。模壁的其它优势还有,需要除去的内部剂含量较少,从而烧结过程中的排放物也相应地减少。图7(略)示内部剂的减少对生坯密度的影响;注意,生坯密度不可能>7.4g/cm3。模壁要在产业中被接受,实质上其喷涂技术必须可靠和能够用倾倒法装粉。

选择性表面致密化

增高粉末冶金零件芯部密度的好处在于:可增高齿轮的拉伸性能,改进弯曲疲劳耐久性及增高滚动接触疲劳(RCF)强度。鉴于粉末冶金零件的选择性致密化,可改进RCF耐久性和提高尺寸精度,因而日益受到关注。早期的试验工作表明了这种工艺是如何适用于大量的粉末冶金零件的;这种工艺还能成形齿轮的导程与轮廓的拱起部位,为最终用户提供的齿轮成品不需要进行后续加工。重要的是,认识到了选择性致密化与高的芯部密度相结合,制造出的粉末冶金零件的拉伸与弯曲疲劳性能和锻钢零件的性能相同。采用选择性致密化时,其RCF性能也和锻钢等同。这种独特综合性能,为用粉末冶金齿轮替代高负载汽车变速器齿轮提供了可能。表4(略)示采用高密度工艺加工的FLn2-4405的力学性能与淬火/回火处理的aiSi8620锻钢性能的比较。aiSi8620钢表明,其疲劳与冲击性能两者都有明显的方向性。#p#分页标题#e#

所有试验都是用切削加工的圆形试棒进行的。拉伸试验的结果表明:疲劳强度与冲击韧性值的变化都是纵向大与横向小;淬火/回火的疲劳试样的纵向比横向的值约高35%;有凹口冲击试样的纵向比横向的值大约50%;而无凹口试样的纵向与横向的值相差很小,只有1.5%。鉴于许多齿轮(例如,直齿轮)的负载都垂直于主工作方向,因此,材料的方向性很重要。螺旋齿轮是在两个方向负载,其取决于齿轮的螺旋角,例如,20%螺旋齿轮的负载大部分是在横向。在文献数据库中,往往引用的是纵向的力学性能,而很少列出横向性能。粉末冶金零件材料是各向同性的,鉴于中和区的密度减小,因此,在零件的中和轴线上的性能略微减小。采用先进的粉末冶金零件生产工艺时,可将中和区的密度减低显著减小。根据表4,粉末冶金零件的屈服强度与抗拉强度和锻钢相似;但伸长率与冲击值和锻钢相比,则明显减小。实质上,通过正确地选择合金与生产工艺条件,可得到同样的RCF性能。整篇论述主要集中于获得较高的生坯与烧结件密度的方法上,认为较高的烧结件密度,意味着较高的力学性能。近期,合金化的发展表明,在可比较的密度下,合金化也可以改进粉末冶金材料的力学性能。King等的研究表明:添加铬、硅、钼及镍可显著影响粉末冶金钢的力学性能;特别是,在同样密度下,铬与硅可显著增高粉末冶金钢的强度与冲击能量。对于这些先进的合金系统,可利用上述的得到较高密度的技术,并可相应地增高零件的使用性能。另外,用烧结硬化合金工艺可生产具有马氏体显微组织的粉末冶金零件,而且,其尺寸精度是用常规锻钢油淬火无法达到的。

因此,粉末冶金可提供所需的力学性能、尺寸精度及可行的生产成本。对于进一步增高密度,可能性是存在的。将模壁与Sp/SS加热粉末工艺相结合,可使密度达到接近7.5g/cm3;开发新剂,其在较低含量的条件下,可有效地增高pFD;将Dp/DS用于密度>7.6g/cm3的粉末冶金零件时,可使粉末冶金零件的性能增高到与粉末锻造零件相同。

结束语

粉末冶金行业现状篇5

【关键词】激光焊接技术;原理;应用

一、激光焊接技术的基本原理

激光焊接就是以激光为热源进行的焊接。激光是一束平行的光,用抛物面镜或凸透镜聚光,可以得到高的功率密度。与电弧焊接的功率密度102~104kw/cm比较,聚集的激光束可以得到105~108kw左inZ的功率密度。用功率密度高的热源进行焊接,可以得到熔深较大的焊缝。激光焊接可以得到与电子束焊接同样熔深的焊缝。激光焊接可使表面温度迅速上升,激光照射完后迅速冷却,可以进行熔融或非熔融的表面处理。当功率密度大于103kw/c耐时,可进行熔深较大的焊接。这时,在大气中熔融金属容易被氧化。因此,要用ar、He、Co,等气体密封焊接部位。尤其是提高功率密度时,瞬间从光束中熔融金属被排出,这时若辅以高压气体吹扫,可促进熔融金属排出,适宜进行开孔或切断。激光焊接最大的特点是选择适合的焊接材料和功率密度,可以得到稳定的焊接形态。激光焊接有两种基本方式:传导焊与深熔焊。这两种方式最根本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵人;而深熔焊时,小孔的不断关闭能导致气孔的产生。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。可以调节激光焊接过程中各因素相互作用的程度,使得小孔建立以后能够在脉冲间歇阶段收缩,从而减小气体侵入的可能性,降低气孔产生的倾向。

二、激光焊接技术的应用领域

(1)制造业领域。20世纪80年代后期,千瓦级激光器成功应用于工业生产,而今激光焊接生产线已大规模出现在汽车制造业,成为汽车制造业突出的成就之一。90年代美国通用、福特和克莱斯特公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。日本的本田和丰田汽车公司在制造车身覆盖件中都使用了激光焊接和切割工艺,高强钢激光焊接装配件因其性能优良在汽车车身制造中使用的越来越多。(2)粉末冶金领域。随着科学技术的不断发展,许多技术对材料有特殊要求,应用冶铸方法制造的材料已不能满足需要。由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其它零件的连接问题显得日益突出,使粉末冶金材料的应用受到限制。在20世纪80年代初期,激光焊以其独特的优点进入粉末冶金材料加工领域,为粉末冶金材料的应用开辟了新的前景,如采用粉末冶金材料连接中常用的钎焊方法焊接金刚石,由于结合强度低,热影响区宽特别是不能适应高温及强度要求高而引起钎料熔化脱落,采用激光焊接可以提高焊接强度以及耐高温性能。(3)电子工业领域。激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用。由于激光焊接热影响区小,加热集中迅速、热应力低,因而正在集成电路和半导体器件壳体的封装中,显示了独特的优越性,在真空器件研制中,激光焊接也得到了应用,。传感器或温控器中的弹性薄壁波纹片其厚度在0.05~0.1mm,采用传统焊接方法难以解决,电弧焊容易焊穿,等离子焊稳定性差,影响因素多,而采用激光焊接效果很好。(4)生物医学领域。生物组织的激光焊接始于20世纪70年代,Klink等及Jain用激光焊接输卵管和血管的成功及显示出来的优越性,使更多研究者尝试焊接各种生物组织,并推广到其它组织的焊接。有关激光焊接神经方面,目前国内外的研究主要集中在激光波长、剂量及对功能恢复及激光焊料选择等方面,刘铜军在激光焊接小血管及皮肤等基础研究的基础上又对大白鼠胆总管进行了焊接研究。激光焊接方法与与传统的缝合方法比较,激光焊接具有吻合速度快,愈合过程中没有异物反应,保持焊接部位的机械性质,被修复组织按其原生物力学性状生长等优点,将在以后的生物医学中得到更广泛的应用。(5)其他领域。在其他行业中,激光焊接也逐渐增加,特别是在特种材料焊接方面,我国进行了许多研究,如对Bt20钛合金、He130合金、Li-ion电池等激光焊接。德国玻璃机械制造商GlamacoCoswig公司与iFw接合技术与材料实验研究院合作开发出了一种用于平板玻璃的激光焊接新技术。

参考文献

[1]游德勇,高向东.激光焊接技术的研究现状与展望[J].焊接技术.2008(4)

[2]杨春燕.激光焊接技术的应用与发展[J].西安航空技术高等专科学校学报.2008(5)

粉末冶金行业现状篇6

关键词:粉末冶金;水雾化;铁基;专利

中图分类号:tB

文献标识码:adoi:10.19311/ki.1672-3198.2016.18.103

1.前言

1965年,美国率先采用高压水雾化技术生产低碳钢粉末,虽然当时所得粉末成形性差,难以实际应用,但却具有成本低、纯度高等特点,从而引起了广泛的关注。在随后的70年代初,德国通过对水雾化铁粉进行高温还原,在很大程度上提升了水雾化铁粉的压缩成形性,为制备高性能的铁基粉末冶金零件奠定了基础,此后水雾化制粉技术得到快速发展。

2.水雾化铁基粉末专利分析

专利申请人所在的国家一般是某项技术的原创技术国。一般而言,一个国家在某项技术中拥有的专利越多,就表明其在该技术上的原创技术越多,说明其在该技术领域的研发能力和技术实力越强。由图1可以看出,目前,水雾化铁基粉末的相关专利主要集中在日本、美国、德国和加拿大等国家。

结合表1可以看出,中国之所以排在第二,首先与国外申请人在中国申请大量专利有非常大的关系,其次也与中国的高校在相关方面进行的研究密不可分。这在一定程度上说明了,我国在水雾化铁基粉末的研究方面有一定的成绩,而在其实际的生产及应用等方面则比较落后,相关的核心技术依然掌握在国外企业的手里,这不利于我国快速发展的粉末冶金企业的长远发展。

由表2可以看出,在全球的专利申请量上,排名前三的申请人分别为日本川崎制钢公司、日本神户制钢公司和瑞典的Hoganas公司,而这三者也是世界上目前较大的几家水雾化铁基粉末的生产企业。3我国水雾化铁基粉末专利分析

表3为中国专利申请中的中国申请人排名。由表可以看出,我国水雾化铁基粉末的相关专利申请中,科研院所占的比重较大。其中,北京科技大学、中南大学和钢铁研究总院三家科研院所的水雾化铁基粉末相关专利申请总数为31件,占中国水雾化铁基粉末相关专利申请总数的9.3%。这三家科研院所的相关专利多为实验研究性质的专利,其实际工业应用的可能性比较小,对我国水雾化铁基粉末的制备和相关产品生产的实际贡献很小。

对比国内外主要申请人的相关专利,可以发现,国内申请人的主要研究方向为:粉末成分的微调、制粉设备(特别是喷嘴)的改进、制粉工艺的改善等。这些方面都是在国外相关技术上的部分改进,这些改进虽能提高粉末的性能,但提高却十分有限,其所制备出的粉末往往是接近国外相同技术制备出的粉末。与国内申请人不同的是,国外的申请人则往往以大幅度提高粉末的性能,尤其是提高粉末在成形方面的稳定性为主要的研究方向。而且其在申请专利时,会故意保留该专利的核心部分不予公开,在获得了专利保护的同时,又避免其核心技术外泄。

粉末冶金行业现状篇7

关键词:新型;铸造工艺;航空发动机;成本;应用;

中图分类号:o434文献标识码:a

1前言

航空发动机被认为是迄今为止最为精密和复杂的机械系统(图1,英国罗.罗公司的遄达900涡扇发动机),它也是一个国家的科技和工业水平标志之一,航空发动机的恶劣工况对在中低温条件下工作的低压涡轮叶片、整体叶盘和涡轮机匣等高温铸件的低周疲劳寿命提出了更高要求,目前它的关键热端部位如机匣、燃烧室、涡、叶片等都采用高温合金制作,占到航空发动机重量的40-60%。由于机匣、涡、叶片等零件主体结构大多为薄壁回转体,且内型、外型复杂,因此零件的设计难度大、周期长【1】。

在制作工艺上,普通精铸形成的等轴晶铸件已经很少用于航空发动机的零部件,源于于机匣等部件的形状结构复杂化、大型化和高精度要求、壁厚差大,这些要求均对铸造过程构成巨大挑战,传统铸造易于形成晶粒粗大、偏析严重、缩孔、疏松等缺陷。其次,涡等复杂铸件在普通熔铸生产工艺条件下,一般为粗大的树枝晶或柱状晶,由于晶粒粗大及组织、性能上的各项异性,很容易导致铸件在使用过程中疲劳裂纹的产生和发展[2]。因此,为保证发动机零部件的使用寿命,采用常规的“铸造+锻造+机加工”工艺制作的零部件才能满足使用寿命,但此工艺的原材料浪费多,不利于节约资源。

2航空发动机零部件铸造工艺的形成及意义

2.1工艺形成基础

随着国防科技的发展,由于航空发动机工作温度提高,对叶片等合金的热强性能提出了进一步要求,使发动机零部件高温合金化程度不断提高,这就给压力加工过程带来很大的困难。因此针对复杂、高合金化航空发动机零部件的铸造工艺应运而生。本工艺利用国内现有生产设备优势,采用“真空感应+真空自耗+粉末冶金(pm)+热等静压(Hip)+热处理”的铸造工艺,有效地克服了零件大型化关、复杂关、质量关、资源浪费关。该工艺生产的制品性能与“冶炼+精密铸造”和“冶炼+铸造+机加工”等常规工艺的制品相比具有一系列优点:(1)材料无偏析,均匀性、稳定性、力学性能、抗腐蚀性能均好;(2)材料的晶粒比常规加工的细,因此可以方便地使用超声波无损探伤或100%的红外线探伤检测,故产品的可靠性高;(3)可直接做成最终尺寸的产品,因此比常规工艺可少用料50%以上,有效地节约了稀缺战略资源;(4)目前“pm+Hip”工艺中使用的模具可以用焊接组成,形状任意变化,部件的设计自由度较大,可制作各种异形体及整体部件,提高了制品整体的可靠性和成品铸件的力学性能和表面质量;(5)L.S.ng等人用热等静压处理工艺处理m200高温合金粉末,结果表明:热等静压提高烧结试样的密度达到一个很好的值,这个值为99.6%。热等静压提高屈服强度,其平均数达到1123mpa,比真空烧结试样提高7.8%[3]。因此,用“真空感应+真空自耗+pm+Hip+热处理”工艺生产的发动机零部件,可使其力学性能、晶粒度、表面及内部质量均达到要求。

2.2工艺形成的战略意义

因此该铸造工艺的发展,将同时解决发动机生产周期长、产品质量不满足使用寿命、战略资源短缺等问题;目前我国新型战机对动力系统的需求主要依赖从俄罗斯、乌克兰进口,这样必将受制于人。该铸造工艺生产的发动机零部件将有效填补我国完全依赖进口的空白。同时,受到国内制造工艺水平以及理论基础等的限制,在某些关键材料使用寿命问题上与国外有较大程度的差距。因此开展航空发动机用关键铸造工艺开发,对解决我国重要型号研制的物资需求,对于推动我国新型航空飞机的研制乃至对国防建设具有重要意义。

3新型铸造工艺路线具体方案

近十几年,国内外高温合金研究者经过大量的技术、工艺改进,使高温合金铸件的晶粒组织得到了明显改善,铸件整体趋于均匀、细化。然而,因为细晶工艺的凝固过程有很强的形成显微疏松的倾向,其内部一般都存在不同程度的疏松等缺陷,使其力学性能和使用可靠性降低。本工艺采用“真空感应+真空自耗+pm+Hip+热处理”能同时解决航空发动机零部件的力学性能、尺寸精度、异型尺寸、表面和内部质量问题。

3.1新型铸造工艺路线

3.2工艺技术关键点

航空发动机零部件大部分采用高温合金钢制作而成,因其使用环境的特殊性,本工艺的关键技术是突破点:

3.2.1航空发动机零部件质量的特殊要求

(1)公差等级:因发动机铸件为大型、复杂、异型零部件,同一截面尺不均匀、精度要求高;

(2)力学性能:航空发动机的零部件承受多种载荷如轴向力、扭矩、弯矩以及内压等,因此对于发动机零部件的力学性能要求极高;

(3)表面质量:航空发动机零部件具有精密的外形尺寸,因此铸件表面及内部质量不允许有裂纹、冷隔、欠铸、缩孔及高密度夹渣对应和穿透性的缺陷;表面粗糙度、尺寸公差等也有严格要求;

3.2.2工艺技术关键点

(1)母合金成分设计与试样力学性能的匹配,试样力学性能合格与否关系着成分设计的成熟性;

(2)粉末冶金制备技术的优化,根据零部件性能大小要求选择粉末制剂方法;

(3)热等静压制备技术的理论和实际生产的结合成熟性;

(4)铸件热处理:对于复杂形状铸件的热处理工艺将是一种新的探索;

(5)粉末冶金和热等静压成型模具材料的选择与尺寸公差的设计;

3.3具体实施方案

(1)、根据各钢中各元素的不同作用,缩小化学成分范围,设计出理论上能达到铸态组织下的性能要求;

(2)、制定初步冶炼技术条件,采用小真空炉(约25Kg)冶炼,浇铸成小试样,试样热处理后,分析力学性能;

(3)、试样性能如不符合标准要求,则重新调整化学成分和热处理工艺;

(4)、试样性能测试达到标准值,则将该工艺固化进行大生产;

(5)、氩气雾化法制造粉末(aa粉)【4】,采用粉粒度相对细小、夹杂物尺寸小的aa粉,可有效提高发动机零部件的低周疲劳寿命、可靠性和使用寿命;其次,对粉末进行双真空脱气和双韧化处理,可提高铸件的致密度和改善材料的强度和韧性;

(6)、用3D打印技术设计制造接近成品尺寸的钢模;

(7)、将制作好的高温合金粉末按照设计好机匣尺寸的模具包套,制造成与机匣尺寸接近的毛坯件;

(8)、将粉末铸件包套,装入Hip装备中,在1000-2000℃和≤200mpa压力下进行4小时热等静压工艺处理;

(9)、铸件热处理:因铸件结构复杂、尺寸不均匀等,毛坯热处理制度参照小试样的制度执行;

(10)、铸件毛坯表面局部处理后用红外线探伤,合格品交付;

4应用与发展趋势

近几年来,随着国际技术交流合作不断加强,航空领域材料生产工艺制备也逐渐进入更深层次的合作研制,粉末冶金和热等静压技术在应用开发和设备改进方面的技术也得到了大幅度提高,产品质量走向高端成熟阶段。在未来几年,pm和Hip技术将向更高层次发展:

4.1pm发展方向主要有:(1)纯净度冶炼和粉末粒度细小、非金属夹杂含量低;(2)先进的热处理技术和合金致密化程度;(3)开发新型高温、超高温难熔金属技术。

4.2Hip发展方向:(1)成熟的计算机软件开发在Hip技术方面的研究;(2)开发大尺寸Hip设备以适用于更多领域;(3)提高我国Hip设备的设计制造水平、自动化水平。

5仍需要解决的问题

在当前技术条件下,尽管“pm+Hip”技术能用于工业生产的各个领域,但随着产品质量的要求越来越高、稀缺金属锐减、航空发动机等产品产业化趋势增强等一系列问题,给现阶段的pm、Hip和装备带来严峻的考验,新型铸造工艺的开发和大型精密装备的研制将是科技工作者下一步需要解决的工作重点。

6结语

21世纪,科技进步已进入稳定增长轨道,但国内航空发动机的研究水平和国外相差约10年,性能与国外航空强国相比还存在一定的差距,还难以满足我国第四、第五代新型战机研制及产业化需要。而作为航空高端装备制造产业中的项目之一,突破航空发动机关键工艺技术、加快推进航空发动机产业化,自主研制新型发动机,对提升我国的国际影响力和军事威慑力具有重要战略意义。因此pm和Hip技术以其先进的技术特点、低成本优势和高质量的生产制品应用于航天航空等制作复杂备件的各个领域,将是国内外关注和研发的热点。

参考文献

【1】刘林,高温合金精密铸造技术研究进展.铸造杂志2012,11:1273-1274.

【2】刘林,高温合金精密铸造技术研究进展.铸造杂志2012,11:1274-1275.

粉末冶金行业现状篇8

关键词:特种陶瓷;成形;烧结;粉末冶金;陶瓷材料

1引言

陶瓷分为普通陶瓷和特种陶瓷两大类,特种陶瓷是以人工化合物为原料(如氧化物、氮化物、碳化物、硼化物及氟化物等)制成的陶瓷。它主要用于高温环境、机械、电子、宇航、医学工程等方面,成为近代尖端科学技术的重要组成部分。特种陶瓷作为一种重要的结构材料,具有高强度、高硬度、耐高温、耐腐蚀等优点,无论在传统工业领域,还是在新兴的高技术领域都有着广泛的应用。因此研究特种陶瓷制备技术至关重要。

2陶瓷原料的制备方法

粉料的制备工艺(是机械研磨方法,还是化学方法)、粉料的性质(粒度大小、形态、尺寸分布、相结构)和成形工艺对烧结时微观结构的形成和发展有着巨大的影响,即陶瓷的最终微观组织结构不仅与烧结工艺有关,而且还受粉料性质的影响。由于陶瓷的材料零件制造工艺一体化的特点,使得显微组织结构的优劣不单单影响材料本身的性能,而且还直接影响着制品的性能。陶瓷材料本身具有硬、脆、难变形等特点。因此,陶瓷材料的制备工艺显得更加重要。

由于陶瓷材料是采用粉末烧结的方法制造的,而烧结过程主要是沿粉料表面或晶界的固相扩散物质的迁移过程。因此界面和表面的大小起着至关重要的作用。就是说,粉末的粒径是描述粉末品质的最重要的参数。因为粉末粒径越小,表面积越大,单位质量粉末的表面积(比表面积)越大,烧结时进行固相扩散物质迁移的界面就越多,即越容易致密化。制备现代陶瓷材料所用粉末都是亚微米(<lμm)级超细粉末,且现在已发展到纳米级超细粉。粉末颗粒形状、尺寸分布及相结构对陶瓷的性能也有着显著的影响。

粉末制备方法很多,但大体上可以归结为机械研磨法和化学法两个方面。传统陶瓷粉料的合成方法是固相反应加机械粉碎(球磨)。其过程一般为:将所需要的组分或它们的先驱物用机械球磨方法进行粉碎并混合。然后在一定的温度下煅烧,使组分之间发生固相反应,得到所需的物相。同时,机械球磨混合无法使组分分布达到微观均匀,而且粉末的细度有限,通常很难小于lμm而达到亚微米级。机械球磨法有干磨和湿磨两种方法。

为了克服机械研磨法的缺点,人们普遍采用化学法得到各种粉末原料。根据起始组分的形态和反应的不同,化学法可分为以下三种类型:

(1)液相合成法

液相有熔液和溶液两种。将陶瓷的熔液制成液滴,以等离子流使之形成雾状,固化后便可获得粉末。虽然这种方法作为合成金属而广泛使用,但陶瓷的液化必须在高温下进行,因为一面分解,另一面易于引起相分离。所以广泛采用溶液合成法。

(2)气相合成法

气相合成法有蒸发凝聚法(物理气相沉积、pVD)和化学气相沉积(CVD)法。由气相合成析出的固体形态有晶须、薄膜、晶粒和微细粉末等。蒸发凝聚法与液相合成法中的溶液喷雾法一样,将原料在高温下气化,用电弧、等离子体进行急冷而使其凝缩为微细粉料。

(3)气相反应法

气相反应法是通过金属化合物蒸气的化学反应而合成的方法。一般在SiC、Si3n4等的合成中使用该方法。

3特种陶瓷的成形工艺

粉末成形是陶瓷材料或制品制备过程中的重要环节。粉料成形技术的目的是为了使坯体内部结构均匀、致密,它是提高陶瓷产品可靠性的关键步骤。成形过程就是将分散体系(粉料、塑性物料、浆料)转变为具有一定几何形状和强度的块体,也称素坯。粉末的成形方法很多,如胶态成形工艺、固体无模成形工艺、陶瓷胶态注射成形等。其选择主要取决于制品的形状和性能要求及粉末自身的性质(粒径、分布等)。不同形态的物料应用不同的成形方法。究竟选择哪一种成形方法取决于对制品各方面的要求和粉料的自身性质(如颗粒尺寸、分布、表面积)。

陶瓷材料的成形除将粉末压成一定形状外,还可以外加压力,使粉末颗粒之间相互作用,并减少孔隙度,使颗粒之间接触点产生残余应力(外加能量的储存)。这种残余应力在烧结过程中,是固相扩散物质迁移致密化的驱动力。没有经过冷成形压实的粉末,即使在很高的温度下烧结,也不会产生致密化的制品。经烧结后即可得到致密无孔的陶瓷,可见成形在陶瓷烧结致密化中的重要作用。坯体成形的方法种类很多,如:

(1)热压铸成形

热压铸成形也是注浆成形的一种,但不同之处在于它是在坯料中混入石蜡,利用石蜡的热流特性,使用金属模具在压力下进行成形,冷凝后获得坯体的方法。热压铸成形的工作原理如下:先将定量石蜡熔化为蜡液再与烘干的陶瓷粉混合,凝固后制成蜡板,再将蜡板置于热压铸机筒内,加热熔化成浆料,通过吸铸口压入模腔,保压、去压、冷却成形,然后脱模取出坯体,热压铸形成的坯体在烧结之前须经排蜡处理。该工艺适合形状复杂、精度要求高的中小型产品的生产,设备简单、操作方便、劳动强度小、生产效率高。在特种陶瓷生产中经常被采用。但该工艺工序比较复杂、耗能大、工期长,对于大而长的薄壁制品,由于其不易充满模具型腔而不太适宜。

(2)挤压成形

将粉料、粘结剂、剂等与水均匀混合,然后将塑性物料挤压出刚性模具即可得到管状、柱状、板状以及多孔柱状成形体。其缺点主要是物料强度低容易变形,并可能产生表面凹坑和起泡、开裂以及内部裂纹等缺陷。挤压成形用的物料以粘结剂和水做塑性载体,尤其需用粘土以提高物料相容性,故其广泛应用于传统耐火材料,如炉管以及一些电子材料的成形生产。

(3)流延成形

流延成形是将粉料与塑化剂混合得到流动的粘稠浆料,然后将浆料均匀地涂到转动着的基带上,或用刀片均匀地刷到支撑面上,形成浆膜,干燥后得到一层薄膜,薄膜厚度一般为0.01~1mm。流延法用于铁电材料的浇注成形。此外,它还被广泛用于多层陶瓷、电子电路基板、压电陶瓷等器件的生产中。

(4)凝胶注模成形

凝胶注模成形是一种胶态成形工艺,它将传统陶瓷工艺和化学理论有机结合起来,将高分子化学单体聚合的方法灵活地引入到陶瓷的成形工艺中,通过将有机聚合物单体及陶瓷粉末颗粒分散在介质中制成低粘度,高固相体积分数的浓悬浮体,并加入引发剂和催化剂,然后将浓悬浮体(浆料)注入非多孔模具中,通过引发剂和催化剂的作用使有机物聚合物单体交联聚合成三维网状聚合物凝胶,并将陶瓷颗粒原位粘结而固化成坯体。凝胶注模成形作为一种新型的胶态成形方法,可净尺寸成形形状复杂、强度高、微观结构均匀、密度高的坯体,烧结成瓷的部件较干压成形的陶瓷部件有更好的电性能。目前已广泛应用于电子、光学、汽车等领域。

(5)气相成形

利用气相反应生成纳米颗粒,如能使颗粒有效而且致密地沉积到模具表面,累积到一定厚度即成为制品,或者先使用其它方法制成一个具有开口气孔的坯体,再通过气相沉积工艺将气孔填充致密,用这种方法可以制造各种复合材料。由于固相颗粒的生成与成形过程同时进行,因此可以避免一般超细粉料中的团聚问题。在成形过程中不存在排除液相的问题,从而避免了湿法工艺带来的种种弊端。

(6)轧模成形

将准备好的坯料伴以一定量的有机粘结剂置于两辊之间进行辊轧,然后将轧好的坯片经冲切工序制成所需的坯件。轧辊成形时坯料只是在厚度和前进方向上受到碾压,宽度方向受力较小。因此,坯料和粘结剂会出现定向排列。干燥烧结时横向收缩大易出现变形和开裂,坯体性能会出现各向异性。另外,对厚度小于0.08mm的超薄片,轧模成形是难以轧制的,质量也不易控制。

(7)注浆成形

根据所需陶瓷的组成进行配料计算,选择适当的方法制备陶瓷粉体进行混合、塑化、造粒等,才能应用于成形。注浆成形适用于制造大型的、形状复杂的、薄壁的陶瓷产品。对料浆性能也有一定的要求,如:流动性好、粘度小,利于料浆充型,稳定性好。料浆能长时间保持稳定,不易沉淀和分层,含水量和含气量尽可能小等。注浆成形的方法有:空心注浆和实心注浆。为提高注浆速度和坯体质量,可采用压力注浆、离心注浆和真空注浆等新方法。注浆成形工艺成本低、过程简单、易于操作和控制,但成形形状粗糙,注浆时间较长、坯体密度、强度也不高。在传统注浆成形的基础上,相继发展产生了新的压滤成形和离心注浆成形工艺,借助于外加压力和离心力的作用,来提高素坯的密度和强度,避免了注射成形中复杂的脱脂过程,但由于坯体均匀性差,因而不能满足制备高性能、高可靠性陶瓷材料的要求。

(8)注射成形

陶瓷注射成形是借助高分子聚合物在高温下熔融、低温下凝固的特性来进行成形的,成形之后再把高聚物脱除。注射成形的优点是可成形形状复杂的部件,并且具有高尺寸精度和均匀的显微结构。缺点是模具设计加工和有机物排除过程中的成本较高。在克服传统注射成形缺点的基础上,水溶液注射成形和气相辅助注射成形工艺便发展起来。水溶液注射成形采用水溶性的聚合物作为有机载体,较好地解决了脱脂问题。水溶液注射成形技术可以很容易地实现自动控制,比起传统的注射成形成本低。气体辅助注射成形是把气体引入聚合物熔体中而使成形更容易进行。陶瓷胶态注射成形是将低粘度、高固相体积分数的水基陶瓷浓悬浮体注射到非孔模具中,并使之原位快速固化,再经烧结,制得显微结构均匀、无缺陷和净尺寸的高性能、高可靠性的陶瓷部件,并大大降低陶瓷制造成本。陶瓷胶态注射成形解决了两个重要的关键技术:陶瓷浓悬浮体的快速原位固化和注射过程的可控性。通过深入研究发现压力可以快速诱导陶瓷浓悬浮体的原位固化,从而开发出压力诱导陶瓷成形技术。通过胶态注射成形技术可以获得高密度、高均匀性和高强度的陶瓷坯体。这种成形技术可以消除陶瓷粉体颗粒的团聚体,减少烧结过程中复杂形状部件的变形、开裂,从而减少最终部件的机加工量,获得高可靠性的陶瓷材料与部件。避免了传统陶瓷注射成形使用大量有机物所导致的排胶困难的问题,实现了胶态成形的注射过程,适合于规模化的生产,是高技术陶瓷产业化的核心技术。

(9)粉末注射成形

金属、陶瓷粉末注射成形(pim)是一种新的金属、陶瓷零部件制备技术。它是将聚合物注射成形技术引入粉末冶金领域而生成的一种全新零部件加工技术。该技术应用塑料工业中注射成形的原理,将金属、陶瓷粉末和聚合物粘结剂混炼成均匀的具有粘塑性的流体,经注射机注入模具成形,再脱除粘结剂后烧结全致密化而制得各种零部件。pim作为一种制造高质量精密零件的近净成形技术,具有比常规粉末冶金和机加工方法无法比拟的优势。pim能制造许多具有复杂形状特征的零件:如各种外部切槽、外螺纹、锥形外表面、交叉通孔、盲孔、凹台与键销、加强筋板、表面滚花等,这些零件都是无法用常规粉末冶金方法制得。由于通过pim制造的零件几乎不需要再进行机加工,所以减少了材料的消耗,因此在所要求生产的复杂形状零件数量高于一定值时,pim比机加工方法更经济。pim工艺的优势为:能一次成形生产形状复杂的金属、陶瓷等零部件。产品成本低、光洁度好、精度高(0.3%~0.1%),一般无需后续加工。产品强度、硬度、延伸率等力学性能高、耐磨性好、耐疲劳、组织均匀。原材料利用率高,生产自动化程度高,工序简单,可连续大批量生产。无污染,生产过程为清洁工艺生产。

坯体除以上成形方法之外,还有模压成形、等静压成形等方法,当配方、混合、成形等工序完成后,还必须进行烧结才能使材料获得预期的显微结构,赋予材料各种性能。

4特种陶瓷的烧结方法

烧结是将成形后的坯体加热到高温并保持一定时间,通过固相或部分液相扩散物质迁移,而消除孔隙。将颗粒状陶瓷坯体置于高温炉中,使其致密化形成强固体材料过程。烧结开始于坯料颗粒间空隙排除,使相邻粒子结合成紧密体。但烧结过程必须具备两个基本条件:应该存在物质迁移机理;必须有一种能量(热能)促进和维持物质迁移。现在精细陶瓷烧结机理已出现了气相烧结、固相烧结、液相烧结及反应液体烧结等四种烧结模式。它们材料结构机理与烧结驱动力方式各不相同,尤其传统陶瓷和大部分电子陶瓷烧结依赖于液相形成、粘滞流动和溶解再沉淀过程,而对于高纯、高强结构陶瓷烧结,则以固相烧结为主,它们通过晶界扩散或点阵扩散来达到物质迁移。烧结是陶瓷材料制备工艺过程中的一个十分重要的最终环节。近年来也开始对陶瓷材料进行热处理,以改善其性能。

(1)常压烧结(或称无压烧结)

常压烧结是使用最广泛的一种方法。它在大气中烧结,即不抽真空,也不加任何保护气体在电阻炉中进行烧结。这种方法适用于烧结氧化物陶瓷,非氧化物陶瓷有时也采用常压烧结。陶瓷器、耐火材料最先采用这种方法。后来,氧化铝、铁氧体等许多新的陶瓷也采用了这一方法。与其它方法相比经济有效,但也有不利之处。为了使物质所具的功能充分发挥出来,也有采用其它方法进行烧结的情况。常压烧结用电阻炉的关键部件是发热体元件。通常生产中应根据不同材料的烧结温度,而选择不同加热体的电阻炉。

(2)热压烧结(Hp)

热压烧结即是将粉末填充于模型内,在高温下一边加压一边进行烧结的方法,同时进行加温、加压(机械压力而不是气压)的烧结。加压方式一般都是单向加压,热压时的压力不能太高,一般为50mpa。而冷压成形的压力可达200mpa,甚至更高。热压烧结的加热方式仍为电阻加热,加压方式为液压传动加载。热压烧结使用的模具多为石墨模具。它制造简单、成本低。热压烧结的主要优点是加快致密化进程,减少气孔隙,提高致密度,同时,可降低烧结温度。Si3n4、SiC、al2o3陶瓷等使用该法烧结,然而因成本较高,故其应用受到限制。

(3)热等静压(Hip)

热等静压一般是沿单轴方向进行加压烧结,相对而言,这种方法是借助于气体压力而施加等静压的方法。除SiC、Si3n4使用该法外,al2o3、超硬合金等也使用该法。尽管热压烧结有许多优点,但由于是单轴向加压,故只能制得形状简单如片状或环状的样品。另外,对非等轴晶系的样品热压后片状或柱状晶粒严重择优取向而产生各向异性。热等静压与热压和无压烧结一样,已成功地用于多种结构陶瓷的烧结或后处理。此外,热等静压还可以用于金属铸件、金属基复合材料、喷射沉积成形材料、机械合金化与粉末冶金材料和产品零部件的致密化等。

(4)气氛烧结

气氛烧结是采用各种气氛作保护或反应参与物,进行烧结。常用的有真空、氢、氧、氮和惰性气体(如氩)等各种气氛。例如透明氧化铝陶瓷可用氢气氛烧结,透明铁电陶瓷宜用氧气氛烧结,氮化物陶瓷如氮化铝等宜用氮气氛烧结。

5特种陶瓷技术的未来发展趋势

特种陶瓷成形技术未来的发展将集中于以下几个发面:进一步开发已提出的各种无模成形技术在制备不同陶瓷材料中的应用;性能更加复杂的结构层以及在层内的穿插、交织、连接结构和成分三维变化的设计;大型异形件的结构设计与制造;陶瓷微结构的制造及实际应用;进一步开发无污染和环境协调的新技术。

在烧结方面,特种陶瓷制品因其特殊的性能要求,需要用不同于传统陶瓷制品的烧成工艺与烧结技术。随着特种陶瓷工业的发展,其烧成机理、烧结技术及特殊的窑炉设施的研究均取得突破性的进展。在特种陶瓷的精密加工方面:特种陶瓷属于脆性材料,硬度高、脆性大,其物理机械性能(尤其是韧性和强度)与金属材料有较大差异,加工性能差、加工难度大。因此,研究特种陶瓷材料的磨削机理,选择最佳的磨削方法是当前要解决的主要问题。

6结语

特种陶瓷由于拥有众多优异性能,因而用途广泛。现按材料的性能及种类简要说明。耐热性能优良的特种陶瓷可望作为超高温材料用于原子能有关的高温结构材料、高温电极材料等;隔热性优良的特种陶瓷可作为新的高温隔热材料,用于高温加热炉、热处理炉、高温反应容器、核反应堆等;导热性优良的特种陶瓷可用作内部装有大规模集成电路和超大规模集成电路电子器件的散热片;耐磨性优良的硬质特种陶瓷用途广泛,目前的工作主要集中在轴承、切削刀具方面;高强度的陶瓷可用于燃气轮机的燃烧器、叶片、涡轮、套管等;在加工机械上可用于机床身、轴承、燃烧喷嘴等。

参考文献

[1]刘军,佘正国.粉末冶金与陶瓷成形技术[m].北京:化学工业出版

社,2005.

[2]王树海,李安明,乐红志,崔文亮.先进陶瓷的现代制备技术[m].

北京:化学工业出版社,2007.

[3]于思远.工程陶瓷材料的加工技术及其应用[m].北京:机械工业

出版社,2008.

preparationandtrendsofSpecialCeramics

XiaoYan

(JiangmenChemicalmaterials,Jiangmen529100)

粉末冶金行业现状篇9

0引言

激光熔覆技术是20世纪70年代随着大功率激光器的发展而兴起的一种新的表面改性技术,是指激光表面熔敷技术是在激光束作用下将合金粉末或陶瓷粉末与基体表面迅速加热并熔化,光束移开后自激冷却形成稀释率极低,与基体材料呈冶金结合的表面涂层,从而显著改善基体表面耐磨、耐蚀、耐热、抗氧化及电气特性等的一种表面强化方法[1~3]。如对60#钢进行碳钨激光熔覆后,硬度最高达2200HV以上,耐磨损性能为基体60#钢的20倍左右。在Q235钢表面激光熔覆CoCrSiB合金后,将其耐磨性与火焰喷涂的耐蚀性进行了对比,发现前者的耐蚀性明显高于后者[4]。

激光熔覆技术是一种经济效益很高的新技术,它可以在廉价金属基材上制备出高性能的合金表面而不影响基体的性质,降低成本,节约贵重稀有金属材料,因此,世界上各工业先进国家对激光熔覆技术的研究及应用都非常重视[1-2、5-7]。

1 激光熔覆技术的设备及工艺特点

目前应用于激光熔覆的激光器主要有输出功率为1~10kw的Co2激光器和500w左右的YaG激光器。对于连续Co2激光熔覆,国内外学者已做了大量研究[1]。近年来高功率YaG激光器的研制发展迅速,主要用于有色合金表面改性。据文献报道,采用Co2激光进行铝合金激光熔覆,铝合金基体在Co2激光辐照条件下容易变形,甚至塌陷[1]。YaG激光器输出波长为1.06μm,较Co2激光波长小1个数量级,因而更适合此类金属的激光熔覆。

同步注粉式激光表面熔覆处理示意图[8]

激光熔覆按送粉工艺的不同可分为两类:粉末预置法和同步送粉法。两种方法效果相似,同步送粉法具有易实现自动化控制,激光能量吸收率高,无内部气孔,尤其熔覆金属陶瓷,可以显著提高熔覆层的抗开裂性能,使硬质陶瓷相可以在熔覆层内均匀分布等优点。

激光熔覆具有以下特点[2、9]:

(1)冷却速度快(高达106K/s),属于快速凝固过程,容易得到细晶组织或产生平衡态所无法得到的新相,如非稳相、非晶态等。

(2)涂层稀释率低(一般小于5%),与基体呈牢固的冶金结合或界面扩散结合,通过对激光工艺参数的调整,可以获得低稀释率的良好涂层,并且涂层成分和稀释度可控;

(3)热输入和畸变较小,尤其是采用高功率密度快速熔覆时,变形可降低到零件的装配公差内。

(4)粉末选择几乎没有任何限制,特别是在低熔点金属表面熔敷高熔点合金;

(5)熔覆层的厚度范围大,单道送粉一次涂覆厚度在0.2~2.0mm,

(6)能进行选区熔敷,材料消耗少,具有卓越的性能价格比;

(7)光束瞄准可以使难以接近的区域熔敷;

(8)工艺过程易于实现自动化。

很适合油田常见易损件的磨损修复。

2 激光熔覆技术的发展现状

激光熔覆技术是—种涉及光、机、电、计算机、材料、物理、化学等多门学科的跨学科高新技术。它由上个世纪60年代提出,并于1976年诞生了第一项论述高能激光熔覆的专利。进入80年代,激光熔覆技术得到了迅速的发展,近年来结合CaD技术兴起的快速原型加工技术,为激光熔覆技术又添了新的活力。

目前已成功开展了在不锈钢、模具钢、可锻铸铁、灰口铸铁、铜合金、钛合金、铝合金及特殊合金表面钴基、镍基、铁基等自熔合金粉末及陶瓷相的激光熔覆。激光熔覆铁基合金粉末适用于要求局部耐磨而且容易变形的零件。镍基合金粉末适用于要求局部耐磨、耐热腐蚀及抗热疲劳的构件。钴基合金粉末适用于要求耐磨、耐蚀及抗热疲劳的零件。陶瓷涂层在高温下有较高的强度,热稳定性好,化学稳定性高,适用于要求耐磨、耐蚀、耐高温和抗氧化性的零件。在滑动磨损、冲击磨损和磨粒磨损严重的条件下,纯的镍基、钴基和铁基合金粉末已经满足不了使用工况的要求,因此在合金表面激光熔覆金属陶瓷复合涂层已经成为国内外学者研究的热点,目前已经进行了钢、钛合金及铝合金表面激光熔覆多种陶瓷或金属陶瓷涂层的研究[1、10]。

3 激光熔覆存在的问题

评价激光熔覆层质量的优劣,主要从两个方面来考虑。一是宏观上,考察熔覆道形状、表面不平度、裂纹、气孔及稀释率等;二是微观上,考察是否形成良好的组织,能否提供所要求的性能。此外,还应测定表面熔覆层化学元素的种类和分布,注意分析过渡层的情况是否为冶金结合,必要时要进行质量寿命检测。

目前研究工作的重点是熔覆设备的研制与开发、熔池动力学、合金成分的设计、裂纹的形成、扩展和控制方法、以及熔覆层与基体之间的结合力等。

目前激光熔敷技术进一步应用面临的主要问题是:

①激光熔覆技术在国内尚未完全实现产业化的主要原因是熔覆层质量的不稳定性。激光熔覆过程中,加热和冷却的速度极快,最高速度可达1012℃/s。由于熔覆层和基体材料的温度梯度和热膨胀系数的差异,可能在熔覆层中产生多种缺陷,主要包括气孔、裂纹、变形和表面不平度[1]。

②光熔敷过程的检测和实施自动化控制。

③激光熔覆层的开裂敏感性,仍然是困扰国内外研究者的一个难题,也是工程应用及产业化的障碍[1、11]。目前,虽然已经对裂纹的形成扩进行了研究[1],但控制方法方面还不成熟。

4激光熔覆技术的应用和发展前景展望

进入20世纪80年代以来,激光熔敷技术得到了迅速的发展,目前已成为国内外激光表面改性研究的热点。激光熔敷技术具有很大的技术经济效益,广泛应用于机械制造与维修、汽车制造、纺织机械、航海[12]与航天和石油化工等领域。

目前激光熔覆技术已经取得一定的成果,正处于逐步走向工业化应用的起步阶段。今后的发展前景主要有以下几个方面:

(1)激光熔覆的基础理论研究。

(2)熔覆材料的设计与开发。

(3)激光熔覆设备的改进与研制。

(4)理论模型的建立。

(5)激光熔覆的快速成型技术。

粉末冶金行业现状篇10

摘要:本文首先介绍了机械合金化技术的概念和技术原理,并讲述了机械合金化技术在材料科学与工程中的应用。并结合材料科学与工程专业课程的教学内容,探讨了机械合金化技术在材料科学与工程专业的教学实践中的研究和应用,并为合理利用机械合金化技术在材料科学与工程专业教学实践中发挥更大的作用提出了建议和意见。

关键词:机械合金化技术材料科学与工程教学实践

对于材料科学与工程专业的本科生来说,到了大三和大四就要学习许多专业课程和专业选修课程。其中有些课程属于材料合成与制备方法方面的内容。在材料合成与制备方法的课程教学中就需要涉及到材料的某些制备工艺,例如某些金属合金的制备工艺方法。对于金属合金的制备方法,很多教科书都详细地讲述铸造技术、焊接技术、粉末冶金技术、金属熔炼技术等,但也会涉及到机械合金化技术。机械合金化技术是近年来发展起来的一种制备高性能合金的新技术。这种技术主要是利用机械球磨工艺把不同种金属粉末通过机械球磨方式通过一定时间的球磨,最终使这些金属元素粉末通过机械球磨工艺形成金属合金,所以最终能够得到需要的新型金属合金材料。由于机械合金化工艺可以在常温下进行,不像金属熔炼技术那样需要较高的温度才能熔化金属,因此机械合金化技术更为实用,成本较低,而且材料的制备工艺简单。所以机械合金化技术近些年来发展较快,机械合金化技术所能够制备的金属合金材料的范围和种类也在不断地扩大,所制备的材料的性能也逐渐得到提高。由于机械合金化技术制备金属合金粉末的制备工艺简单,成本较低,使用的金属元素种类较多,而且可以用于实验室进行教学实验,所以机械合金化技术也逐渐应用到了材料科学与工程专业的课程教学与实践教学中。采用机械合金化技术制备金属合金粉末可以作为本科生实验课程的教学实验,也可以作为本科生的课程设计和毕业设计的教学内容。所以机械合金化技术将在材料科学与工程专业的教学实验中具有非常广泛的用途。

一、机械合金化技术的原理和应用

在机械合金化过程中,粉末受到磨球强烈的碰撞和挤压。极平的、纯净的金属表面在常温下加压可焊接在一起,这就是冷焊,也称为压力焊。塑性较好的金属粉末,在磨球的碾压、冲击下发生形变并以十分纯净的表面彼此接近到原子作用力的距离,同样可以冷焊在一起,形成相互交叠的层片组织,而脆性粉末或塑性粉末加工硬化变脆后,在冲击下直接破碎,所以球磨过程因体系不同而不同。在延性的金属-金属混合粉末中,粉末的变化分为三个阶段:颗粒粗化-破碎-粉末粒度的稳态分布,相应的称为初期、中期和后期。在机械合金化过程的初期,主要是冷焊过程,塑性粉末含量越多,粗化越明显,颗粒直径可到数毫米,同时颗粒表面也相当平滑;在机械合金化中期,冷焊和破碎交替进行,层片状较大颗粒与细小颗粒共存,细小颗粒是从大颗粒上脱落下来的,这一阶段各层内积蓄了能使原子充分扩散所需的空位、位错等缺陷,不同组元的扩散距离也接近原子级水平,合金化过程开始。在机械合金化过程的后期,基本上只有粉末颗粒破碎的过程,颗粒粒度趋向于最小值,因此也比较均匀。延性的金属与脆性的非金属或化合物组成的体系,脆性组元首先发生破碎,延性组元则首先发生变形,细小的脆性粒子处于延性颗粒之间。随后延性组元逐渐加工硬化,发生断裂和脆性组元一样尺寸不断减小。

机械合金化(ma)方法(塑性-塑性混合粉末)原理是:将金属粉末在磨球的碾压和冲击下发生形变,并以十分纯净的表面彼此之间接近到原子作用力的距离,实现冷焊,最终形成相互交叠的层片状组织。这个过程一般要经历颗粒粗化、破碎、粉末粒度的稳态分布三个阶段,其中初期以冷焊过程为主,粉末明显粗化,中间过程冷焊与破碎交替进行,层片大颗粒与细小颗粒共存,各层内积蓄了能使原子充分扩散所需要的空位和位错等的缺陷,使不同组元的扩散距离接近于原子级水平,合金化过程开始;在后期只有破碎过程,颗粒趋向于最小。机械合金化工艺可获得纳米颗粒,能使固溶、沉淀、弥散三种强化结合于一体,从而制备出性能优异的高温合金。

二、机械合金化技术在材料科学专业的课程教学与实践教学中的应用

在材料科学与工程专业的一些专业课程,例如材料合成与制备方法、纳米材料、功能材料等课程都讲述了机械合金化技术。例如在材料合成与制备方法这门课程中,有讲述金属合金材料的制备方法,除了传统的铸造工艺、焊接工艺、粉末冶金工艺以及金属熔炼技术之外,重点讲述机械合金化技术,因为机械合金化技术可以制备很多种金属合金材料,而且制备工艺简单,可以在常温下进行。由于机械合金化技术可以在实验室中进行,所以可以很方便开设实验课程。在纳米材料这门课程中讲述了纳米粉末的制备工艺,其中主要讲述了机械合金化工艺。因为机械合金化工艺制备纳米粉末的种类最多,涉及到很多种金属材料以及金属基复合材料的制备与合成等。还可以利用机械合金化技术制备复合材料,例如用机械合金化工艺球磨不同种元素粉末,使不同种金属元素通过机械球磨工艺形成金属合金粉末,所以通过机械球磨工艺原位合成金属基复合材料。在功能材料这门课程中,讲述利用机械合金化工艺制备纳米粉末颗粒和功能材料,例如制备贮氢合金mg-ni合金等。或者利用机械合金化技术制备铁磁合金材料、非晶态材料、纳米功能材料等各种先进功能材料。

利用机械合金化技术可以制备具有纳米尺寸量级的金属合金粉末。采用机械合金化技术制备的金属合金有很多种,例如采用机械合金化技术可以制备Fe-al金属间化合物粉末、ni-al金属间化合物粉末,ti-al金属间化合物粉末,以及ni-Fe合金、Fe-Si合金、Cu-al合金等多种金属合金材料。以上讲述的都是利用机械合金化工艺制备二元合金材料。也可以利用机械合金化技术制备三元合金、四元合金以及多种成分的金属合金材料。例如利用机械合金化工艺制备Fe-ni-Cr合金、Fe-al-ni合金,以及利用机械合金化技术制备具有多种成分的非晶态合金等。还可以利用机械合金技术制备贮氢材料,例如采用机械合金化工艺制备mg-ni合金等。采用机械合金化工艺制备的金属合金材料有很多种,有些金属合金材料的机械合金化制备工艺可以作为材料专业的教学实验,可以为学生演示如何利用机械合金化工艺制备高性能金属合金材料。例如采用机械合金化工艺制备Fe-al金属间化合物粉末材料。采用机械合金化工艺可将固溶、沉淀和弥散三种强化方式结合与一体,制备一系列具有优异性能的高温合金。对Fc-al合金的机械球磨或Fe-al元素混合粉末的机械合金化已开展了一定的研究。Fe,al纯元素混合粉末在球磨过程中,粉末受到强烈的碰撞、挤压,冷焊和破碎的相互作用使粉末细化,并在一定阶段形成金属合金。经过机械合金化工艺后就得到了粉末粒度极细的Fe-al金属间化合物粉末。同时还可以采用机械合金化技术制备ni-al合金粉末、ti-al合金粉末等。

通过机械合金化工艺可以制备多种新型的金属合金粉末,而且成本较低,实验过程简单,可以作为本科生的实验教学课程内容。例如可以开设纳米材料的制备工艺的实验课程,使本科学生通过机械合金化工艺制备多种具有纳米结构的金属合金粉末,并对所制备的金属合金粉末进行性能表征,使学生通过实验课程认识和了解纳米材料的整个制备工艺以及表征方法。还有使学生通过机械合金化工艺制备先进的金属功能材料,如贮氢材料、纳米材料、铁磁性材料等,通过制备工艺结合性能表征使得学生对新型功能材料有了一定的认识和了解。

通过实验教学使学生认识和了解到机械合金化技术在材料科学与工程中的研究发展与应用,使学生加深课程教学知识内容的认识和掌握,使学生在课程学习的过程中既增加课本知识又锻炼了实践能力。所以在材料专业的实验教学中应该增加一些材料制备技术的教学实验,例如使学生利用机械合金化工艺球磨得到新型金属合金粉末材料,并研究机械合金化工艺球磨过程对金属合金粉末的物相组成和显微结构的变化,使学生通过实验课程对材料的制备和检测方法有了较深的认识,从而为材料科学与工程专业课程的学习打下了坚实的基础。

三、机械合金化技术在材料科学中的发展趋势与应用

机械合金化技术由于制备工艺简单,成本较低,材料合成温度较低,所以被广泛地应用到材料的合成与制备中。利用机械合金化技术可以开发新型的金属合金材料以及复合材料等。采用机械合金化技术可以开发出很多种类型的金属合金粉末,也可以开发金属基复合材料等,而且现在有越来越多的研究者从事机械合金化工艺制备金属合金材料和金属基复合材料以及功能材料的研究和开发,所研究和开发的材料种类也逐渐增多,应用范围也越来越广泛。机械合金化技术在材料科学与工程教学与实践中也得到广泛的推广和应用,已经成为材料科学与工程专业实践教学课程必须进行的实验内容。所以本文作者认为应该在材料科学专业的教学实践中增加机械合金化技术的实验课程,使得学生通过课程学习和实践学习来加深材料科学与工程专业课程知识和内容的认识和掌握。

综上所述,本文首先介绍机械合金化技术的概念和技术原理,讲述机械合金化技术在材料科学与工程中的应用,并结合材料科学与工程专业课程教学研究和探讨了机械合金化技术在材料科学与工程专业的教学实践中的研究和应用。采用机械合金化技术可以制备多种材料,这为材料科学与工程专业实验课程的教学实践提供了丰富的教学内容,可以在材料科学与工程专业的实验课程中开设一些关于机械合金化工艺制备新型金属合金材料的实验课程。

参考文献

[1]李青虹,晋芳伟,机械专业实验课程教学改革的研究[J].机电技术,2011(1):149—151

[2]刘宏达,马忠丽.高校实验课程教学质量评价体系的构建[J].中国现代教育装备,2009(3):60-63

[3]罗乐,张春早,黄英等.加强实验课程教学质量管理的探索[J].合肥工业大学学报(社会科学版),2005,19(1):16-18

[4]谢秀红,贾天钰.大学实验课程教学改革新探[J].航海教育研究,2007(2):74-76