临床虚拟仿真教学十篇

发布时间:2024-04-25 22:28:24

临床虚拟仿真教学篇1

摘要:基于虚拟仪器的医学模拟人仿真系统可以根据用户需求进行模拟病例的诊断,通过模拟大型医学影像设备mRi、Ct的临床实践,不仅能为学生提供生动、逼真的实践环境,让学生达到身临其境的效果,而且还可以用虚拟设备和模型替代价格昂贵的实验设备和材料。建构了一个基于虚拟仪器的医学模拟人仿真操作系统,并在相应的临床实验课程中进行了应用。

关键词:虚拟仪器模拟人临床实验

中图分类号:G642文献标识码:a文章编号:1672-3791(2016)09(c)-0177-02

目前,在我国临床医学教育中,普遍存在以下几个问题:第一,医学教育对临床实践技能的基本要求,强调能及时、有效地诊断和处理病人。但是,临床实践技能的培养一直是医学教育过程中的薄弱环节;第二,传统的临床实践教学多是通过观察或是重复老师、高年资医生的操作来进行,学习者只能学习到接触过的病例,而对于无法接触到的病例只能通过书本教材去想象。第三,医学临床实验一般使用活体动物较为普遍,但是,随着近年来学生人数大幅增加,学生实际临床实验无法得到保证。

医学模拟人作为一种新的临床实践手段,基本上可以解决以上难题。

基于虚拟仪器的医学模拟人是计算机科学、信息科学和医学相结合的系统。通过云计算数据库技术在医院、学校、教室以及实验室之间建立一个可共享的病例数据库,在客户端实现医学教学、研究和实验的目的。

中国正式开始对模拟可视人的研究,是2001年在北京香山会议上提出的,很快被列入国家“863”启动项目――“数字化模拟人若干关键技术的研究”。由于可视人体研究在与人体形态结构有关的众多研究领域具有重要的理论意义及广阔的应用前景,国内不少学者一直关注着这一研究领域的进展,并利用美国的VHp数据集进行了卓有成效的研究。如清华大学利用VHp数据集,在基于模拟人体的计算机医学研究方面,对人体多个器官的结构与功能进行了可视化显示;中国科学院自动化研究所构建了开放的虚拟人体试验平台,对于数据压缩、图像分割、配准与融合、三维重建与绘制等算法进行了研究。

1基于虚拟仪器的医学模拟人的构建

在构建基于虚拟仪器的医学模拟人仿真操作系统的过程中,具体完成了如下工作:(1)参照国内主流医学影像设备的操作界面来确定系统的功能和模式,根据相关原理、成像参数、各参数之间的关系及参数的选择对影像质量、显示效果的影响,确定系统的具体功能。(2)根据主流设备的共性,采用模块化设计来确定仿真系统的整体框架,通过编写软件流程图,绘制结构方框图,以达到最优化的仿真效果。(3)确定人体各成像部位图片与软件操作界面及各成像参数之间的对应关系。(4)建立仿真操作系统的影像图片数据库,确定人体各部位影像图片的格式、适用范围、质量要求等。重点研究了图像显示、数据调用、运行速度、仿真效果等要素。

技术要求:确定了模拟软件平台的主界面与从属扫描界面之间的功能链接,数据的调用、显示、保存。探索软件操作过程中与理论知识的结合点或切入点,让学生在牢固掌握论知识的基础上,正确完成各n选项和各项参数的设定,并能顺利保存扫描协议,启动仿真扫描进程;功能模块的选项及参数的设定在符合临床实际的同时,依照常规扫描限定参数的选取范围。并且,各选项和参数之间按照实际情况进行准确的互动和链接。其模拟仿真操作界面如图1所示。

该模拟仿真系统建立后,不仅能为学生提供生动、逼真的实践环境,让学生达到身临其境的效果,而且还可以用虚拟设备和模型替代价格昂贵的实验设备和材料,把具体的实验操作转化为使用鼠标、键盘等对模型的交互操作,可有效降低实验的成本和风险。

2基于虚拟仪器的医学模拟人在临床实验中的应用

自2013年以来,该校对原来的课程体系进行了优化重组,增加了开设的《医学影像原理与技术》实验课程的学时,在以培养学生的创新精神和实践能力为核心的素质教育方面进行了有益的探索和实践,取得了令人满意的效果。从技术角度提出了《医学影像原理与设备》实践教学中虚拟现实技术选择的应用方案,引进设计了系列化大型医学影像设备Ct、mRi、超声等仿真操作训练系统,使得实验环境条件得到很大改善。

经过2年临床实践教学应用,该模拟仿真系统获得师生的肯定。在虚拟仪器的配套仿真软件基础上,实现了临床理论与临床实践教学的有效衔接与互补,拓展了临床实践教学的深度和广度、提高了学生进行仿真实验的实效,同时也尽可能地减少了实验成本和避免了对患者的侵扰。教师在课堂进行理论教学时,利用专业的模拟仿真平台,采用多媒体技术,构建了具有高度真实感、直观性和精确性模拟仿真实验平台,实现了临床理论教学与临床实践教学的有益补充和创新。基于虚拟仪器的模拟人仿真平台除了在模拟mRi、Ct大型设备的界面、功能、操作过程上具有高仿真度外,系统还具有参数设定范围限制、必选项规定、智能纠错、自动判断并提示参数及选项错误等特点。在临床实验、实训的同时促进对理论知识的理解和掌握。

该文利用赣南医学院医学影像技术专业和生物医学工程专业的样本数据,分析了基于虚拟仪器的医学模拟人仿真软件在《医学影像原理与设备》临床实验教学的应用效果。结果表明,模拟仿真软件在《医学影像原理与设备》临床实验课的使用效果受到学生计算机操作技能、软件的仿真度、实验教学与理论教学是否能相互配合、学生的学习兴趣以及实验室的设备情况等多种因素的影响。为了能够更好地发挥模拟仿真系统在《医学影像原理与设备》临床实践的效果,针对调查中的问题提出如下建议。

第一,将临床实验和理论同等重视,科学合理地安排临床实验教学课程。赣南医学院医学影像技术专业和生物医学工程专业模拟软件的使用多是设置在课程的实验部分,而未单独设课。通过扩充该专业实验课的学时或单独设置实验课程,更能激发学生的学习兴趣,充分调动学生学习的主动性和积极性。

第二,任课教师应使学生重视临床实验,认识到通过模拟临床实践教学的训练能够有效地提升学生动手能力和创新能力,对学生今后实际工作也有所裨益。

第三,可以尝试校企联合开发模拟软件,来提高操作系统的仿真度。通过学校与软件公司携手开发,一方面,企业具有的软件设计和程序设计的专业性可以保证仿真软件平台的专业性;另一方面,学校任课教师能够更准确地表述模拟仿真软件的功能需求,从而使得理论课程与临床实践相匹配,从而保证了临床实践中教师与学生的需求。

第四,加强该学科实验室的规划和建设。实验室的建设应根据学科的办学规模、专业设置以及教学和科研的需求,对实验室的功能和预期效果进行准确定位和分析,让仅有的资源效益最大化。

参考文献

临床虚拟仿真教学篇2

[关键词]实验室技术和方法;教学方法;仿生学;计算机通信网络

1虚拟仿真实验教学中心可持续发展的内涵与建设任务

虚拟仿真实验教学中心可持续发展的内涵包含2个方面:(1)具有智能发展性。虚拟仿真实验教学中心建设要根据学科的发展规划以及学科建设的新要求,在当前现有的资源基础上不断加入新的内容、新的知识和新的技术手段[3]。(2)具有可持续发展性。即保证发展的长远性和不间断性,这就要求虚拟仿真实验教学中心要立足学校的高度,打破学科的局限,整合各学科信息化实验教学资源,发挥企业开发实力强、支持服务能力好的优势,以培养学生扎实的综合实验设计能力与创新能力为出发点,创造性地建设与应用高水平软件共享虚拟实验、仪器共享虚拟实验和远程控制虚拟实验等教学资源,提高教学能力,拓展实践领域,丰富教学内容,降低成本和风险,开展绿色实验教学[4]。具体应做到以下几点:(1)管理平台的建设。虚拟仿真实验教学中心不是单一学科专业的封闭式实验室,而应该是多学科、多学校、多地区的实验教学资源平台,需要一个兼容性强,且具备扩展性和前瞻性的共享管理平台来管理实验教学资源,以实现校内外、本地区及更广范围内的实验教学资源共享。(2)保障持续性运行经费的投入。虚拟仿真实验教学中心的建设与发展需要虚拟仿真实验项目与软件的不断开发、维护与更新,必须要有持续性的经费支持,没有持续性的经费支持,虚拟仿真实验教学中心不可能得到良好持续的发展。(3)建立管理体制与运行机制。完善良好的管理体制和合理的运行机制是虚拟仿真实验教学中心高效运转的前提,多学科、多专业的实验教学资源融合平台需要有好的管理体制与运行机制以确保各项实验教学目标的实现[5]。(4)探索校企共建共管的新模式和新途径,建立可持续发展的虚拟仿真实验教学服务支撑体系。

2虚拟仿真实验教学中心建设的必要性

培养创新型和实用型的“一专多能”高素质检验人才离不开实验教学这一重要环节。医学虚拟仿真实验是针对医学实验的现象及过程,通过仿真、虚拟现实、多媒体等技术及相关设备将操作实践与实验材料、实验仪器、实验内容、实验方法步骤等相互结合构建高度仿真的虚拟实验对象,学生能在高仿真度的虚拟环境中开展实验,达到教学目标所要求的教学效果[6]。而医学检验技术是一门实践性和应用性均很强的学科。临床检验工作者要熟练掌握常用检验仪器的实验原理与操作技能,具备分析问题和解决问题的独立工作能力,这需要经历一个较漫长的过程。长期以来,检验专业的教学常以教师授课、学生听课及进行常规的实验操作和课后看书复习的传统教学模式为主,学生实操能力的培养受到一定实验条件的限制[7]。因此,可依托虚拟临床实验室系统与虚拟实验操作流程,让操作者可以通过计算机虚拟的实验环境,摆脱传统实验的种种限制,让学生“身临其境”地操作虚拟仪器和其他实验器材自主选择实验内容、模拟操作过程,通过对虚拟世界的体验和交互作用加快熟悉检验的相关内容,从而达到教学大纲的教学要求与学习效果。虚拟仿真教学作为实验教学的辅助有段可有效解决过去医学检验教学的难题:(1)为解决医学检验技术高、精、昂贵仪器培训难的困扰提供了条件。医学检验离不开高、精、昂贵的仪器设备(如全自动生化分析仪、高精酶标仪、流式细胞仪等),然而在学生上实操课、见习及各级各类培训过程中不可能拆分仪器和实时亲手操作这些仪器设备,而通过虚拟的仪器设备可很好地解决这一难题,实现对高、精、昂贵的仪器设备的操作,达到医学检验实验机能与培养学生综合实验思维的目的[8]。(2)规范检验技术的标准化操作培训。通过模拟操作检验过程(如细菌接种培养、静脉血标本和骨髓标本的采集等)规范学生的临床检验实验操作,掌握相关技术的标准化操作程序,提高临床实践能力。(3)规避检验技术培训的生物安全问题。在虚拟环境下进行仿真仪器操作与实验项目训练不需要接触真实的设备和疾病标本,避免了受感染、受伤的危险性。(4)节约检验技术培训的实验器械、试剂等耗材成本。在虚拟实验室中学习及操作虚拟实验可反复多次训练,不存在实验器械、耗材与试剂(如昂贵的抗体)的消耗,节省使用、维护成本。(5)解决临床检验中疑难罕见形态学资源短缺问题。在虚拟形态学图片库中可随时搜索并学习到一些在临床工作中少见的细菌(红斑丹毒丝状菌)、病毒(汉坦病毒)、寄生虫(环孢子虫)、白血病细胞及一些罕见的实验现象、结果等,可达到实际实验难以实现的效果,使操作者的学习事半功倍,大大缩短了学生进入临床检验工作的适应期。(6)增加学生对检验技术的学习兴趣和效果。在逼真的软件系统与丰富的数字化资源中自由寻觅,远比枯燥的课本、笨重的仪器、漫长的实验等待更能吸引学生的兴趣,从而提高学习效果。(7)临床检验人员的再教育也可充分利用虚拟仿真实验教学中心。让临床检验人员在工作之余根据自己的兴趣和爱好在逼真的软件系统与丰富的数字化资源中自由学习新知识、新技术、新进展,达到再次提升技能的目的。(8)在课余时间,学生可利用虚拟仿真实验教学中心进行科研设计和预实验。学生进入虚拟场景,根据实验要求自行设计实验并完成实验,这样不仅能锻炼学生的独立构思和设计能力,且能激发学生的科研兴趣,更有利于培养具有创新型和实用型人才。

3制约虚拟仿真实验教学中心可持续发展的问题

从2013年启动部级虚拟仿真实验教学中心的建设工作至今已有数年,全国已有300余家部级虚拟仿真实验教学中心,但在管理机制和运行机制等方面尚不尽完善,存在一些问题:(1)资源利用不高及浪费严重。部分虚拟仿真实验中心利用率不高,加上新技术的快速发展,导致一些资源的折旧率很高。应将每个高校各自不同实验室的资源进行整合以提高利用率[9]。(2)后续投入的经费不足。大部分高校虚拟仿真实验中心建设模式为一次性建设,在建设完成后很少有经费的持续性投入,但虚拟仿真实验中心的建设是一个持续性过程,虚拟仿真教学实验项目的增设、软件的更新均需要后续的扩展与完善,均需要持续性的经费投入。(3)管理机制和运行机制尚不够完善。部分高校虚拟仿真实验教学中心无法发挥多学科的优势,缺乏统一的管理平台,在资源整合方面做得不够细致,从而导致利用率不高[10]。(4)知识产权的保护力度不够。在虚拟仿真实验教学的建设过程中每一个新的虚拟仿真实验教学项目与实验软件的开发均是工作人员智慧与汗水的结晶,应该对其进行知识产权的保护与奖励。但目前大部分高校仅将此当作其工作职责与工作义务看待。对知识产权保护和建设人员的效益激励力度不够,在一定程度上阻碍了虚拟仿真教学中心的可持续性发展[11]。

临床虚拟仿真教学篇3

1虚拟现实技术概况

虚拟现实(VirtualReality,简称VR),又称临境技术,是指利用三维图形生成技术、传感交互技术以及高分辨率显示技术,生成三维逼真的虚拟环境[1]。通俗地讲,虚拟现实就是一种人与通过计算机生成的虚拟环境可自然交互的人机界面。虚拟现实技术起源于美国,目前以风行于军事训练、娱乐、医学、教育、建筑等各个行业。虚拟现实技术的理论基础是建构主义和人本主义学习理论。教育是一个传授知识的过程,通过学习者的亲身经历可以加速这一过程并且巩固所传授的知识,虚拟现实技术是为此而设计的很多方法中最有效的。虚拟现实技术具有不可替代的且令人鼓舞的应用前景,因为它允许学生与现有的各种信息互动,在仿真过程中,学生可以经历不同的时间和空间、可以接触各种仿真物体以及接触虚拟境界的各个部分。虚拟现实技术具有感知性、交互性、构想性等特点,认真分析临床医学教学中遇到的问题和虚拟现实技术的契合点,必将为临床医学教育带来新的生命力。

2目前临床医学教育中存在的问题

2.1临床实践与医学伦理之间的矛盾

众所周知,临床操作中有部分是具有侵入性的,对病人来说,可能会有创伤性和危险性。假如医学生的技能操作尚不规范和熟练,让其直接施行操作,很有可能将对病人构成伤害,甚至危及他们的生命,这有悖于医学伦理。其次,学生多组见习,如果反复检查同一名患者,必然会造成患者的不合作,从爱伤观念和人道主义观念出发,需要有新的教学方法来代替以真人为对象的临床实践教学。

2.2临床技能实践与资源短缺的矛盾

临床医学是一门实践性、规范性、直观性较强的学科,实践教学部分不可或缺。随着近年来高校的扩招,院校有限的实验设备、实验仪器、实习床位等资源不能很好地满足临床医学生的实践需求,师资力量和实验室的运行能力也面临着很大的考验。

2.3医疗风险与带教教师积极性的矛盾

随着社会法制观念的普及,社会医疗需求的增加,医患纠纷日益增加,在对医师尚没有相对科学和公正的法律保护的情况下,要指导医学生在病人身上进行临床技能训练,临床带教老师往往要冒着极高的风险,有些带教医师基于自我保护意识,经常避重就轻,躲避带教。这对提高临床技能教学质量极为不利。

3虚拟现实技术在临床医学教学中的优势

首先,虚拟现实技术在临床医学教学中的应用,既可避免临床医学实践教学对患者的健康造成影响,又可使学生在虚拟的教学环境中以及模拟患者的病情变化中学习医学知识和相关的操作技能,以便在真实的临床医学实践中实现学有所用,不仅使临床医学实践教学的顺利进行得到保障,还可以较高地保证教学质量。

其次,虚拟现实技术提供的无损耗实践环境可以模拟实验、实习的全部过程,改变了传统的教师演示、学生练习的教学模式。学生可在不占用实验室资源的情况下,掌握实验的操作流程,这样就很大程度地节约了实验室资源,有效缓解供需矛盾。

最后,虚拟现实技术可以使医学生在接触临床之前就提前进入虚拟的临床氛围,在虚拟环境中进行模拟操作,掌握必备的基础知识理论,可以使其动手能力得到锻炼,进而避免在接触真实临床环境时出现手忙脚乱的状态,防止造成安全隐患。

4虚拟现实技术在临床医学教育中的具体应用

4.1虚拟人体

美国国立医学图书馆(nLm)早在1985年,就开始进行人体解剖图像数字化的研究,美国科罗拉多州立大学医学院将一具女性尸体和一具男性尸体分别作了1mm和0.33mm间距的Ct和mR扫描,然后将尸体冰冻后切成1mm的薄片并照相,经图像重建生成冠状面和矢状面映像,所得图像数据经压缩后,建立了“可视人”,并出版发行了CD盘片[2]。学生可在计算机屏幕上对“可视人”进行矢状面和冠状面的解剖,并且可以缩放局部图像。这一项研究应用对解剖学的教学有着非同寻常的意义。汕头大学医学院于2002年9月引进挪威的综合模拟人(Simman),主要用于临床技能教学和考核[3]。首都医科大学于2004年引进了美国的HpS和智能型高级综合数字模拟人,率先在国内开展基于VR的急诊医学高仿真模拟教学[4]。学生的诊治操作由计算机评判“,病人”的状况随时改变——或恶化或好转,学生在此过程中可获得真实的临床操作体验。此外,虚拟人体可开展虚拟解剖学、虚拟内窥镜学等学科的计算机辅助教学。

4.2虚拟实验室

临床虚拟仿真教学篇4

关键词:数控加工;仿真系统;虚拟现实;教学效果

中图分类号:G423.0

文献标识码:a

文章编号:1009-2374(2009)03-0208-02

数控加工技术在机械制造业中的应用广泛,传统的机床操作教学方法效率低、教师工作量大,需要用更新的方法来取代。数控加工仿真系统是理论与实验结合、厂家实际加工制造经验与高校教学训练一体所研发的一种机床控制仿真系统软件,可以满足大批量学生教学需求。数控仿真系统软件还能弥补了教学投入大、消耗多、成本高的缺陷,它可以在微机平台上运行,解决了教学时学生多机床设备少的问题、并为学校节省了大量设备购置经费。数控仿真系统软件可以在微机平台上运行,学生可利用此软件进行仿真操作,会起到真实设备的教学效果。数控加工仿真系统安全、经济实用。能够集中精力帮助学生分析、解决实际问题,保证了教学质量使教学效果得到显著提高。能利用此软件对数控装置进行仿真操作,使学生达到实际操作训练的目的,动态的仿真操作使教学过程易教易学、教学效果显著。

一、数控加工仿真系统的特点

随着虚拟现实技术及计算机技术的发展,出现了可以模拟实际机床加工环境及其工作状态的计算机仿真加工系统,它是一个应用虚拟现实技术于数控加工操作技能培训的仿真软件。各种数控加工仿真教学系统如上海宇龙、北京斐克、南京宇航、广州超软、武汉金银花等不同的数控加工仿真软件,既能单机系统独立运行。又能实现在线运行。采取数控加工仿真教学方法能进一步提高操作者的实际操作技能。实践证明,用这种方式进行教学是非常经济有效的。

1.虚拟数控机床具有以下的功能和特点:(1)虚拟数控机床具有与真实机床完全相同的结构。虚拟数控机床能模仿真实机床的任何功能而不致因为采用某种近似替代而导致某种结构和信息的失真或丢失,并与真实机床有完全相同的界面风格和对应功能,如动态旋转、缩放、移动等功能的实时交互操作,从而为学员的学习和培训提供保证。(2)机床操作全过程仿真。仿真机床操作的整个过程:毛坯定义,工件装夹,压板安装,基准对刀,安装刀具,机床手动操作。(3)丰富多样的刀具库。系统采用数据库统一管理的刀具材料、特性参数库,含数百种不同材料、类型和形状的车刀、铣刀,同时还支持用户自定义刀具及相关特性参数。(4)全面的碰撞检测。手动、自动加工等模式下的实时碰撞检测,包括刀炳刀具与夹具、压板、刀具,机床行程越界,主轴不转时刀柄刀具与工件等的碰撞。出错时会有报警或提示,从而防止了误操作的发生。强大的测量功能。可实现基于刀具切削参数零件粗糙度的测量,能够对仿真软件上加工完成后的工件进行完全自动的、智能化的测量。(5)具有完善的图形和标准数据接口。用户既能在真实的环境中运行虚拟机床,又能观察它的各种运行参数,并能将其他CaD/Cam软件。(6)实用灵活的考试系统。可用于远程网络学习、作业、考试等功能,并实现答卷保存、自动评分、成绩查询和分析等功能,轻松实现无纸化的考核与测评。

2.数控加工仿真系统在教学应用中的意义,数控技术是一门实践性很强的课程,在以往的教学中,由于缺乏必要的设备支持,只能采取课堂教学来“纸上谈兵”单一的课堂教学,单向的信息流动很难让学生有系统,全面的认识。将此仿真软件应用到教学中,具有如下意义:(1)将传统的被动教学变学生参与的主功教学,培养学生的实际动手能力;(2)利用虚拟机床代替实际机床,可消除实际机床加工的危险因素;(3)在计算机上模拟加工过程代替试切,可不消耗材料,降低成本;(4)可有效解决设备不足的问题,使每个学生都可参与其中,极大提高学生的学习兴趣,取得更好的教学效果;(5)满足网络教学和远程培训的需要。

3.数控加工仿真系统特点。通过该软件可以使学生达到实物操作训练的目的,并且安全可靠。通过动态的仿真操作使教学过程易教易学、教学效果显著提高:(1)系统完全模拟真实数控机床的控制面板和屏幕显现,易教、易学,可轻松操作;(2)学生和培训学员可根据自己熟悉的机床任意选择机床设备进行操作;(3)在虚拟环境下对nC代码的切削状态进行检验,操作安全;(4)学生可看到各种机床真实的三维加工仿真过程,并能检查和测量加工后的工件,可以更迅速的掌握数控机床的实操过程;(5)采用虚拟机床替代真实机床进行教学与培训,在降低费用的同时获得更佳的教学和培训效果,使用更经济。其优点在于系统完全模拟真实CnC机床的控制面板和屏幕显现,可轻松操作。在虚拟环境下对nC代码的切削状态进行检验,操作安全。用户可看到真实的三维加工仿真过程,仔细检查加工后的工件,可以更迅速的掌握CnC机床的操作过程,过程逼真。

二、虚拟数控机床平台的构建

数控仿真系统的核心是虚拟数控机床,而虚拟数控机床又是虚拟制造技术中的一个重要的执行单元。数控仿真系统完全模拟真实零件的加工过程,可以检验各种数控指令是否正确,能提供与真实机床完全相同的操作面板,其调试、编辑、修改和跟踪执行等功能也一应俱全,数控加工仿真系统实际上是虚拟环境中数控机床的模型。虚拟数控机床一般是通过以下的构建平台来实现上述功能:

1.nC解释平台。nC解释平台包括nC解释器和nC验证器。任务分配数据库从任务调度中接受数控代码并将其翻译为虚拟机床的部件、刀具等运动的信息,并将其通过计算模块来模拟机床的响应,nC解释器能够被自由地配置从而能够模拟任何一种数控机床的CnC控制器。

2.nC验证器。能够验证nC代码的语法是否正确。

3.刀具库。刀具库应包括一台数控机床所需要的所有刀具。并能自由配置刀具库中的刀具号,从而能模拟任何一种数控机床的换刀形式及切削加工的要求。

4.仿真平台。仿真平台包括刀具轨迹仿真、切削力仿真,加工精度仿真、三维动画仿真、加工工时统计分析,仿真平台是虚拟数控机床的核心技术。操作者可以在虚拟的环境中进行机床运动和切削过程等的仿真,从中获得相关的加工数据。如进给轴的位移量、换刀状态、主轴转速、加速度、进给量、加工时间等。通过加工过程的仿真,了解所设计工件的可加工性,验证nC代码的正确性以及评价和优化加工过程,并通过在线修改nC代码来将其优化。

5.计算平台。计算平台用来完成虚拟数控机床中各种计算,如根据nC代码计算加工零件新的几何形状,根据刀具的材料、运行时间、零件的材料性质和介质的性质计算刀具的补偿量和热补偿量。这些计算结果是虚拟数控机床在应用于虚拟制造过程中的加工方案评价以及可制造性分析所必须的。

6.设计开发平台。虚拟数控机床的设计平台是一个面向对象的数控软件库及其开发环境。通过对数控软件的标准化、规范化研究和其它CaD/Cam软件的数据交换,并对典型的零件进行封装,设计成具有稳定、通用接口的可重复使用的软件。

7.操作运行平台和监控平台。在虚拟环境中完全实现真实机床的操作,让使用者完全感受到真实机床的运行特性。在这些基础上的监控硬件和软件,用来控制简易机床,增加虚拟数控机床的真实感,并且可以进行典型零件的实验性试切加工,让使用者有一种身临其尽的感觉。尤其是在数控教学和培训过程中,初学数控编程者需要大量的编程练习,并进行实际调试。用试切法来检验数控加工程序显然不合理,而且也难于实现。如果利用仿真技术,这些问题可以轻松得到解决,从而避免编程时人为出错或工艺不合理造成工件报废。

三、数控加工仿真系统在教学中的应用

虚拟数控机床强大的网络功能,可实现远程教育,不仅在局域网上具有双向互动的教学功能,还具有基于互联网进行双向互动的远程教学功能,使用数控加工仿真系统软件进行辅助教学,主要从以下几个方面进行探索与实践:

1.课堂教学中采用灵活教学手段,变学生被动学习为主动学习,恰当运用数控加工仿真系统,充分发挥其课堂教学中的作用。教师应十分重视数控加工仿真系统的在教学中的应用方法,摆正数控加工仿真系统在教学中的位置,既不能完全依赖数控加工仿真系统放弃教师在教学中的引导作用,也不能在教学中教师唱独角戏,采用常规的教学模式而忽视数控加工仿真系统的应用,应该科学地、充分地发挥数控加工仿真系统在教学中的作用。

2.科学安排教学内容,循序渐近,掌握数控编程与操作技巧,在教学过程中教学内容的安排可分模块化教学。(1)基础模块,主要讲解与训练最常用的FanUC数控系统中的数控车床、数控铣床、数控加工中心的编程方法、操作及应用,这一模块是教学重点,必须使学生熟练掌握,灵活应用;(2)提高模块。主要讲解与训练SiemenS数控系统的三种机床的编程与操作,以帮助学生进一步加强在不同数控系统下对不同数控机床的编程方法的理解与应用能力;(3)拓展模块,如讲解国产数控系统中的华中数控系统和广州数控系统中的数控车床的编程与操作方法,扩大学生的知识面,提高学生对不同操作系统、不同操作面板的编程与操作能力,正确进行教学评价,提高学生的学习意识和自觉性。利用数控加工仿真系统的教学方法、教学手段来提高学生的学习兴趣显得尤为重要。

3.恰当运用数控加工仿真系统,充分发挥其课堂教学中的作用,数控加工仿真系统主要应用于数控编程与操作这一理论教学课程,还可作为数控操作技能训练的辅助工具。在操作方面,由于数控加工仿真系统采用了与数控机床操作系统相同的面板和按键功能,并且使用数控加工仿真系统在操作中即使出现人为的编程或操作失误也不会危及机床和人身安全,反而学生还可以从中吸取大量的经验和数训。将理论与实践有机地结合在一起边讲授边练习,使讲过的知识及时应用于实践中,不但可加深学生对理论知识的理解,而且在模拟操作的同时对数控机床的操作方法上也将具备相当水平的实践基础。

临床虚拟仿真教学篇5

关键词数控加工模拟仿真数控加工技术中职

中图分类号:G718.3文献标识码:a文章编号:1002-7661(2013)12-0018-02

数控专业学生面临理论联系实际的问题,如果学生能掌握数控仿真模拟软件的使用方法,就可以独立练习编程、操作机床进行切削。通过对南京斯沃数控仿真软件在教学中的长期应用,我发现传统的机床操作培训方法效率低、教师工作量大、费用高,在此给老师和学生推荐一款更适合教学的数控仿真软件,为数控专业的学生操作初期进行仿真练习提供方便。

一、数控加工仿真系统

随着虚拟现实技术及计算机技术的发展,利用计算机仿真培训系统进行学习和培训,不仅可以迅速提高被培训人员的理论、操作水平,而且非常安全,可靠性好,培训费用低。目前在国内已经出现了各种数控加工仿真教学系统,如上海宇龙、北京斐克、南京宇航、广州超软、南京斯沃等不同的数控加工仿真软件。上述这些教学系统既能单机系统独立运行,又能实现在线运行。其培训设施只需一台计算机,数控机床模拟操作在显示屏显示的仿真面板上进行,而零件切削过程由机床模拟通过三维动画演示。实践证明采取这种方法能进一步提高操作者的实际操作技能。

二、数控加工仿真系统构建

虚拟数控初床一般是通过以下的构建平台来实现上述功能:

1.nC解释平台。nC解释平台包括nC解释器和nC验证器。任务分配数据库从任务调度中接受数控代码并将其翻译为虚拟机床的部件、刀具等运动的信息,并将其通过计算模块来模拟机床的响应,nC解释器能够被自由地配置,从而能够模拟任何一种数控机床的CnC控制器。

2.nC验证器。能够验证nC代码的语法是否正确。

3.刀具库。刀具库应包括一台数控机床所需要的所有刀具,并能自由配置刀具库中的刀具号,从而能模拟多种数控机床的换刀形式及切削加工的要求。

4.仿真平台。仿真平台包括刀具轨迹仿真、切削力仿真、加工精度仿真、三维动画仿真、加工工时统计分析。仿真平台是虚拟数控机床的核心技术,操作者可以在虚拟的环境中进行机床运动和切削过程等的仿真,从中获得相关的加工数据。如进给轴的位移、换刀状态、主轴转速、进给量、切削时间,通过加工过程的仿真,了解机床的操作,验证nC代码的正确性。

5.计算平台。计算平台用来完成虚拟数控机床中各种计算,如根据nC代码计算力旺琴件新的几何形状,根据刀具的材料、运行时间、琴件的材料性质和网滑介质的性质计算刀具补偿。这些计算结果是虚拟数控机床在应用于虚拟制造过程中加工方案评价以及可制造性分析所必须的。

6.操作运行平台和监控平台。在虚拟环境中完全实现真实机床上的监控硬件和软件控制简易机床来增加虚拟数控机床的真实感,并且可以进行典型零件的实验加工,让初学者有种身临其境的感觉。尤其是为初学数控编程者实际调试加工,节约了大量的材料和能源。

三、数控仿真系统功能及在教学中的应用

1.界面友好、新颖,画面视觉上呈淡蓝色,三维立体感较强,CRt显示面板、操控功能面板可随鼠标做拖动,随时进行隐藏、显示移动,机床操作界面也可实现全屏幕及缩放。值得一提的是系统上集成了各种数控机床制造厂商的操控面板。

2.数控仿真系统的刀库有自定义功能,可以自己定义刀杆长度,刀片厚度,刀片类型,甚至刀片边长。在参数设置里增加了刀架的前、后位变化,刀位数也可选四工位、八工位。

3.对刀与建立工件坐标系的易操作性和准确性是软件的一个重要功能。使用表明,数控仿真系统的失误率是最低的,几乎达到100%,这里需要说明的是,软件只要鼠标移动到切削层,数值就自动显示出来。软件还有一个对刀的快捷方法,就是点击“功能”,点击一下“快速对刀”按键,当前刀具即可快速移动到工件的大径或中心,各种刀具均可使用此功能,十分方便。

4.数控仿真系统网络教学功能:(1)用户管理。通过服务器注册用户名和密码,学生可以在局域网内任何一台pC登陆数控仿真系统网络版,达到统一管理与监控。(2)习题管理。服务器可以增加、编辑习题。教师发送习题图片,学生答题,互发解答,方便与学生的交流。(3)网络监控。可根据注册信息,记录学生操作过程,服务器远程控制和查询学生的登陆和退出以及加工操作,同时教师可以对多个屏幕广泛传授教学。(4)考试考务系统。包括题库管理,试卷管理,考试过程管理,数据管理,准考证管理,考试成绩管理以及试卷自动评分技术,这些问题可以轻松解决,从而避免编程时人为出错或工艺不合理造成工件报废。

从我校引入数控仿真系统效果看,数控仿真软件在整体上有软件界面细腻,三维造型做得形象、新颖的优势。无论是程序调用、操作、对刀、运行都很贴近实际机床功能,仿真范围也比较宽泛。学生在学习数控编程理论时,课堂的教学变得更加生动、更加具体,激发学生的学习兴趣,教学效果明显得到提高。同时该系统还可以减轻老师的工作强度,减少工件材料和能源的消耗,节约了实践环节培训成本,效果十分显著,成为数控教学中一种不可替代的重要手段。

参考文献:

[1]黄筱调,赵松年.机电一体化技术基础及应用[m].北京:机械工业出版社,1994.

临床虚拟仿真教学篇6

关键词:人工智能;临床技能;应用

1人工智能在医学教育中的应用趋势

随着大数据、云计算和移动互联技术等新兴科学技术的日益成熟,国内外人工智能的研究和应用得到快速发展,人工智能越来越受到国内外学者和政府部门的重视。党中央与国务院相关部门先后了《“互联网+”人工智能三年行动实施方案》(发改高技〔2016〕1078号)、《新一代人工智能发展规划》(国发〔2017〕35号)、《促进新一代人工智能产业发展三年行动计划(20182020年)》(工信部科〔2017〕315号)等文件,将我国人工智能发展提升到国家战略发展层面,并积极鼓励人工智能在医疗、健康领域中的应用,建立快速精准的智能医疗体系。2018年1月,国家自然科学基金委员增设“教育信息科学与技术”研究方向,并大力支持人工智能为代表的教育教学新技术、新学科的交叉研究,以创新的思维和方法破解教育领域的科学问题。人工智能已不再局限于计算机技术领域,正在快速渗透进社会行业的各个领域。由此可见,“人工智能+医学教育”是历史潮流和时展的需要,作为每个医学教育工作者,必须正视新技术发展给医学教育带来的挑战和巨大机遇,重塑教育者角色,提升“数字素养”,更新信息化知识和教育理念,深度融合信息技术,从而引领医学教育进一步发展。

2目前人工智能的技术水平和特点

人工智能可分为弱人工智能(artificialnarrowintelligence,ani)、强人工智能(artificialGeneralin-telligence,aGi)和超级智能(artificialSuperintelli-gence,aSi)。ani尚不具备真正的智能,更多程度上是帮助人们完成某些任务的工具或助手。而aGi能够进行思考、计划、解决问题、抽象思维、理解复杂理念、快速学习和从经验中学习等操作,可以像人类一样独立思考和决策,达到或超过人类的智能水平。牛津哲学家、人工智能思想家nickBostrom则把aSi定义为“在几乎所有领域都比最聪明的人类大脑都聪明很多,包括科学创新、通识和社交技能。”其思维可以进化成完全不同于人类的思维方式,“能力各方面可以是各方面都比人类强一点,也可以是各方面远超出人类万亿倍”。在弱人工智能研究阶段,人工智能技术研究主要体现在计算智能、感知智能、认知智能三个方面[3]。计算智能,即机器智能化存储及运算的能力;感知智能,即具有如同人类“听、说、看、认”的能力,主要涉及语音合成、语音识别、图像识别、多语种语音处理等技术;认知智能,即具有“理解、思考”能力,广泛应用于教育评测、知识服务、智能客服、机器翻译等领域。目前人工智能领域技术应用主要成果包括机器人、语言识别、图像识别、自然语言处理和专家系统等。在医学领域,人工智能的研究主要集中在深度学习算法、数据挖掘分析、智能影像识别、医疗信息化等方面。如iBm的watson、Keith等开发的智能心率与宫缩描记图计算机辅助分析系统、美国arterys公司的ai辅助心脏mRi成像系统、美国QViewmedical公司的基于神经网络的3D自动乳房超声筛查CaD系统和百度的医疗大脑等[4-5]。总的说来,主流研究主要集中在弱人工智能方面,并在这一领域取得了相当大的成果。强人工智能的研究还处于探索阶段,而超级智能仍处于概念辨析成形和研讨阶段。

3人工智能在临床技能培养中的应用和前景

3.1ai可用于辅助检查结果判读及分析能力的培养和学习

辅助检查是医务人员进行医疗活动、获得有关资料的方法之一,通过医疗检查、化验的图象、图形与数据进行分析与解释,确定检查结果的医学涵义,以获取相关临床资料,并结合病人实际作出判读和分析,以利于诊断、分析病情变化和进展、评估预后、提供治疗方案和指导等。辅助检查包括各种常见影像学检查、心电图、脑电图检查、病理学检查、常规实验室检查等。人工智能在医学图像识别方面目前已经有比较成熟的应用实例。通过较为成熟的算法和大数据应用,ai进行智能影像识别,通过对已有的图像快速学习,达到对医疗图片的自动判断,能够作为辅助工具,提高医生工作效率,并可以做到更加客观、高效和精准[6]。传统临床辅助检查结果分析判读无论是教学还是学生训练均存在教学内容零碎分散,牵涉教学人员复杂,涉及教师专业局限、无法有效、有组织地统一进行培养,所以往往对辅助检查结果有效判读和分析是临床技能教学的一大难点,也往往是薄弱环节。而ai的出现可通过学习管理软件,根据学生的个人进度,为每个学生绘制适合自己的学习路径,提供精准的个性化学习,有效检查医学生对各项临床常用实验室检查、影像学检查、心电图检查等结果的学习效果,从而帮助医学生提高综合分析能力和临床辅助检查结果判读能力。ai还可拓宽学生的学习空间和时间,起到临床教师无法胜任的全面性、客观性、实时性、准确性指导学习的作用。

3.2ai可用于医学生临床问诊能力的培养和训练

问诊是医师通过对患者或相关人员的系统询问获取病史资料,经过综合分析而作出临床判断的一种诊法。问诊对疾病的诊断及治疗、良好的医患关系的建立均有极其重要的作用。因此,问诊是每个医学生必须掌握的临床基本技能。运用ai对医学生进行问诊能力的训练可基于以下两方面进行:ai可作为问诊能力训练的示范性和辅助性助手,即扮演教师教学的角色,以实现临床医生的部分功能。以百度医疗大脑为代表的人工智能已可通过海量医疗数据、专业文献的采集与分析,模拟医生问诊流程,与患者多轮交流,在问诊过程中ai可以收集、汇总、分类、整理病人的症状描述,依据患者的症状,提醒医学生更多的诊断可能性和问诊的遗漏不足,辅助医学生完成问诊。这样对医学生问诊的条理性、层次性、全面性等方面的训练有着极大的提高。ai可通过智能化机器人模拟病人的方式,有望取代标准化病人(Sp)或实际病人来实现对医学生临床问诊能力的培养和考核。随着人工智能的进一步发展,基于计算机视觉、人机交互技术、自然语言处理的深度学习算法的智能机器人将能很好地模拟病人的症状、表情、动作、语言;提供更为标准、规范、准确的病情模拟演示和交互对话。同时可以并通过摄像实时记录和呈现、回放问诊整个过程,通过其人工神经网络的学习,对问诊的各个环节、问诊内容、问诊技巧等具体项目进行评分等数据采集,继而通过大数据挖掘和云计算等技术发现和分析学生在问诊过程中的不足和缺陷,给出准确的评价和指导意见,从而实现对医学生的精准指导和培养。

3.3ai可作为临床技能实践训练的重要补充

人工智能通过集成个性化建模、社会仿真和知识表达,能够为学习提供随时随地的支持[7]。人工智能对于每一位医学生来说相当于一位“虚拟导师”,从而实现定制化、个性化、精准化的自适应学习。人工智能应用于医学临床技能培养将更加注重学习者自我导向、自我评估、团队合作等软技能的提升。人工智能通过数字化技术可为医学生提供更多教科书或教室的固定环境中无法参与的现场临床技能训练的机会。通过人工智能手段,可以全息定量化地虚拟还原现实,在虚拟的空间里,医学生可直接透视人体的细致解剖结构,并由医生进行操作和讲解。这种新模式突破了时间和空间的限制,提高了教学的质量和效率。例如清华大学医学院建立的“智慧现实虚拟临床教学中心”在国内率先开启了“人工智能+现实虚拟”的临床教学培训新模式[8]。该模式将患者的Ct、核磁等影像数据,经过人工智能系统处理,得到真实还原的全息化人体三维解剖结构并映射在虚拟空间里。医生可通过专用设施,在增强现实的虚拟空间里全方位直接观看到患者真实人体结构的解剖细节,并可通过手势和语音操作,实时进行器官和病变的立体几何分析,精确测量目标结构的区位、体积、径线、距离等参数,同时还可进行虚拟解剖作业、模拟手术切除、手术方案设计和手术风险评估。融合全息影像技术、3D打印技术、虚拟现实和虚拟仿真技术的人工智能将打造一个“人工智能+全定量现实虚拟仿真”时代。如临床常用穿刺技术的训练可通过人工智能融合虚拟仿真穿刺设备在虚拟空间进行模拟仿真的操作训练。通过虚拟设备的接入,可将体格检查的训练如心肺触诊、听诊,腹部触诊在虚拟仿真环境中进行,人工智能可协助教师使用3D打印技术设计、构建3D打印的器官及模型,用于模型训练体查、病例讨论、器官病变解剖演示、临床过程演示如分娩过程等。

3.4ai可用于医学生临床思维能力与全面诊疗能力的培养和提高

人工智能可以通过模拟真实的临床环境,为学员提供一种能够自主学习、加强感官认知、易于操作的全方面的学习条件,比空间抽象的说教更具说服力,使医学教育更高效。如Cmtt临床思维训练系统,其教学病例均来源于临床上真实的患者,涵盖了临床多个学科,可供训练、考核的病例数量达百余例。该系统在进行鉴别诊断时,还能够帮助医学生比较相似病症之间的区别和联系,训练实习医师临床决策思维能力,并根据病史及检查结果和诊断结论,给出治疗方案。医学生完成每一个病例,可对比标准病例进行自查和分析,也可反复学习,达到巩固提高的学习效果。该系统使思维综合训练与临床实践紧密结合,可有效培养医学生的医学思维及临床决策能力,提高临床教学质量,降低教学成本与风险,最大限度地满足临床综合诊疗能力培养和考核的教学需求。“临床辅助决策支持系统”是目前已投入使用的另一类型的培养医学生临床思维能力培养的人工智能系统。“临床辅助决策支持系统”是基于全球循证医学证据数据库和专家共识发展的临床知识数据库,内容覆盖上千种疾病和症状、1万多种诊断方法、3000余项诊断性检测、4000余项诊疗指南。为医学生在临床诊疗和学习过程中即时提供精准、可信并及时更新的诊疗知识,以帮助他们做出最佳诊断、优化治疗方案、改善患者预后。临床辅助决策支持系统可引导医生从症状出发建立诊断假设,指导医生提供证据(症状和检查)证明自己所选的诊断假设,直至最终确诊,可以有效防止误诊和漏诊。ai可有效地引导医学生建立起以循证医学为基础的临床思维,增强疾病诊治的科学性和有效性,从而建立起标准化的临床思路,符合正确的诊疗流程。可进一步根据诊断结果,提供相应的治疗方案给医生参考以提高医学生全面的诊疗能力。

临床虚拟仿真教学篇7

基础医学论文3000字(一):虚拟实验技术在基础医学实验教学中的应用研究论文

[摘要]虚拟实验应用于基础医学实验,具有安全且节省资源、丰富教学内容、提升实验教学效果、实现实验智能化控制等优点,但也具有不利于锻炼学生的实践动手能力、思维能力及协作精神等弊端。相关研究人员在基础医学实验中要协调好虚拟实验与传统实验的关系,充分发挥虚拟实验具有的优势,提高基础医学实验教学的教学效果。

[关键词]虚拟实验;基础医学实验;教学应用

doi:10.3969/j.issn.1673-0194.2020.06.102

[中图分类号]G642.4[文献标识码]a[文章编号]1673-0194(2020)06-0-02

0引言

实验教学是巩固理论教学内容,培养学生动手创新能力、科学思维和科研素养的重要手段。实验课程的教学质量对教学效果和学生综合素质提高都有重要影响。随着媒体信息技术的发展,虚拟实验教学技术应运而生。虚拟实验是将传统教学实验室虚拟化、数字化,通过虚拟现实技术呈现出来,应用于实验教学。虚拟实验使实验教学模式发生了深刻变革,融合了网络环境下的多媒体、仿真、虚拟现实等多种技术,通过计算机仿真技术设计,将实验室全部的仪器、试剂及环境呈现出来,形成完整的实验系统,使实验教学更加直观、更具趣味性,学生在计算机上就可以完成需要到传统实验室才能完成的实验内容,教师在设计实验时,也可以自由搭建实验案例。虚拟实验简便易行、实验结果直观,应用于基础医学实验,完全可以模拟真实基础医学实验的全部流程,不受场地限制,不受实验操作技术的影响,展示真实的实验结果,能给学生带来置身真实实验环境的感受,实验者可从任意角度观察实验物体,监控实验进度。虚拟实验呈现实验在理论上的标准结果,便于分析实验效果,能够提高学生参与基础医学实验的积极性,提升基础医学实验教学质量。

1虛拟实验在基础医学实验教学中的优势

1.1安全且节省资源

传统基础医学实验教学中,常会用到一些有毒、有害、有放射性甚至易燃易爆的试剂,这对基础医学实验室的安全和学生的健康、安全都构成威胁,师生们做实验时难免会出现一些伤害事故。传统基础医学实验教学采用虚拟实验就能够完全消除这些实验中的危险,使师生们在安全放心的环境中放心地进行安全的实验操作。传统基础医学实验教学中,还有些实验的试剂贵、成本高、耗材大,难以常规开展。这类基础医学实验课程通过虚拟实验教学方式开展,能迎刃而解。虚拟实验教学不必考虑购买基础医学实验设备、仪器,不需要花费昂贵试剂的费用,只需要计算机和虚拟实验的软件系统就可以完成实验,极大地节约实验费用。

1.2可自由调节实验时间

由于课时限制和实验所需时间较长,传统基础医学有些实验无法通过一次实验连续完成。基础医学实验采用虚拟实验教学,就会摆脱时间限制。虚拟实验可以根据实验教学需要调整实验时程,将一次实验放到一次课上完成;此外,虚拟实验室的开放也不受时间和空间限制,可以全天候开放,学生在任何地方也都可以通过计算机、手机随时进入虚拟实验室网站,进行基础医学实验操作。虚拟实验可以实现实验教学资源的高度共享,基础医学虚拟实验室可以给学生提供高度共享的实验教学资源、自由畅通的学习环境,满足学生的个性化基础医学实验学习需求。

1.3丰富教学内容

有些基础医学实验操作环节复杂、要求精度高、实验难度大、实验条件限制多、结果成功率低,学生们在实验过程中很难操作完成。利用虚拟实验技术,学生可以通过反复操作实验,熟练掌握实验技巧,最终完美完成实验操作,使学生学到更多的知识,掌握更多的基础医学实验技能。受物理条件限制一些实验在传统环境下难以开展,利用虚拟实验技术,可以克服这些困难,完成相关实验。医学基础实验教学中应用虚拟实验技术教学,整合大量其他教学资源,能够为学生提供全新的、生动的虚拟实验环境,丰富基础医学实验的教学内容,提高学生上基础医学实验课的积极性,使学生能更好地掌握基础医学实验课的教学重点和难点,更好地培养学生的实验能力。

1.4提升实验教学效果

虚拟实验由于是通过计算机操作软件完成的,所以学生可以无限次地重复操作实验,直到学生获得满意的学习效果为止,保证了医学基础实验的教学效果。有些实验的实验结果比较难于观察到,但是虚拟实验可以让学生观察到经典的实验效果,确保学生都能观察到应观察到的实验结果,保证实验实现既定目标。比如免疫荧光标实验,学生们就能通过电脑仔细观察荧光标记实验的结果,清楚地看到免疫荧光标记阳性细胞,了解实验的意义。医学基础实验有一些标准的实验操作方法及流程,需要学生掌握。虚拟实验能整合多媒体技术,把实验教学中抽象的原理、过程、标准的实验操作方式和流程,通过逼真的动画、照片及视频等形式,形象、生动、真实地展示出来,供学生学习模仿,教会学生标准的实验步骤和方法。

1.5实现实验智能化控制

基础医学实验教学中应用虚拟实验,能够发挥计算机软件系统的优势,实现智能化控制,避免实验操作过程中一些错误或失误出现,比如一些手术过程中,在没有实施麻醉的情况下,就直接点击手术操作,那么系统就会给出错误提示,来引导、规范学生正确的实验操作,具有很好的智能性与互动性。再比如,学生某步实验得出的结果不对时,再往下做,系统将会提示学生计算错误,请重新检查。如果错误后学生还能继续操作,那么最后得出的必然是错误的结果,这不但导致整个实验的失败,还浪费了实验时间。虚拟实验的智能化控制功能,能在一定程度上避免这种情况发生。这些环节也能激发学生实验过程中的主动性,能够纠正学生实验过程中不爱动脑筋的毛病。

2虚拟实验在基础医学实验教学中的弊端

虽然虚拟实验具备很多优点,但虚拟实验在基础医学实验教学中也有很多不足。

2.1不能锻炼学生的实践动手能力

虚拟实验主要通过计算机操作完成实验。学生在虚拟基础医学实验过程中没有接触到具体的实物,没能进行真实的实验操作锻炼,对学生实验技能的提高没有帮助。相比之下,传统实验对学生动手操作能力的锻炼、实验技能的提高方面有着不可替代的作用。

2.2不利于锻炼学生的思维能力

真实的基础医学实验操作中,经常会发生很多预想不到的超常问题和现象,甚至会有实验失败的风险,这些问题虚拟实验中一般不会出现。虚拟基础医学实验一般都是模拟经典的实验结果及标准化实验结果,不能替代真实实验,只能验证结果,不适合发现新的内容,不能进行创新,也不能用于验证创新性实验结果的真实性和正确性。不发生意外是虚拟基础医学实验最大的弊端,因为解决实验过程中发生的这些问题,可以培养学生分析问题和解决问题的能力及科学思维能力。但是,虚拟基础医学实验则未起到锻炼科学思维能力的作用,不适合用于锻炼学生的分析思考问题、解决问题的科学思维能力。

2.3不利于培养学生的协作精神

传统形式的基础医学实验教学过程中,都需要各实验小组的成员协作完成,组内成员实验过程中分工明确,互相协助,共同完成实验,在這个过程中,无形中培养了学生的团队协作精神。虚拟基础医学实验教学中,每个人一台电脑,独立操作就可以完成,不需要分小组,实验过程中基本没有成员间的语言沟通交流,更不需要协作完成实验,所以不利于培养学生的团队协作意识。

3虚拟实验在基础医学实验教学中的应用策略

基础医学实验教学中,在传统实验因客观条件限制难以实施的内容上发挥优势虚拟实验只能作为真实实验的补充和延伸,作为基础医学实验教学的辅助手段。虚拟实验可以用于基础医学实验的预实验,作为传统实验教学的前期准备或铺垫,以减少传统实验教学的失误,提高教学效率;还可以用于巩固传统基础医学实验所学的知识,增强对所学知识的理解,提升基础医学实验的教学效果。基础医学实验中要协调好虚拟实验与传统实验的关系,充分发挥虚拟实验具有的优势,将虚拟实验与传统实验完美结合,使虚拟实验作为传统实验的有益补充,弥补真实实验中的缺陷和不足。在基础医学实验教学中,相关部门应根据学生的学习阶段,将经典的基础医学虚拟实验教学内容纳入基础医学实验教学的授课计划中,与传统真实实验教学的内容相互呼应,构建虚拟仿真的基础医学实验教学新模式,提高基础医学实验教学的教学效果,推进“强实践、重创新”的基础医学实验教学方式,提高应用型医学人才的培养质量。

基础医学毕业论文范文模板(二):中职基础医学教学中情景式模拟教学的应用分析论文

摘要:就临床医学而言,随着生活压力不断加大,生活节奏不断加快,临床上的疾病种类不断增离开,为了提升治疗的效果,不仅要不断完善治疗技术,也要不断完善护理技能,掌握职业操守。由于传统的医学教学基础已经不能顺应社会的发展趋势,较多的学生没有得到良好的教育,且不能将学到的理论知识应用于实践,导致临床服务质量得不到满足,加上临床任务的沉重,一老带一新的方式也陷入“举步维艰”的境地[1],导致很多学生步入临床实践时能够涉及的专业知识以及专业经验十分有限。为此,临床上需要对教学方式进行改进,将情景式教学方法应用其中,改善现在窘迫的局面。

关键词:医学;教学;情景式教学

随着社会进步以及人们对于临床要求的逐渐提高,传统的教学模式开始出现弊端,在传统教学模式当中主要讲究传授书本上的知识,但是在临床上,很多病情存在较大的差异,使得理论知识并不能转变成临床经验,最终导致教学结果与临床操作呈现“脱节”的状态,同时,书本知识传授不利于提高学生的学习积极性,使得理论知识也掌握不到位,从而影响教学结果,为此,需要提高学生学习的积极性、提高操作主动性、接触实际的病例,使课堂变得开放,可以提高教学质量,为此,需要以情景教学方式改善这一教学问题。

一、情景教学模式可以巩固理论基础

就字面意思来讲,纯理论知识较为死板,不能展示内容,学生死记硬背,不能做好知识的巩固,而情景教學模式的应用,可以通过生动的展示使学生了解临床流程,了解临床操作要点以及专业技能,再结合书本上的理论知识,使学生获得临床实践感受,积累理论知识,还能了解操作流程以及专业技能,逐渐积累专业经验[2]。

二、情景教学模式可以提高学生的兴趣

书本知识较为枯燥乏味,不能使学生全身心投入学习,不利于专业知识的巩固,情景教学模式是模拟真实的案例,进行生动展示的一种教学方式,能够使学生真切的体会到病情以及服务流程,提高学生的分析能力、观察能力以及临床应变能力,并不断使学生通过真实的情景,将专业理论运用到实践当中,从而调动学生的积极性以及学习的主观能动性。

三、情景教学模式可以提高学生的知识整体性

在临床实践中,讲究的是将专业知识、临床经验、专业技能以及专业素养结合在一起,提供良好的临床服务,提高临床服务质量,所以在教学当中,只注重知识体系的培养是存在很多弊端的,如果不能将知识应用于实践,则是无效的,所以将情景模式应用于教学当中,将实践与知识相结合,则可以让学生自主学习和操作,在实践过程中,不仅可以巩固现有的知识,还可以进行判断、理解和思考,使得知识不断提升和完善,最大限度帮助学生完成知识体系的搭建,这是传统的教学模式达不到的。

四、情景教学模式可以降低学生对临床的陌生感

很多学生在结束了学业生涯后,都会步入临床实践,但是对于一些接受传统教学模式的学生来讲,对于临床上的实践操作是非常陌生的,加上对自己的信心不足,会严重影响临床实践的质量,同时也不利于专业经验的提升。在这个时期,将理论知识逐渐过渡到实践操作是非常重要的,但是由于很多学生存在较多的陌生感和紧张感,在临床工作中较为退缩,因信心不足而放弃临床工作,实施情景教学模式,实践中没有明显的陌生感,在学校当中锻炼学习能动性以及主动性[3],加上实践操作使学生存在一定的熟悉感,即使步入临床实际工作,也可以尽快转换角色,缩短适应的时间,同时从临床实践当中,更加充实专业技能和经验,提升临床服务质量。

临床虚拟仿真教学篇8

2003年,美国毕业后医学教育认证委员会(aCGme)设立基于岗位胜任力的医学教育结果计划(Competency-BasedResidencyeducation-Goalsoftheoutcomeproject),明确提出医学教育需要培养的6大核心能力为:医学知识,病患照顾,基于实践的学习和提高,基于系统的实践,职业素养,人际交往及沟通技巧。以岗位胜任力为导向成为第三代国际医学教育改革的核心内容。为适应医学目标的转变,2005年我国医学教育专家开始探索建设中国临床医生岗位胜任力的通用模型,明确岗位胜任力通用模型的基本要素:(1)临床医学技能与医疗服务水平;(2)疾病预防与健康促进;(3)医学信息与综合管理能力;(4)医学知识运用与终生学习能力;(5)人际沟通能力;(6)团队合作能力;(7)科学研究能力;(8)核心价值观与职业素养。基于上述医学教育改革理念,在卓越医学人才培养方案、实践教学培养体系的运行中进行改革和创新。

一、临床技能教学的瓶颈

随着医学教育模式的转变以及医科院校的大幅度扩招,临床实践教学资源短缺和医学生数量不断增加之间的矛盾日益突出,如何达到医学教育的要求、全面发展临床能力成为困扰临床医学教育的难题。临床技能教学以模拟教育的方式架起医学理论通往临床实践的桥梁,是目前解决临床实践教学难题的有效方法。早期的临床技能教学偏重于投入教学场地、基本教学设备设施的建设,教学方面关注临床操作技能的流程完成度训练,较少涉及医学人文、团队精神及沟通交流等能力培养;教学方法及评价较单一,教学效果难以达成,难以适应当今教学的需要。

二、临床技能教学改革实践

2006年,广西医科大学成立临床技能培训中心,由第一临床医学院第一附属医院管理运营,建设有模拟手术室、模拟产房、模拟诊室、模拟病房、模拟iCU、综合临床技能模拟教学实验室、计算机医学模拟训练室、内外妇儿临床技能模拟教学实验室、显微外科技术训练室及腔镜技术训练室、配置多媒体教学录播监控回放系统的中心控制室、pBL教室等教学。实现基础技能、综合技能实验教学及客观结构化多站式考试(oSCe)功能,承担临床医学及相关专业多层次医学生临床技能教学,提供了临床技能教学的基本条件。根据《教育部卫生部关于实施卓越医生教育培养计划的意见》文件精神,广西医科大学第一临床医学院临床技能培训中心引入以岗位胜任力为导向的教育理念,突出“三严”(严肃态度、严密方法、严格要求)”、“三临床”(早临床、多临床、反复临床),开展临床技能教学改革,探索临床技能教学课程体系的优化和完善,开展了以下工作。

1.确立以岗位胜任力为导向的教学模式,改革临床技能教学课程体系。认真领会“以岗位胜任力为导向”的教育理论,以六大核心能力培养为教学目标,遵循医学生成长及能力发展的规律,探索基本操作训练向临床综合能力培养发展,从单一学科内容向跨学科综合技能扩展,多种教学方法并存及组合运用的教学模式。临床技能教学从入学第一年开始,在1―4年级设置的教学内容有重叠、有递进、有扩展,全面开放预约训练,临床能力培养覆盖临床医学以及相关专业院校教育的全过程,形成了以岗位胜任力为导向的临床能力全程培养教学模式。

2.建设教学资源,改进教学和评价方法,完善教学课程体系。将教学项目归纳为操作技能、非操作技能及实践能力三大类,形成以能力培养为目标的临床技能教学课程体系,解决教学内容孤立、学习效果达成度低的问题。建设线上线下教学资源,录制教学视频,开发虚拟仿真实验教学项目,建设在线课程、教学网站和微信app平台,编制临床技能教学教材、操作流程挂图。开展虚拟仿真、情景模拟教学,医学人文和沟通技巧的角色扮演、Sp教学等多种教学方法。

3.明确教学师资同质化培养的理念,加强师资培训。建立“培训目标标准化、培训过程规范化、培训结果同质化”的师资培养机制,组建内、外、妇、儿等9个临床技能教学专业团队,强调集体备课、统一培训考核,减少不同专业、不同的学缘背景及专业成长经历对教学质量的影响。选派骨干教师参加模拟教学高阶课程培训,每年保持20%以上的合格师资补充,促进了教师的职业发展,产生良性循环反哺教学,保证同质化的教学质量。

三、教学改革实践结果和体会

临床虚拟仿真教学篇9

【关键词】虚拟现实技术;美容整形教学;应用

当今世界,网络软件技术及计算机硬件技术不断发展进步,信息交流更加快速畅通,这给传统的美容整形教育模式注入了新的活力。如何充分利用这些软硬件技术建构数字化的医学美容知识及操作体系,解决美容整形教学中临床操作的问题,正是本文所要探讨的内容。

一、虚拟现实技术

虚拟现实技术(virtualreality)俗称VR,是一种在计算机图形学、仿真、人机接口以及传感技术的基础上发展起来的多学科交叉新生技术。它起源于20世纪60年代。虚拟现实技术能通过电脑产生一个逼真的体觉环境,让使用者的各种动作,例如手势、头部和眼球的转动等自然技能和虚拟实体进行互相考察,从而体验和模拟真实的过程。虚拟现实技术具有交互(interaction)、沉浸(immersion)和构想(imagination)等特征。随着现代科学技术的不断发展,电脑硬件水平的不断提高,尤其在20世纪80年代后,虚拟现实技术得到了更完善、更形象直观、更精确的发展,并渐渐应用于多个领域,如医学、军事、艺术等,带来了巨大的社会效益及经济利益。

在美容整形医学教育中运用虚拟现实技术,不但可以模拟真实的患者和人体解剖区域,还可以模拟临床任务等教学内容,让学生置身于计算机模拟出的三维空间中,让其听觉、触觉、视觉等多种感官通过虚拟技术的反应,使其身临其境,从而让学生能在现阶段缺乏真实操作的现况中,扎实理论基础,提高实践操作能力,提高美容整形教学水平。

二、虚拟现实技术在美容整形解剖教学中的应用

《系统解剖学》是美容整形医学生研究正常人体形体结构的第一课。通过学习该学科,学生可以整体了解人体结构,为以后其他医学学科的融会贯通打下基础。目前,解剖教学中普遍采用的授课模式为在大课中学习理论,配以模型、挂图等辅助,然后分小组上尸体实践解剖。此法取得了一定的效果。但目前较难获取尸体标本,学生的实践时间非常有限,加上尸体标本质量良莠不齐,而美容类的解剖需要更加精细、更加新鲜的尸体才能较明确地表现各组织关系。这使得解剖教学质量并不好。

随着电脑硬件技术的发展,三维人体可以用虚拟技术进行构建。学生轻易地就可以在屏幕前通过画屏切割、旋转、缩放等方式进行解剖学习。此法非常有助于降低教学成本,提高学生学习效率。例如,对于面部年轻化起很大作用的皮肤支持韧带,在以往经历过福尔马林浸泡过的尸体上非常难以解剖清晰,而通过虚拟人体能更直观地显示清楚。虚拟技术的更大好处是可以让学生在虚拟环境中进行解剖实践,甚至能预演操作过程。

三、虚拟现实技术在美容整形临床操作教学中的应用

由于美容整形门诊在国内仍属于特需门诊,所以美容整形患者非常注重隐私保护。因此,实际的临床教学及临床操作常常受限于病例与场地而无法展开。虚拟现实技术的引进就可以很好地解决这些问题,使得教学可以随时随地展开,增加了学生的实践机会。

例如虚拟不同的仿真患者,学生可以通过询问仿真患者病史来了解其病情及病情发展,并利用虚拟技术进行查体,调取器械,检查资料,然后进行诊断,根据诊断情况在电脑中设计治疗方案,最后在虚拟环境中根据所订的治疗方案进行手术或激光治疗或其他治疗。训练结束后,由系统评价学生从问诊到治疗各环节的正确与错误之处。这样能有效训练学生的诊断及治疗能力,为学生积累经验。

目前,已经有一些专门针对医学培训而开发的虚拟现实系统,但在治疗操作的软件训练上,还有待电脑技术的进一步提升。

(一)在美容外科手术教学中的应用

虽然大部分美容类手术对机体创伤比较小,但是在目前追求眼球经济的时代,尤其以面部美容手术为甚,就算出现小小不美观,对于患者的心理打击都是巨大的。美容类手术大部分比较表浅,但表浅肌肉筋膜神经血管系统的学习需要非常新鲜的尸体标本才有效。而新鲜尸体标本难以获得,导致手术培训耗时耗力,严重影响了现阶段美容整形外科医生的培养。

因此,可以利用虚拟现实技术重建全身肌肉、筋膜、血管神经系统的三维解剖图像,尤其是面部的肌肉、筋膜、血管神经系统的三维解剖图像。因为当前的美容手术大多以面部美容手术为主,例如重睑成形、综合隆鼻、面部提升等。这项技术有利于医学生更直观地掌握解剖结构,掌握肌肉、筋膜、血管、神经各组织的互相三维关系,并可以进行手术设计、切割、分离、美容缝合等一系列过程,有效地模拟了真实的手术过程。不同的患者,皮肤及软组织松弛程度不一致。虚拟现实技术可模拟皮肤松弛及皱褶程度,对手术的入路设计进行模拟评价。例如上睑松弛整复,切取松弛皮肤过多或过少都会导致术后效果欠佳,而虚拟现实技术可以帮助医学生选择较合理的手术设计及方案,尽可能地降低手术风险。由此,虚拟现实技术对手术的操作培训较传统的培方法更能提高教学效果。

(二)在注射美容教学中的应用

当前,注射美容的人数已经远远超越手术美容,因其微创,恢复快。但注射美容的风险也是非常巨大的。因注射物误入血管导致生命危险等并发症时有发生。因此,学习注射美容时,对面部血管及骨骼和各层软组织解剖位置要非常熟悉。这时,就可利用虚拟现实技术构建血管、骨骼和各层软组织的位置。首先可以让学生在电脑上练习熟悉标准注射位置、注射点以及入针角度;然后在虚拟现实的标本中解剖出所入针的位置,让学生了解位置的对与错,这就避免了在真实操作中所带来的损伤。

在推注操作练习方面,可利用穿戴式虚拟传感技术来培训学生穿刺的感觉,并让学生佩戴上3D眼镜进行操作。例如目前较受患者欢迎的肉毒毒素注射及玻尿酸和脂肪注射填充,通过3D眼镜、传感装置与虚拟实体,学生不但能够产生真实操作的感觉,而且能够通过系统自动解剖而了解所注射的肌肉或部位正确与否,注射针有没有进入血管,以及推注压力与推注量会不会因为大于动脉压而进入动脉,或造成压迫性栓塞血管。在这种虚拟现实技术的环境下反复练习,学生就可以在进入临床前积累非常丰富的注射美容经验,不但提高了教学效果,也降低了以后临床注射美容并发症的发生率。

(三)在假体雕刻及使用教学中的应用

在美容整形手术中,假体的雕刻及使用非常多,例如隆鼻、隆颏的鼻模、颏模雕刻、假体的使用等。但目前所使用的假体多为硅胶与膨体,价格非常昂贵,不适合拿来作常规训练用。市面上的材料在结构式上存在一定差别,训练时的真实感和有效性不理想。而且在隆乳的假体选择时,平时都是抽象地根据所提供的数据进行训练,临床病例或疑难病例不容易模拟训练。利用虚拟现实技术则可以很好地模拟临床环境及患者实体。学生能够不受材料和空间的限制进行反复的多次练习,通过虚拟不同的大小及松弛程度设计假体的选择及手术剥离范围和放置的层次。

四、虚拟现实技术目前的局限与前景

未来虚拟现实技术在美容整形教学中的应用前景非常广阔。虽然现在的硬件及软件技术较发达,但在真实情景的相似度上还存在很大的差距。总体来看,虚拟现实技术在美容操作的教学应用中还处于萌芽阶段。目前面临的局限主要有以下几点。

首先,虚拟现实整个系统的设备价格非常昂贵。一套美容整形虚拟设备,包括3D眼镜、穿戴传感设备、场景设置等,目前价格都比较昂贵,不适应大规模推广及多人数操作教学。

其次,目前的硬件性能在人体模型的精细模拟程度上渲染起来有点费劲。而精细程度决定了仿真效果,也决定了教学效果。硬件水平性能不够,软件的配套能力也无法完全发挥。

再次,目前虚拟场景的可视3D系统仍不够逼真,分辨率不够高,使用者容易产生视觉疲劳,影响教学效果。

最后,在手术操作及注射操作时,穿戴传感设备的力反馈和力检测尤其重要,但目前这两项技术还不够成熟。学生和虚拟人体间力和感觉的信息交流交互仍需要传感设计技术的完善,才能提升虚拟现实的真实感。

但是,随着计算机技术及硬件技术的飞速发展,人们的生活方式在互联网及移动终端的发展下改变很大。而VR技术目前正处于第三阶段前期。标准事件为:2014年oculusRift头盔显示器的研发和Facebook巨额收购oculus。这个阶段的VR研究方向在民用领域发展极快,已经开始普及与商业化。2015年底成立的中国虚拟现实与可视化产业技术创新战略联盟,已经在2016年起在多省市政府支持下,开始筹备VR产业基地。2016年更被称为“VR元年”。

综上所述,面对新技术更新换代对医学教育领域的影响,美容整形教学也应顺应时代潮流,有效地和虚拟现实技术进行整合,更好地帮助学生进行学习与操作,促进美容整形教育的改革创新,不仅仅用于手术、注射、假体雕刻等方面,还要在激光美容、牙科美容等方面进一步应用。相信虚拟现实技术在美容整形教学中会发挥越碓街匾的作用。

【参考文献】

[1]罗溪,李松声,王月帆,等.虚拟现实技术在高等医学教育中的应用[J].中国医学教育技术,2016,30(04):420-423.

[2]李可心,刘尚辉.虚拟现实技术在医学领域的研究进展[J].电子世界,2016(12):66,68.

临床虚拟仿真教学篇10

中图分类号:G434文献标识码:a

现代信息技术是以计算机技术为核心的数字化信息存储、传输和互动交流等一系列软硬件技术的综合。目前,现代信息技术正带动医学教育技术进行革新,已发展成为当代教育的热点问题。现代信息技术对医学教育尤其是基础医学教育有何影响,现代信息技术如何与医学教育整合,以及信息化的医学教育应该有什么样的标准化体系?这些问题值得深入探讨。对于广大教师而言,不是是否选择而是如何面对的问题,并且要正确认识信息技术在医学教育中的作用,并不是配备先进设备,开设信息学讲座和信息技术培训就是信息化了,而是要系统地对教学资源进行开发利用,最终使信息技术成为辅助学生学习的高级认知工具,并带动教育的全面改革。本文从数字化人体三维模型、数码显微互动实验室、虚拟仿真实验教学、网络在线课程平台、立体化教材、微课制作等方面介绍了现代信息技术在高职院校基础医学教学中的应用效果。

1高职院校基础医学课程的特点分析

高职医学教育有别于普通高等教育。教师服务于高职教育,首要任务是明确高职教育人才培养目标,即高职院校应该为社会培养什么样的人才,不能简单地模仿和套用普通教育的教学体系,也不能成为岗位职业资格培训的附庸。高职医学教育具有技术性、实用性,其主要目标培养的是数以千万的高素质技能性专门医学人才。同时,又具有较强的学科综合性和交叉性,将教育学、医学两门截然不同的学科有机地结合在一起,其社会期望值更高,任务更加艰巨。因此,高职医学教育对教学内容的合理选择,教学方法的灵活运用等方面的要求更高、更全面。

我国的《科学技术辞典》将医学定义为“医学是旨在保护和加强人类健康、预防和治疗疾病的科学知识体系和实践活动。医学与自然科学和社会科学有着密切的联系,因为医学所研究的是与自然和社会相互联系着的人。”这一定义充分体现了现代医学模式的特征,反映了当今医学领域的内涵与发展。经典的医学科学主要由基础医学和临床医学两大部分构成。相对于临床医学而言,基础医学主要包括人体解剖学、组织学与胚胎学、生理学、病理学、药理学等内容,是研究人体和疾病现象的本质及其生理病理规律的科学体系,是医学科学的基本理论和整个医学发展的基础。基础医学课程肩负着引导学生进入相关医学殿堂领路人的角色,其教学质量直接影响后续专业基础课、专业课的教学效果。

2现代信息技术在高职院校基础医学教学中的应用

2.1数字化人体三维模型(数字人)

尸体解剖和标本观察是解剖教学中最重要的实验手段。但是,随着现代医学教学模式的转变,尸体标本来源匮乏,库存不断减少,学生参与尸体解剖和实物标本观察的机会逐渐减少。如何利用现代信息技术解决解剖教学中的这些矛盾,提高人才培养质量成为当前解剖学教学手段变革的重要问题。传统的系统解剖教学通过制作尸体标本供学生观察,标本在使用过程中受场地和时间等条件限制。为适应信息时代的需要,利用计算机三维模型技术辅助解剖教学发挥了巨大的作用。数字化人体计算机三维模型是在连续薄层断面图像精确配准数据分割基础上用计算机三维重建软件构建的虚拟模型。可在计算机显示屏或虚拟现实环境中交互显示。在三维模型上可从多角度观察解剖结构的空间位置关系,还显示了一些在标本上不容易立体展示的结构。所重建的结构可以用伪彩色任意搭配显示,可任意旋转观察或录制特定角度旋转的视频。数字化人体三维模型应用于解剖教学中有助于学生在三维空间观察人体器官结构的形态及位置关系,学生还可在课后自主地观察学习,巩固和深化理论知识,加强与临床的关系,体现基础医学课程服务于专业的理念。

2.2数码显微互动实验室

传统的病理学实验教学主要是肉眼观察标本和显微镜观察组织切片,这种实验教学方式存在着一些难以避免的缺点。多媒体显微教学互动系统可以避免传统实验教学的缺陷,并具有诸多优点。集电脑、高级显微镜、摄像机、语音系统及网络为一体的显微形态互动多媒体教室可以实现图像、语音的网络互动。在教学中,教师通过控制一台电脑,可以投影教学;可以直接使用课件进行课堂教学;也可以对采集的显微图像实时观察,观察到课堂上每个学生的显微镜画面,及时发现实验中存在的问题并指导学生改正,有效实施动态分析和讲解。学生可就所观察的病变图像及遇到的疑问通过系统及时主动地与老师进行交流,通过人机对话、师生对话实现教与学的互动。除此之外,还可以实现图片的远程共享和远程教学。显微互动教学与病理网络教学相结合,既达到资源共享,又有助于加强实验课中教师与学生之间、学生与学生之间的交流,在教与学的互动之中提高学生的学习效率和质量。数码显微互动系统强化了实验教学的目标意识,淡化了学科意识,在今后的病理学实验教学中成为了一个重要辅助手段。

2.3虚拟仿真实验教学

医学实验教学中许多昂贵的实验试剂、仪器设备,由于受价格和自然条件的限制无法普及。利用虚拟仿真技术建立虚拟实验室,可以使学生身临其境地操作虚拟仪器,观察实验结果。虚拟仿真实验既减少了耗材,又不受场所等外界条件限制,而且还安全可靠。其中模拟仿真教学法在临床医学教学更是占有极其重要的地位,一个合格的医生的培养,必须经过严格的、反复多年的临床基本技能实践操作,但是由于医疗对象的特殊性,许多临床操作不可能让每个学生都在病人身上进行。虚拟仿真实验教学通过仿真人进行模拟实验,替代真人进行基础实验研究,为医学学习提供了良好的学习条件,提高了教学效果。

2.4网络在线课程平台

在教学中,依托网络在线课程平台,坚持“边建边用,以用促建”的原则,根据教材编排,组织章节架构,每节设置《知识要点》(知识卡片)、教学课件、测验及扩展阅读等栏目,每章设置章节练习、案例讨论等内容。在网络在线课程平台建设中,(1)突出临床医学专业特色,(2)从学生出发,精简精致,吸引学生。兼顾了学生专接本及临床助理医师资格考试的需求,在章节内容及测试练习难度上有一定加强。每章设计案例讨论,将学生由基础引导至临床,也将基础生化与临床实践联系起来。同时充分考虑学生的上网时间和学习兴致,课程内容、栏目设置力求精简、有吸引力,把学生在线课程的学习计入平时成绩,以资鼓励。在实际应用中,也指导学生怎样用,并和课堂教学有机结合起来,及时沟通,在应用中培养学生的学习习惯,这对后续课程的学习具有很强的推动作用。

2.5立体化教材

立体化教材就是立足于现代教育理念和现代信息网络技术平台,以传统纸质教材为基础,以学科课程为中心,以多媒介、多形态、多用途、多层次的教学资源和多种教学服务为内容的结构性配套的教学出版物的集合,并以满足教学需求和教学能力为目标,促进教学改革的发展。我国在2002年首次提出立体化教材建设的理念。中国高等教育学会会长周远清曾经指出:“立体化教材是一个新事物,它不仅作为高科技时代教学手段现代化的标志,更重要的是实现教学信息化、网络化的途径。立体化教材作为一种新型的整体教学解决方案,将为构建人才培养创新机制提供良好的条件。”立体化教材的内容包括主教材、教学参考书、学习指导书、电子教案、电子图书、Cai课件、网络课程、试题库和资料库等。

2.6微课制作

现代社会科技日新月异,医学的发展也十分迅速,基础医学课程注重知识的灵活运用。基础医学课程本着为专业课服务的原则选择教学内容,推动课程间的交叉、渗透和链接,力争用有限的教学学时,向学生传授尽可能多的知识,使学生能听得清楚、学得明白,能做到知识内容的融会贯通。因此,从学生已掌握的知识入手,结合日常生活,将一些抽象、难理解的知识点,一些与临床关系特别密切的内容,如“高血压”、“痛风”、“原发性肝癌”、等疾病制作成微课,激发学生的学习兴趣,加强基础医学与?R床应用的联系,便于学生更好的掌握疾病的发病机理、诊断及治疗。学生可以根据自己的需求,在任何时间、任何地点,按需选择学习、反复随时随地学习,既可查漏补缺,又能强化巩固知识,是传统课堂学习的重要补充,收到了更好的教学效果。