医药纳米技术十篇

发布时间:2024-04-25 20:38:48

医药纳米技术篇1

关键词:纳米技术;生物医学;应用;机遇;挑战

随着科技的进步,纳米技术在生物医药和科学技术等领域的应用较为广泛。尤其是生物医药领域,对于临床医学和基础医学的发展起到了积极的推动作用。虽然在不少科学家和医学研究家们对纳米技术进行了详细的研究,并将其运用于生物医学领域,取得了不错的成效。但是对于纳米技术的研究还不够深入,相较于发达国家而言,我国的纳米医学技术还处于发展的初级阶段。需要对纳米医学技术在今后发展中面临的机遇和挑战进行分析。

一、纳米技术在生物医药领域的应用

(一)纳米生物学

纳米生物学是以纳米作为尺度,其研究内容主要包括:其一,细胞器结构、细胞器功能。比如细胞核和线粒体内部结构和功能分析。其二,交换细胞信息,包括生物体的物质、细胞能量信息等。其三,针对生物反应问题,对其反应机理问题进行研究和分析。比如有关于生物复制和生物调控的机理分析。其四,发展分子工程。包括纳米生物分子机器人和信息处理系统等。将纳米显微术引入生物医药领域,可以为生物学家研究进行研究提供技术支撑。比如Scanningprobemicro-scopes,简称Spms,中文简称扫描探针显微镜,这是一种新型的纳米生物技术,标志着显微技术和纳米技术的发展。除此之外,扫描显微镜(Stm)的内部结构较小、不复杂,因此操作流程较为简单,生物学家可以借助扫描显微镜展开原子级分辨探究,从而提高生物细胞观测能力和分辨能力。仔细观察原子级的内部结构对于进一步探索和研究生物原子微观知识具有推动作用。在自然条件下,利用扫描显微镜可以对生物的蛋白质、多糖等分子展开直接观察。借助Stm弹道电子发射电镜可以对单个原子进行操作,这是一种典型的人工改变单个生物结构和分子结构的行为方式。这种方式可以实现治疗疾病这一超前设想。

(二)生物医学工程

将纳米技术引入生物医药领域,可以帮助传统医生解决复杂的难题。比如纳米机器人和生物传感器。纳米机器人简称分子机器人,是酶和纳米齿轮的结合体,将其引入生物科学领域,能够充当微型医生一角,为医生解决以前的疑难杂症问题。这种纳米机器人不仅可以直接注入血液,还可以成为一种传输身体健康与否的工具。一方面,血液在传输过程中能够判断分子机器人的健康状况,机器人能够获得能量,达到疏通血管血栓的目的。另一方面,医生通过外界信号编制好的程序能够探知和杀死人身体中的癌细胞,从而全面系统地监视身体构造和疾病情况。这种先进医学工程能够为现代医学的发展打下坚实的基础。除此之外,利用纳米技术还可以进行器官的修复工作,比如对修复的器官进行整容手术或者基因配置,从而将错误或者不符合的基因去除,引入正确的染色体装置,进而保障机体的健康运作。

(三)纳米治疗技术

将纳米技术引入生物医药领域是一场全新的革命运动,能够在日后的临床治疗方面起到一定的积极作用。比如德国柏林“沙里特”临床医院,早先就有过利用纳米技术治疗癌症的成功案例。研究人员将氧化钠纳米微粒注入鼠类的肿瘤里,然后将他们放置在磁场中。由于受磁场的影响,患有肿瘤的鼠类的温度会随着纳米微粒升温而增加。实践表明,纳米微粒在可变磁场中的温度能够上升到46℃。这样的高温足够将癌细胞杀死。肿瘤附近的机体组织是健康的,没有受损坏,因此纳米微粒不会烧毁这些健康组织,健康组织的温度也不会受到伤害,这就需要研究人员将目光转移到人体试验中,实现消除人体癌症的目的。

二、纳米技术在生物医学领域中应用的展望

随着社会经济的不断发展以及科学技术的不断进步,纳米技术和生物医学之间的联系不断加强,两者的有机结合不仅能够改善生物医学技术的不足,还可以促进生物医学的进一步发展,为更多的临床实验奠定基础。

(一)生物检测诊断材料的应用

不可否认,将纳米材料与生物诊断技术进行有效融合,能够提高医学检测技术水平。实践证明。两者之间的配合还需要结合生物医学工程和先进医疗器材,医学工程是促进纳米技术与生物医学互相融合的基础,对生物医学工程进行深入研究和分析,能在一定程度上催生新医疗器材的出现。如此一来,机械设备的使用用途和功能将会得到不断扩大,这在很大程度上取决于纳米材料的功能。由此可见,将纳米材料合理运用于生物医疗诊断中,势必会进一步催生一大批更为先进的医疗诊断器材。

(二)纳米技术植入人体器官

利用先进的纳米材料可以制成性能优良的人造器官和人工血液等。将这些器官和血液植入人体,能够帮助人类远离疾病,免遭疾病的伤害。比如将传感器和基因技术进行有机结合,能够将微利器官(比如听觉和视觉上遭到损害的机体)直接植入体内,从而帮助他们恢复视觉和听觉,从而达到正常人的状态。

三、纳米医药技术在发展中面临的机遇和挑战

就机遇而言,我国是首位将纳米晶体合成碳纳米管的国家,这个碳纳米管的长度属于世界最长,其性能良好。在医药学研究方面,我国科学家们利用纳米技术研制出了一批具有抗菌效果的医疗器材和设备,并为现代医疗技术的发展提供了先进的理论和技术支撑。在纳米药物载体的研究方面,我国已有有关于“动物体内”应用的报道。这已标志着我国纳米医疗技术进入了世界领先地位。就挑战而言,与发达国家相比,我国的纳米技术还不够成熟,还需要进一步加强对纳米材料、纳米传感器等方面的研究,以此作为进一步推动我国生物医药科技进步的基础。

四、结语

纳米医药技术对于进一步推动我国临床医学和基础医学的发展具有积极的影响。因此国家相关部门以及科研成员应该以积极主动的态度投入到生物医药纳米技术领域,进一步推动我国生物医药科技的进步。

参考文献:

[1]董大敏.纳米技术与社会发展意义的辩证思考[J].商业经济,2011,23:27-28+32.

[2]中国微米纳米技术学会纳米科学技术分会纳米生物与医药技术专业委员会2010学术年会[J].生物骨科材料与临床研究,2010,05:31.

医药纳米技术篇2

中药现代化的核心是中药的“有效、安全、可控”。现阶段将纳米技术应用于中药的研发是中药现代化发展的重要方向之一。

1纳米技术

纳米技术(nanotechnology)是一门在0.1~100nm空间尺度内操纵原子和分子,对材料进行加工、制造具有特定性能的产品,或对物质进行研究、掌握其原子和分子的规律和特征的高新技术学科[1]。被认为是“今后十年最可能使人类发生巨大变化的十项技术”之一。现代研究表明,药物在生物体内的起效时间、作用强度和持续时间除了与药物本身的化学结构有关外,还与药物的物理状态密切相关。而改变药物的单元尺寸是改变其物理状态的有效方法,当药物粒子的粒径在纳米尺寸分布时,粒子的表面积和化学式将显著增大,呈现出新奇的物理、化学和生物学特性[2]。因此,在中药研究中应用纳米技术,可能使药物活性和生物利用度提高,甚至产生新的特性,有利于新产品的开发,改变中药剂型过于老化、单一的现状,从而实现中药现代化。1998年徐辉碧等学者率先提出了“纳米中药”的概念[3],并在这方面进行了卓有成效的探索和研究。纳米中药是指运用纳米技术制造的粒径小于100nm的中药有效成分、有效部位、原药及其复方。

2在中药研究中的优势

2.1提高药物生物利用度

从药物学原理来说,药物的溶出速度与药物的颗粒比表面积呈正相关,而比表面积与颗粒粒径成反比。因此,药物的粒径越小,则其表面积越大,越有助于药物有效成分的溶出。采用纳米技术加工中药,其颗粒达到超细粉末的水平,比表面积显著增强,药物在胃肠道里的溶解度明显增加,从而增加药物的生物利用度,并加快药物起效时间[4]。此外,由于纳米粒的黏附性及小的粒径,既有利于延长局部用药时滞留性的增加,也有利于延长药物与肠壁接触时间,加大接触面积,从而提高药物口服吸收的生物利用度[5]。采用纳米技术加工,可使植物的细胞壁破碎,易于有效成分的渗出[6]。

2.2增强组织靶向性,降低毒副作用

通过选用对机体组织或病变部位亲和力不同的载体制作载药纳米微粒,使药物能够输送到期望治疗的特定部位,实现药物的靶向给药。纳米级的载药微粒进入机体后,大部分被单核—吞噬系统(mpS)摄取,分布在淋巴、血液、肝、脾、骨髓等器官中。有研究证实,毫微粒(1~1000nm)载药系统可使给药量的80%集中于肝脏,并进入肝细胞,对肿瘤和肝病的治疗有重要意义。而且,载药纳米微粒迅速聚集于肝、脾等网状内皮系统的主要器官,还使由于治疗药物的非特定聚集而引起的毒性被降低[7]。

2.3运载药物通过生物屏障

纳米载体可以增加药物对生物膜、不同种类的黏膜和细胞膜的通透性,使其可以通过某些生理屏障,到达重要的靶位点,治疗一些特殊部位的病变[8]。例如纳米粒子经过适当的修饰,可以通过血脑屏障,把药物定向地输送到中枢神经系统而发挥作用。

2.4缓释功能

一些半衰期短的药物因需要每天重复给药,可能会因患者的顺应性较差或无意识的漏服而影响治疗效果。中药的纳米制剂可以延长药物的体内半衰期;并还具有缓释功能,甚至可根据人体需要控制释放速度及释放部位[9]。

2.5改变中药药性,发现新功能

中药纳米化后可能导致升级物的理化性质、生物活性及药理性质发生重要变化,甚至改变中药药性,产生新的功效。周云中等观察到普通的牛黄有清热解毒、熄风止痉、化痰开窍的作用,但是牛黄加工到纳米级水平,其理化性质和疗效发生了惊人的变化,并具有极强的靶向作用,甚至可以治疗疑难绝症[10]。

2.6改变给药途径,丰富中药剂型

中药的给药途径主要是口服,应用纳米微粒作为载体,将打破传统的给药方式,目前在一些合成药制剂领域已逐渐使用的与纳米概念有关的制剂技术,如固体分散技术、包合技术、乳化技术、脂质体制备技术、聚合体纳米制备技术等。纳米技术在中药制剂中的应用,将极大地丰富中药的剂型。如将中药制成毫微囊,或制成纳米粉针剂,或将水溶性小及难溶的药物加工成纳米颗粒,还可将中药制成高效透皮释放制剂、口服控释剂、含片、干粉吸入剂、鼻喷雾剂、舌下速溶片,以及植入制剂和微乳剂、脂质体等多种剂型[10]。丰富的剂型选择,可大大提高中药的稳定性和疗效,降低毒副作用。

3结语

纳米技术是一门新兴的、多学科交叉的技术领域,在中药现代化中引入纳米技术是时展的需要。尽管纳米中药尚处于起步阶段,其研制开发存在许多问题,但是我们相信,随着纳米技术在各个领域中的应用不断取得成功,在中医药学领域中的应用也会逐步呈现蓬勃发展的态势。纳米技术将中药研究提升到探讨物理性状,化学结构和生物活性三者之间关系的高度,为中药发展提供新的动力,带来全新的中药加工方法和工艺,从而加速传统中药向产业化、现代化、国际化发展,必将产生极其深远的影响。

参考文献

[1]白吉庆,王昌利.纳米技术在中药制剂研究中的应用[J].现代中医药,2005,25(6):4850.

[2]刘金洪,张冰冰,郝永龙.纳米技术在中药研发中的应用前景展望[J].四川中医,2004,22(4):2425.

[3]徐辉碧,谢长生.纳米技术在中药研究中的应用[J].中国药科大学学报,2001,32(8):161165.

[4]方琴.纳米技术在医药领域中的应用[J].贵州医学,2002,26(11):1040.

[5]张文萍,张志耘.我国纳米技术在药学领域中应用现状[J].天津药学,2002,14(5):17.

[6]阮鸣.纳米技术及其在中药研究中的进展[J].内蒙古中医药,2004,(4):2729.

[7]韩静,巴德纯,唐星.纳米技术在中药制剂中的作用与意义[J].中医药学刊,2004,22(3):575576.

[8]王勇,胡坪,刘清飞,等.纳米技术在载药系统及中药研究中的应用[J].中成药,2007,29(1):112117.

[9]周长江,崔黎丽.生物可降解聚合物及其在药物纳米控释系统中的应用[J].药学服务与研究,2002,2(2):112115.

医药纳米技术篇3

1.1原药纳米化后呈现新的药效或增强原有疗效中药被制成粒径0.1~100nm大小,其物理、化学、生物学特性可能发生深刻的变化,使活性增强和/或产生新的药效。如灵芝通过纳米级处理,可将孢子破壁,并采用超临界流体萃取技术萃取出灵芝孢子的脂质活性物质,从而增强抗肿瘤的功效。

1.2改善难溶性药物的口服吸收

在表面活性剂、水等存在下,直接将药物粉碎成纳米混悬剂,增加了药物溶解度,适于口服、注射等途径给药,以提高生物利用度。

1.3增加药物对血脑屏障或生物膜的穿透性

纳米粒能够穿透大粒子难以进入的器官组织、血脑屏障及生物膜。如阿霉素α聚氰基丙烯酸正丁酯纳米粒(naDm)可以改变阿霉素的体内分布特征,对肝、脾表现出明显的靶向性,而血、心、肺、肾中的药物分布则减少。

1.4靶向作用

徐碧辉教授等在研究中发现,一味普通的中药牛黄,加工到纳米级水平后,其理化性质和疗效会发生惊人的变化,甚至可以治疗某些疑难杂症,并具有极强的靶向作用。

1.5使药物达到缓释、控释

借助高分子纳米粒作载体等技术手段,可实现药物的缓释、控释。如雷公藤乙酸乙酯提取物固体纳米脂质粒有良好的缓释、控释功能。

2纳米中药的制备技术及其进展[3]

纳米中药的制备是研究纳米中药最基础的,也是最重要的问题。将纳米技术引入中药的研究,必须考虑中药组方的多样性、成分的复杂性,例如中药单味药可分为矿物质、植类药、动物药和菌物药等,中药的有效部位和有效成分又包括无机化合物和有机化合物、水溶性成分和脂溶性成分等,因此,针对不同的药物,在进行纳米化时必须采用不同的技术路线。此外,还必需考虑中药的剂型。纳米中药与中药新制剂关系十分密切,如何在中医理论的指导下进行纳米中药新制剂的研究,将中药制成高效、速效、长效、剂量小、低毒、服用方便的现代化制剂,也是进行中药纳米化所必须考虑的问题。纳米中药是针对中药的有效成分或有效部位进行纳米技术加工处理,开发中药的新功效。聚合物纳米粒可作为药物纳米粒子和药物纳米载体。药物纳米载体系指溶解或分散有药物的各种纳米粒,药物纳米载体包括纳米脂质体、固体脂质纳米粒以及纳米囊和纳米球。而对于不同类型的纳米中药,有不同的制备方法。

2.1药物纳米粒子的制备

药物纳米粒子的制备是针对组成中药方剂的单味药的有效部位或有效成分进行纳米技术加工处理。在进行纳米中药粒子的加工时,必须考虑中药处方的多样性、中药成份的复杂性。

纳米超微化技术[4],是改进某些药物的难溶性或保护某些药物的特殊活性,适用于不宜工业化提取的某些中药。如矿物药、贵重药、有毒中药、有效成分易受湿热破坏的药物、有效成分不明的药物。目前比较常用的是超微粉碎技术。所谓超微粉碎是指利用机械或流体动力的途径将物质颗粒粉碎至粒径小于10μm的过程。根据破坏物质分子间内聚力的方式不同,目前的超微粉碎设备可分为机械粉碎机、气流粉碎机、超声波粉碎机。

机械粉碎法[5]是利用机械力的作用来实现粉碎目的。边可君等采用自主开发的温度可控(-30~-50℃)的惰性气氛高能球磨装置系统制备纳米石决明。将石决明置于配有深冷外套的惰性气氛球磨罐中,同时装入磨球,磨球与石决明粉比保持在15:1~5:1范围,控制高能球磨机的转速(200~400r/min)和时间(2~60h),获得了平均粒度不大于100nm的石决明粉末。

气流粉碎法[6]是以压缩空气或过热蒸汽通过喷嘴产生的超音速高湍流气流作用为颗粒的载体。颗粒与颗粒之间或颗粒与固定板之间发生冲击性挤压、摩擦和剪切等作用,从而达到粉碎的目的。与普通机械冲击式超微粉碎机相比,气流粉碎产品粉碎更细,粒度分布范围更窄。同时气体在喷嘴处膨胀降温,粉碎过程中不会产生很大的热量。所以粉碎温升很低。这一特性对于低融点和热敏性物料的超微粉碎特别重要。世界上首项将纳米技术应用于中药加工领域的纳米级中药微胶囊生产技术,是通过对植物生理活性成分和有效部位进行提取。并用超音速干燥技术制成纳米级包囊。利用这项技术生产出的甘草粉体和绞股蓝粉体。经西安交通大学材料科学工程学院金属材料强度国家重点实验室和第四军医大学基础部药物化学研究室鉴定,均达到了纳米级。其中甘草微胶囊微粒平均粒径为19nm。这样的纳米粒可跨越血脑障碍,实现脑位靶向[6]。

中药纳米超微化技术既丰富了传统的炮制方法,又能为中药的生产和应用带来新的活力。纳米产品目前已成为中药行业新的经济增长点。将这项技术应用于中药行业可以开发具有更好疗效、更优品种的纳米中药新产品。这将对中药行业的发展带来深远的理论和现实意义。

2.2药物纳米载体的制备

药物纳米载体的制备主要是选择特殊的材料,它们应具备以下特征:性质稳定,不与药物产生化学反应,无毒,无刺激,生物相容性好,不影响人的正常生理活动,有适宜的药物释放速率,能与药物配伍,不影响药物的物理作用和含量测定;有一定的力学强度和可塑性(即易于形成具有一定强度的纳米粒,并能够完全包封药物或使药物较完全的进入到微球的骨架内);具有符合要求的黏度、亲水性、渗透性、溶解性等性质。这与所用药物的性质、给药方式有关[7]。近年来,可生物降解的高分子载体材料被认为是很有潜力的药物传递体系,因为它们性能多样,适应性广,且具有良好的药物控制性质,达到靶向部位的能力及经口服给药方式能够传递蛋白质、肽链、基因等药物的性能。常见的高分子材料有淀粉及其衍生物、明胶、海藻酸盐、蛋白类、聚酯类等。

对于纳米中药载体,目前常用的是纳米包复技术[8]。纳米包复化学药品和生物制品的技术在世界药学领域是最受关注的前沿技术之一。根据待包复的中药的性质不同,可选取不同的纳米包复技术,得到纳米中药。毛声俊等[9]采用3琥珀酸3o硬脂醇甘草次酸酯作为导向分子,采用乙醇注入法制备了甘草酸表面修饰脂质体,作为肝细胞主动靶向给药的载体。杨时成等[10]采用热分散技术将喜树碱制成poloxamer188包衣的固体脂质纳米粒混悬液。陈大兵等[11]用“乳化蒸发—低温固化”法制备紫杉醇长循环固体脂质纳米粒,延长了药物在体内的滞留时间。

此外,还有乳化聚合法[12]、高压乳匀法[13]、聚合物分散法等。制备成纳米微粒载体系统的中药多为单一有效成分,如抗肝癌或肝炎药物:蓖麻毒蛋白、猪苓多糖、斑蝥素、羟喜树碱、黄芪多糖等;抗感染药:小檗碱等;消化道疾病药:硫酸氢黄连素等;抗肿瘤药:秋水仙碱、高三尖杉酯碱、泰素等;心血管疾病药:银杏叶有效成分等;其它还有鹤草酚、苦杏仁苷等。也有将多种中药成分复合后制备纳米微粒载体系统的,如口服结肠靶向给药系统——通便通胶囊,其主药成分为3种极性相似的火麻仁油、郁李仁油和莱菔子油的混合油。还有将中药复合西药后制备纳米微粒载体系统的,如多相脂质体1393,其主要成分为氟脲嘧啶、人参多糖和油酸等;中药复方“散结化瘀冲剂”浸膏和5氟脲嘧啶(5FU)相结合后制备的磁性微球制剂也属此列。总之,不同的制备技术和工艺适合不同种类纳米中药的制备。

3问题与展望

尽管目前纳米技术的研究进展一日千里,纳米技术的飞速发展将有可能使中药的现代化迈上一个台阶,但是,目前纳米中药的研究尚处于基础阶段,纳米中药的制备技术也很不成熟,有许多问题仍需进一步研究。纳米粒制备时,载体材料多为生物降解性的合成高分子,在体内降解较慢,连续给药会产生蓄积,且降解产物有一定的毒性。另外有毒有机溶剂、表面活性剂的应用都给纳米控释系统的产业化带来了较大的困难。美国Rice大学生物和环境纳米技术中心(CBen)主任VickiColvin认为至少有两点需要引起重视:“一是纳米材料微小,它们有可能进入人体中那些大颗粒所不能到达的区域,如健康细胞。二是对比普通材料纳米量级性质会有所改变”。也就是很有可能在粒径减小到一定程度时,原本可视为无毒或毒性不强的纳米材料开始出现毒性或毒性明显加强,例如改变纳米材料表面的电荷性质,改变纳米材料所处的物理化学环境,相同的纳米材料可能会出现不同的毒性,纳米材料在生物体内可能会出现特殊的代谢情况,并且可能会与某些特定部位的器官或者组织细胞进行作用进而使其带来某些特而且纳米化后中药有效成分和药效学的不确定性,将给药物质量的稳定可控留下隐患。另外纳米中药的范围应有所限制,当一种中药粉碎到了纳米级时,药效可能会发生改变,不能为获得纳米微粒而损坏了药物的有效成分。目前对中药的微观研究尚不深入,对其有效成分与非有效成分还认识不清,仓促对其纳米化处理有可能得不偿失。在目前这个时期,进行商品化的纳米中药生产为时尚早。而应该进行开发纳米中药的制备技术研究并建立一整套纳米药理、药效和毒理学的理论与系统评价方法。

【参考文献】

[1]Kreuker.nanoparticlesandmicroparticlesforDrugandVaccine[J].Jaant,1996,189(pt3):503.

[2]张志琨,崔作林.纳米技术和纳米材料[m].北京:国防工业出版社,2004:44.

[3]魏红,李永国.纳米技术在生物医学工程领域的应用研究现状和发展趋势[J].国外医学生物工程分册,1999,22(6):340344.

[4]朱振峰,杨菁.药物纳米控释系统的最新研究进展[J].国外医学生物医学工程分册,2007,21(6):327327.

[5]SchofieldJp,CaskeyCt.nonviralapproachestoGenetherapy[J].BrmerdBul,2005,51(10):56.

[6]YangS,ZhuJ,LuY,etal.BodyDistributionofCamptochecin,Solidiipidnanopartoclesafteroraladministration[J].pharmRes,2005,16(5):751751.

[7]YangSC,LuLF,CaiY,etal.BodyDistributioninmiceofintravenouslyinJectedCamptothecinSolidLipidnanoparticlesandtargetingeffect011brain[J].JControllledRelease,2006,59(2):299299.

[8]SuhH,JeongB,RathiR,etal.RegulationofSmoothmuscleCellproliferationUsingpaclitaxelLoadedpoly(ethyleneoxide)poly(1actide/glycol1de)nanospheres[J].JBiomedmaterRes,2007,42(2):331331.

[9]allemanne,LerouxJC,GurnyR,etal.iilVitroextentedreleasepropertiesofDrugloadpoly(DLlacticacid)nanoparticlesproducedbyaSaltingoUtprocedure[J].pharmRes,2007,10(12):1732.

[10]SchroderU,SabelBa.nanoparticles.aDrugCarrierSystemtopasstheBloodBrainBarrier.permitCentralanalgesiceffectsofi.v.Dalargininjections[J].BrainRes,2007,710(1):121121.

[11]孔令仪.中药创新研究与高新技术应用[m].北京:中国医药科技出版社,2006:780780.

[12]杨时成,朱家壁.喜树碱固体脂质纳米粒的研究[J].药学学报,1999,34(2):146150.

[13]丁寅,袁红宇,郭立玮,等.负载士的宁纳米微粒研究[J].南京中医药大学学报(自然科学版),2006,18(3):156157.

医药纳米技术篇4

   【关键词】纳米技术纳米中药制备技术

   中图分类号:R283文献标识码:B文章编号:1005-0515(2012)1-235-01

   纳米技术是指用单个原子、分子制造或将大分子物质加工成粒径在1~100nm的物质的技术[1]。纳米技术的出现标志着人类改造自然的能力已延伸到原子、分子水平,使得化学和物理学之间已无明确界限。中药有着悠久历史,其独特的药效在世界医学界占有举足轻重的地位。近年来研究结果表明,中药产生的药理效应不能完全归功于该药特有的化学组成,还与药物的物理状态密切相关[2]。当药物颗粒粒径小到一定程度时,药效可能会产生突发性的改变。纳米技术与中药学的结合,是提高中药有效利用率、药效快速释放等的关键所在。

   纳米中药的制备是研究纳米中药的最基础也是最重要的问题,将纳米技术引入中药的研究时,必须考虑中药组方的多样性、中药成分的复杂性,所以,针对不同的药物,在进行纳米化时必须采用不同的技术路线,此外还必须考虑中药的剂型。纳米中药与中药新制剂关系十分密切,如何在中医理论的指导下进行纳米中药新制剂的研究,将中药制成高效、速效、长效、剂量小、低毒、服用方便的现代制剂,也是进行中药纳米化时必须考虑的问题。目前,纳米中药主要有一下制备方法:

   1超微粉碎技术[3]

   使用特制机械设备将原药材或提取物进行粉碎,使之达到纳米级。我国研制出了一种利用湍流原理进行粉碎的高湍流粉碎机,中药甘草的粉碎实验表明,产品粒径可达到1μm以下,对矿物质的粉碎则达到100nm以下,而且粒径分布窄。该技术可能将为物理方法制备纳米药物粒子提供高效方便的捷径。

   2固体分散技术[3]

   这是将药物以微粉、微晶或分子态均匀分散在无生理活性的载体中,药物在载体中的粒径小于100nm。该技术是通过物理分散而获得纳米药物粒子,若将药物包埋于不同性质的高分子聚合物中,可形成速释型或缓释型固体分散物。采用固体分散技术制备药物的固体分散体,常用熔融法、溶剂法、溶剂-熔融法、溶剂-喷雾(冷冻)干燥法、研磨法。不同药物采用何种固体分散技术,主要取决于药物性质和载体材料的结构性质、溶点和溶解性能等。固体分散技术在中药制剂青蒿素固体分散物、复方丹参滴丸、香连滴丸、苏冰滴丸等中已得到了应用。

   3化学气象沉积法

   在气体状态下发生化学变化形成所需要的化合物,并在保护气体环境下快速冷凝形成纳米粒子。

   4超临界流体技术[4]

   利用超临界快速膨胀法和气体反溶剂法可制备纳米粒。用超临界流体技术设备已得到了粒径为130nm的灰黄霉素纳米粒和125nm的四环素纳米粒。

   5微乳化技术[5]

   将油、水、乳化剂和助乳化剂按一定比例在一定温度下通过适当的方法混合而得。药物以粒径在10-100nm内的乳滴分散在另一种液体中形成的胶体分散系统。

   6包合技术

   包合技术也是一种纳米粒子的制备方法,它所采用的载体材料本身就是一种纳米尺度的分子材料,主要采用β-环糊精作为载体材料,经包合后可以增加难溶性药物的溶解度和溶出度,降低药物的刺激性,特别是中药易挥发性成分经包合后,可明显提高保留率,增加贮存过程中药物的稳定性。

   7高压乳匀技术[6]

   随着乳化技术的发展,尤其是高压乳匀机应用于制药业获得成功后,人们进一步研制物理化学稳定性好、粒径更小、毒性小、具有靶向缓释作用、适合于多途径给药的纳米新剂型。它是将药物溶解在高于5-10℃的内脂中,在搅拌下加入含有表面活性剂的水相中制成初乳,再将初乳通过高压乳匀机,制成纳米乳剂。

   8超音射流技术[3]

   通过在高压条件下流体的超音速微射流瞬时对撞,产生粒子间强烈的撞击作用,高度湍流作用和超声波空化作用,从而使物质瞬间达到纳米分散状态,在撞击过程中可同时完成辅料对纳米粒子的包覆而达到稳定分散的目的。

   目前纳米中药的研究主要集中于利用纳米技术将少数成分比较明确的单体有效成分制成纳米制剂,或将原料药直接粉碎至纳米级,对大部分中药的纳米制剂研究还很少,主要是因为中药真正起药理作用的有效成分或有效部位研究本身就是一个难题;而且由于中药成分比较复杂,将其制备成纳米制剂需要克服的困难较多,因此,中药纳米制剂及技术是医药科研工作者的重要研究课题。

   纳米技术在中药领域的应用前景取决于科学技术的发展,包括物理化学、生命科学、生物化学、材料学等学科的发展。尽管纳米技术应用于中药的研究和开发目前尚处于初始阶段,但它的新技术及新工艺,一旦用于中药的研究、开发和生产,不仅可为制药企业创造巨大的经济效益,造福于患者,而且更有利于中药的现代化、国际化,必将产生极其深远的影响。

   参考文献

   [1]郝存江,赵晓峰.纳米中药研究进展.天津中医药.2006,23(6):515-517.

   [2]徐辉碧,杨祥良,谢长生等.纳米技术在中药研究中的应用[J].中国药科大学学报,2001,32(3):161-165.

   [3]阳秀萍,陈登志,胡凤国.浅谈中药纳米制剂的研究方向[J].中国现代中药,2006,8(2):29-30.

   [4]邱洪,王宝佳,李悦.纳米中药简介[J].中国药业.2005,14(4):78-79.

医药纳米技术篇5

【关键词】纳米技术;纳米中药;剂型改造;研究进展

纳米科学技术(nano-St)是20世纪80年代末期刚刚诞生并正在崛起的新科技,它的基本涵义是在纳米尺寸(

10-9~10-7m)范围内认识和改造自然,通过直接操作和安排原子、分子,创制新物质[1]。药剂学领域中纳米粒子的研究早于“纳米技术”概念的出现,70年代就已经对纳米脂质体、聚合物纳米囊和纳米球等多种纳米载体进行了研究。目前,我国中药剂型的老化、单一,是中药制剂难以打入国际市场的重要原因之一,同时,由于我国中药提取工艺及设备落后,限制了中药临床疗效的提高。充分利用现代科技手段,使中药具有先进的生产工艺和现代剂型可能是现代中药发展的重要方向之一。

1纳米中药

徐辉碧等[2]认为“纳米中药”是指运用纳米技术制造的、粒径

2固体分散技术和固体分散体

这是应用纳米技术分散水溶性药物在载体中,以增大药物的溶出-吸收,提高药物生物利用度比较典型的新技术、新剂型,近年来已被大力研究推广,还被应用与水溶性或水难溶性制成缓、控释的固体分散体。固体分散体中的水难溶性药物是以微粒、微晶或分子状态分散在易溶于水的固体载体中。若选择载体、制备方法得当,药物与载体的比例合理,制得的固体分散体中的药物分散的粒径均

3包合技术和包合物

包合技术应该完全属于纳米技术的范围,也是一种纳米药物粒子的制备方法。包合技术所采用的载体材料,本身就是一种纳米尺度的分子材料。已被选用的主要是环糊精类,有α,β和γ型三种,目前还有它们的衍生物。这三种环糊精分别由6、7、8个葡萄糖分子组成,都具有筒状结构。其中β-型的结构,由7个葡萄糖分子环合而成筒状,内径为0.7~0.8nm,可容纳几个药物分子,形成不到2nm的药物超微粒,这样的包合物又称为分子型包囊。由于载体是种多羟基物质,且羟基排列于筒状结构的外壁,极易分散于水中,筒内侧可包裹水难溶性的药物分子,从而大大提高水难溶性药物在水中的溶出和体内的吸收,从而提高生物利用度,还可降低药物的刺激性和增加药物的稳定性以及用于一些液体药物的粉末化。中药挥发油应用包合技术制备包合物的研究报道较多,是包合技术在药学上应用的最好例子。如维感颗粒中挥发油β-环糊精包合物制备及稳定性研究[6];益智挥发油β-环糊精包合物的稳定性考察[7]等。

4毫微囊

20世纪70年展起来的毫微囊包裹技术是一种纳米级包裹技术,在中药研发中引进该制剂技术对中药现代化意义重大。毫微囊的粒径范围一般为10~100nm,其优点在于[8-10]:所用包裹材料便于进一步表面修饰,以达到主动靶向的目的;一般成品稳定性较好,便于加工、灭菌;可制成缓释剂,以延长疗效;对所包药物有保护作用,可防止氧、介质和体内酶对药物的破坏;选用适当囊材又可达到生物相容,能在体内生物降解,从而减少毒副作用。如最近日本研究人员将抗癌药制成毫微囊,可定点将药物直接送到癌灶。这种包着药的高分子微胞进入血液后,在正常血管中是很难泄漏出来的,但是癌变组织周围的血管容易渗出大分子,所以这些带药的高分子微胞运行到癌变部位时,就会从血管里渗出来,滞留在那里,因而使药物具有了极强的靶向性[11]。

5纳米微乳化技术和微乳剂

纳米微乳化技术是指将油、水、乳化剂和助乳化剂按一定比例在一定温度下通过适当方法混合成外观透明的胶体分散系统的技术。微乳液是由油、水、表面活性剂和表面活性剂助剂构成的透明液体,是一类各向同性、粒径为纳米级的、热力学、动力学稳定的胶体分散体系。由于微乳液的液滴在纳米尺寸范围内,所以又称为纳米液滴或纳米乳液。微乳液小球的粒径小于100nm,所以微乳液呈透明或微蓝色;一般乳液小球的粒径为100~500nm,所以乳液是浑浊或半透明的。通过微乳液聚合的方法可以得到尺寸分布较窄的高分子纳米颗粒,这种纳米高分子材料具有一些崭新的性质和功能。据文献报道,已用微乳液制备的纳米粒子有金属纳米粒子(pt、pa、Rh、ir等),半导体纳米粒子(CdS、pbS)、ni、Co等金属的硼化物,Sio2、Fe2o3等氧化物、磁性材料等,其中某些纳米金属粉末可作为制备动物生长素药物的新型添加剂,还可用于免疫分析[12~15]。此外,微乳液本身可以作为溶剂应用。微乳液在相同溶液里能溶解不同极性的很多材料。这种独特的溶解性使微乳液能够应用于药物缓慢释放体系、生物工程上的细胞色素分离、生物转变、生物酶催化有机合成等许多方面,如紫杉醇自乳化微乳的制备及其在大鼠体内的药动学[16]。

6脂质体

脂质体(Liposome)系将药物包封于类脂质双分子层形成的薄膜中间所制成的超微型球状药物载体。脂质体根据其结构和所包含的双层磷脂膜层数,可分为单室脂质体和多室脂质体。凡由一层类脂质双分子层构成者,称为单室脂质体,它又分为大单室脂质体和小单室脂质体(粒径0.02~0.08nm,可称为纳米脂质体)。由多层类脂质双分子层构成的称为多室脂质体,粒径1~5μm。由于其结构类似于生物膜,可包封水溶性和脂溶性药物,选择性高,靶向性强,具有减少药物剂量、降低毒副作用、无免疫原性、缓慢释放、降低体内消除速度、保护药物、提高稳定性、适合多途径给药等特点,含有药物脂质体的制剂在医药界得到了日益广泛的关注。如靶向性制剂人参皂苷脂质体、丹参多相脂质体、黄芩前体脂质体的研究[17];鱼腥草挥发油纳米脂质体的制备及其肺靶向效果[18];甘露聚糖修饰的靶向纳米脂质体的抗肿瘤作用实验研究[19]等。

7聚合物纳米粒

聚合物纳米粒作为一种高效、毒副作用低的靶向药物载体,近十年来受到了广泛的关注[20]。药物与聚合物纳米粒的结合可以是包封,也可以是附载,前者形成毫微囊,后者形成分散体,这两种形式的聚合物纳米粒作为口服蛋白、多肽、基因等药物的载体,已有文献报道[21]。聚合物纳米粒具有以下优点:①高载药量(包封率)及控制释放特性;②纳米粒表面容易改性,使之不易团聚、在水中形成稳定的分散体;③为生物相容和可降解材料;④聚合物本身经化学改性后,具有两亲性,在制备纳米微粒时,可不再用表面活性剂(而大多数表面活性剂均为非生物相容)。聚合物纳米粒在化学合成药物及蛋白类药物领域里的成功应用,已有大量文献报道,这些药的新剂型应用是可行的,但在中药领域里的应用却较少报道。徐辉碧、杨祥林、谢长生等[22]认为聚合物纳米粒作为中药的新剂型应用是可行的。

8结语

纳米技术在中药剂型改造中的应用,将极大地丰富中药的剂型,为提高临床疗效提供了保证,并有利于降低药物的毒副作用,使中药具有一定的缓释性和一定的组织靶向性。目前我国的中药产业所以尚未走出困境,在很大程度上是因为中药剂型改造的进展缓慢。纳米技术的介入,在促进新剂型开发应用的同时,使中药制剂工艺避免了传统中药及其复方在加工过程中繁琐的处理工序,从而有利于对制剂质量的控制,促进中药生产走向工程化、标准化和规模化,并有望将中药制成高效、速效、长效、剂量小、毒性小、副作用小、服用方便的现代制剂,符合并达到国际主流市场对产品的标准和要求,最终实现中药产业的现代化和国际化。

参考文献

[1]张立德(ZhangLD),牟季美(mouJm).纳米材料和纳米结构.科学出版社,2000:2-3.

[2]徐辉碧,杨祥良,谢长生,等.纳米技术在中药研究中的应用.中国药科大学学报,2001,32(3):161-165.

[3]杨祥良(YangXL),徐辉碧(XuHB),谢长生(XieCS),等.基于纳米技术的中药基础问题研究.华中理工大学学报(JHuazhongUnivSci&tech),2000,28(12):104-105.

[4]周云中,姜志勇.纳米材料与中医药研发.中国中医药信息杂志,2001,8(9):7.

[5]储茂泉,刘颂,古宏展,等.丹参酮固体分散物的研究.华东理工大学学报,2001,27(2):191.

[6]张卫东,刑建国.维感颗粒中挥发油β-环糊精包合物制备及稳定性研究.中成药,2005,27(5):515-517.

[7]纪明慧,刘红,何猛雄等益智挥发油β-环糊精包合物的稳定性考察.中药材,2005,28(10):952-953.

[8]徐辉碧,杨祥良,谢长生,等.纳米技术在中药研究中的应用.中国药科大学学报,2001,32(3):161-165.

[9]王建新,张志荣.固体脂质纳米粒的研究进展.中国药学杂志,2001,36(2):73-75.

[10]黎洪珊,赵京玲,魏树礼.环孢菌素a聚乳酸纳米粒胶体的制备和大鼠的口服吸收.中国药学杂志,1999,34(8):532-536.

[11]顾琳慧.日本开发纳米技术抗癌药投药方法.中国肿瘤,2001,10(8):479.

[12]胡文军,陈晓丽.微乳液和有机凝胶的性质及应用.材料导报,1997,11(1):53-56.

[13]贾世军,陈柳生,金熹高.微乳液聚合和寡链高分子凝聚态研究进展.功能高分子学报,1997,10(3):408-417.

[14]RibriouxS,KleymannG,winfriedH,etal.Useofnanogold-andFluorescent-labeledantibodyFvFragmentsinimmunocytochemistry.JHistochemCytochem,1996,44(3):207-213.

[15]Y.Uchiumi.oxide-basedCompositeCeramicsContainingnano-sizedCarbidesandnitrides[p].Jp08081277,1996.

[16]张学农,唐丽华,阎雪莹,等.紫杉醇自乳化微乳的制备及其在大鼠体内的药动学.中国新药与临床杂志,2005,24(4):294-298.

[17]靳琦,胡定邦,王子炎.论中医现代研究的基本思路.中国医药学报,2000,15(2):57-61.

[18]罗琥捷,李临生.鱼腥草挥发油纳米脂质体的制备及其肺靶向效果.时针国医国药,2006,17(1):56-57.

[19]杨莉,成丽,田聆,等甘露聚糖修饰的靶向纳米脂质体的抗肿瘤作用实验研究.四川大学学报(医学版),2006,37(3):357-360.

[20]KreuterJ,nanoparticles.in:KreuterJ.(ed.).ColloidalDrugDeliverySystems.newYork:marcelDekker,1994,219-342.

医药纳米技术篇6

一、国内外纳米材料的研究现状

随着各种新兴技术以及相关产业的发展,对纳米材料的需求日益增多,纳米技术的基础理论等相关研究也都在飞速发展,相关技术在医疗、电子等行业应用得比较广泛,并已面向产业化的方向发展。虽然在美国、日本等几个国家已经实现纳米粉体材料的批量生产,但未来的研发之路是任重而道远的,纳米生物材料和纳米医疗诊断材料等产品还将处在不断的探索过程中。有关机构曾经做过预测:到2020年,全球纳米新材料市场规模达86亿美元,行业的年增长率为24.6%。最近几年,各国政府和企业对纳米技术的研究投入了大量的人力和物力,促进了纳米新材料产业的发展,纳米材料的市场规模将进一步扩大。美国将纳米材料的研发列为国家战略层面的科研项目之一,这与其在国防、军事、航空航天等领域的广泛应用分不开。纳米材料优良的性能已被认可,正逐渐应用到农业、生物、医疗等领域,创造巨大的经济效益。我国开展纳米材料的研究并不算晚,目前,我国有100多个从事纳米材料基础和应用研究的机构。其中,开展研究工作比较早的单位既有高校也有研究所,例如清华大学、吉林大学、东北大学等老牌学校,以及长春应用化学研究所、感光化学研究所等研究院所。在过去的一段时间里,我国纳米材料基础领域的研究取得了丰硕的成果。在研究过程中,主要采用物理和化学方法,并且将多种方法结合使用,研制出金属以及合金的氧化物和氮化物等一系列纳米颗粒;积极地向走在前列的国家学习,并且引进一些急缺但是却不能自主生产的设备,对纳米微粒的尺寸进行有效的控制,将研究的成果应用于生产中,其中生产出一系列高科技产品,例如纳米薄膜、纳米块材等;积极地从各个角度对纳米材料的特性进行挖掘,在很多的方面都积极而显著地创新,取得了一系列的进展,成功地研制出具有优良性能的纳米陶瓷,其主要表现在密度高和结构复杂等方面;另外,我国在世界上首次发现超塑性形变现象,即纳米氧化铝晶粒在拉伸疲劳应力集区所表现出的特性;在其他纳米技术应用的领域也取得了不菲的战绩,例如对功能纳米材料进行了深入的研究,并且取得一系列的丰硕成果。在“八五”研究工作的基础上,我国建立了几个纳米材料研究基地,具有代表性的主要有南京大学、中科院金属所、中科院物理所、国防科技大学、清华大学等。这些基地的建立为纳米材料的研发创造了条件。经过数十年的工作基础和工作积累,我国在纳米材料和纳米结构的研究方面取得了长足进步,在国际社会上具有一席之地。新时期,国内的科研院校不仅为我国纳米材料研究培养了高质量的纳米材料科研人员,还对纳米材料的应用进行了研究,促进了成果转化工作。今后一段时期内,这些科研单位和高校都将是我国纳米材料研究的重要组成部分。据有关部门的统计,目前我国已有700多个以“纳米”命名注册的公司,注册资金达到560多亿元。通过纳米材料的标准化工作,规范纳米材料产品的生产,使纳米材料高新技术与传统产业的改造有机结合,提高了传统产业的技术水平,提升了产品的档次与性能,促进了传统产业的结构调整,加速了传统产业的改造。

二、纳米产业发展的趋势

纳米材料作为一种新型材料,其研究虽然还存在诸多问题,但是伴随着科学技术水平的发展,纳米技术上存在的问题都会一一被解决。纳米技术将逐渐与其他技术相融合,最终融入到社会生活中。

第一,纳米技术与信息产业的融合。信息产业在世界上占有举足轻重的地位。2010年,我国信息产业的利润占GDp的10%。纳米技术与信息产业相融合,具体表现在以下几个方面:首先,现阶段网络通讯、芯片技术以及高清晰度数字显示技术不断发展,推动了纳米技术的发展。未来对通讯和集成等方面的零件性能要求会越来越高,美国等一些发达国家已经着手研究,实验室的研究也取得了一定的成功。其次,我国在分子电子器件和巨磁电子器件等领域的研究起步较晚,研究比较滞后。最后,在网络通讯中,我国对其中一些关键的器件如谐振器、微电容和微电极等方面的研究不足,与世界的差距较大,在进行研发的时候也要努力提升相关零件的性能,这些都为纳米技术与其产业的融合留下了巨大的空间。

第二,纳米技术与环境产业的融合。纳米技术在空气净化以及水污染物的降解方面不可或缺,纳米技术在净化环境方面的意义重大。目前,我国已经制造出可以充分降解甲醛、氮氧化物等一系列污染物的设备,可以大为降低空气的污染程度,可以将有害气体的浓度从10ppm(指用溶质质量占全部溶液质量的百万分比来表示的浓度)降低到0.1ppm;近年来,很多公司致力水处理产业,利用纳米技术的光催化性能净化水质,提高生活用水和工业用水的质量,已经取得了一定成就;在未来,纳米技术在环境领域的应用将会更加广泛。

第三,纳米技术与能源环保产业的融合。当今,对能源的不合理开发和滥用已致使其呈现出日益枯竭的状态。所以,合理有效地利用能源是我国今后的一项重要工作,同时对新能源的开发和利用也刻不容缓。一方面在传统能源领域,加紧对其催化剂的研究,这样可以使煤炭、石油等资源充分利用,充分燃烧,同时减少废气的排放,这些都需要纳米技术的支持。另一方面,在开发新能源方面,我们不仅要自主创新,还要积极地借鉴国外的先进经验,开发一些可燃气体,开发清洁能源,将一系列的新能源更便捷的在日常生活中应用。

第四,纳米技术与生物医药产业的融合。我国加入世界贸易组织后,各个行业都受到不同程度的冲击。以医药行业为例,在国际医药行业决定采用纳米尺度发展制药业的大背景下,我国必须奋起直追,不能落后。纳米生物医药发展的方向在于从动植物提取需要的材料,之后通过纳米技术处理,使其药效最大限度地发挥出来,这也是我国中医的理论思想。在医药方面采用纳米技术生产,也可以提高纳米技术的适用层次。

第五,纳米新材料的研发。美国一家机构预测:到21世纪50年代前后,汽车上60%的金属材料要被新型复合材料所代替,采用高强度轻质量的材料可节省油量达到55%;还减少了尾气的排放量,尤其是二氧化碳的排放。在车体使用纳米材料,发挥其优良的性能,不仅提升汽车的力学性能,而且还使汽车具有反射各种紫外线、红外线的功能,减少了外界的干扰。

医药纳米技术篇7

魏启明教授出生于医学世家,外曾祖父是台湾最早期西医,父亲魏正明教授为日本福冈九州大学医学博士,是著名的血管外科专家:母亲王碧云教授为日本东京东邦大学医学博士,是著名的妇产科专家:二姐魏丽惠教授也是著名的妇产科专家,现为北京大学医学部人民医院妇产科主任教授、中华医学会妇产科分会副主任委员、中华妇科肿瘤学会副主任委员、中国妇产科杂志主编、全国人大代表,曾获得中国医师会最优秀医师奖。

魏启明教授在日本国立三重大学医学部取得医学博士学位并进行了心血管外科临床培训,博士论文题目为《人工心脏在心力衰竭的应用》。然后在美国maYo医学中心心脏科师从JohnBurnett教授进行研究,发现脑钠素(Bnp)是心力衰竭的重要临床指标之一:文章发表在美国着名的《循环》杂志上,并被美国心脏学会评为心力衰竭研究的关键论文。魏教授在世界上第一个发现c型多肽是一种特异的内源性静脉扩张剂,在《美国生理杂志》上并引起专业领域的极大重视。魏教授将anp和Cnp巧妙地结合在一起,研究发明新型人工多肽,获得了美国和国际的专利。这种多肽具有强烈的血管扩张和利尿效果,可治疗心肾衰竭和高血压:本研究发表在著名的《临床研究杂志》(JournalofClinicalinvestigation),编者按指出,这是一个具有重要临床意义的发明。由于出色的研究成绩,魏教授被mYao医学中心评为当年度杰出研究者,获得了mYao医学中心著名的“KenDaLL研究奖”。魏教授并到哈佛大学医学院作了关于心脏血管内分泌学的演讲报告,并与美国麻省理工学院医学生物学专家一起磋商,研究开发新型的医疗技术和医疗器械。

通过对于纳米生物技术的研究并与其他科学家的广泛合作,魏教授发现这是一个有着巨大发展前景的领域,着重开展了纳米技术对肿瘤和心血管疾病的早期诊断和药物靶向治疗研究,取得了关键技术突破。由于魏教授研究成绩斐然,美国著名的约翰霍普金斯大学医学院聘其担任心胸肾疾病的纳米生物技术研究团队和研究室的研发工作。约翰霍普金斯大学医院连续20年在全美医院排名中名列第一,并拥有多位着名的诺贝尔奖大师。

主题为“纳米医药和纳米生物学前沿”的科技部第293次香山国际学术会议于2006年11月召开,与中国科学院白春礼院长、科技部张先恩司长、东南大学顾宁教授一同作为组织者的魏启明教授,被与会代表及业内同侪这样评价:具备较为坚实的医学理论基础和技术攻关实力,正在为纳米生物技术的临床应用和纳米医药产业化等方面提供理论和技术支持。

为了纳米生物技术更快在临床应用和多学科结合,魏教授牵头组织了“美国纳米医学科学院”并当选为院长,还创立出版了英文纳米医学杂志并出任第一任主编:为协调各国纳米医学的研发和法规,魏教授牵头成立了“国际纳米医学科学院”并当选为名誉院长。魏教授共刊发超过170篇学术论文并被引用次数3000次以上,获选登上美国医学名人录和国际医学名人录,也先后被聘为国内外多所知名大学的客座教授,曾于2004年应邀到中国科学院院士学术会议上做了关于纳米医学的专题报告,并曾被聘为中国科学院海外专家评审委员和中国“973”国家重大研究课题专家组成员。现任重庆市科学技术研究院纳米医学首席科学家。通过魏启明教授和其他同仁的不断努力,纳米医学领域的研究开发正在形成蓬勃发展的趋势。

医药纳米技术篇8

纳米产品没有那么神

就目前的发展情况来看,这种深远的影响只能在未来才能实现,并不是现在。不夸张地说,今天的纳米技术,只相当于信息技术上世纪50年代时的发展水平,人们研究纳米基本尺度现象的工具和对之理解水平还只是很初步的,目前尚有很多有关纳米的基础科学问题未找到答案。国际科技界普遍认为,纳米产生革命性的影响,将是二三十年以后的事情。

例如,在洗衣机的某些部件上加一超细颗粒的涂层,可以保护零部件,延长机器的使用寿命。具有这种性能的洗衣机被某些商家宣传成了“超强除菌的纳米洗衣机”。还有,所谓的纳米冰箱,只不过是往制作材料里添加了一些氧化钛细粒,从而产生一定的抗菌性能,而到了商家的嘴里,就变成了“纳米冰箱能在食物储藏过程中有效杀死食物中的细菌甚至能分解蔬菜中的农药”等等不负责任的广告。

经常听说某纳米服装可以保暖、防水、防油,背后暗藏着什么玄机呢?其实,商家只是将达到纳米尺寸的粉体分散进高分子黏结液,再把面料浸入其中,经过一定的温度和时间达到干燥和韧化,而制成千凝胶膜。由于纳米黏结液很容易进行化学或物理改性,因而可以大幅度改变织物的性能而使之具备某些功能。其实,这并非只在纳米时代才能做到,也不是只有纳米技术才能做到。有商家说纳米服装能够增强保暖,这在理论上是不可能的,因为现在还没有发现一种物质能够把热分子抓住。为什么我们炒菜时能闻到香味?因为空气分子是流动的,既然是流动的,如何能保住暖?除非是金属做的,能使分子无法出来。至于“纳米内衣”和“纳米水杯”宣称能杀菌、治病,就更无科学依据可言了。

还有市场上的护肤液、粉底液、日霜、晚霜、洗面乳等等,宣传中喊着“传承国际高尖端科学的纳米技术保您容颜不老”,甚至某国际知名品牌竟称其某产品因为有了纳米原维生素,而能产生立竿见影的美容效果。其实,现在所宣传的纳米化妆品实际上是将护肤品中的某些有效成分被加工成纳米级的规格后,在一定程度上提高了功效,目前已经被证实的是,防晒品中如果含有纳米级规格的成分,会在功效上有明显提高。因为防晒品的有效成分是二氧化钛,当其被加工为几十个到一百个纳米的规格后,能增强屏蔽功能,更好地防止紫外线伤害。但并不是所有的护肤成分都可以“纳米化”,因为有些成分并不能在微小化之后具有比普通颗粒更强的效果,甚至会适得其反,得不偿失。

细胞就象一个个“纳米车间”

人体每一个细胞都是一个活生生的纳米技术应用的实例。因为构成细胞的物质一般都在纳米量级水平。如果把细胞中的细胞器和其它的结构单元看作是执行某种功能的“纳米机械”,那么,细胞就象一个个“纳米车间”。细胞的新陈代谢都是“纳米工厂”的典型例子。在纳米量级水平研究生命现象(包括生老病死、治病保健、延年益寿)的医学就是纳米医学。

纳米医学的研究内容十分广泛,凡是与人类生理、病理和医疗有关的内容它都涉及。归纳起来,主要有以下几个方面:

基础医学领域

在分子、原子水平对物质进行直接观察,生物学上对Dna、蛋白质进行形态分析;直观下的分子剪辑、Dna特殊位点的定位等高水平研究;细胞的一系列分子生物学研究(膜、离子通道、受体、基因、细胞因子等),为临床发展提供动力和线索。

诊断和治疗疾病

在疾病诊断领域,使用纳米技术的新型诊断仪器,只需检测少量血液,就能通过其中的蛋白质和Dna(脱氧核糖核酸)诊断出各种疾病。在膜技术方面,用纳米材料制成独特的纳米膜,能过滤、筛去制剂的有害成分,消除因药剂产生的污染,从而保护人体。在抗癌的治疗手段方面,德国一家医院的研究人员将一些极其细小的氧化铁纳米颗粒,注入患者的癌瘤里,然后将患者置于可变的磁场中,使患者癌瘤里的氧化铁纳米颗粒升温到45~47摄氏度,这温度足以烧毁癌瘤细胞,而周围健康组织不会受到伤害。

在疾病的治疗方面:

1、组装新的Dna:基因治疗所面临的最大挑战是:首先要使质粒Dna分布于特定的细胞器――细胞核内,最后还要使其插入特定的Dna位点。利用纳米技术,可使Dna通过主动靶向作用定位于细胞;将Dna浓缩至50~200nm大小且带上负电荷,有助于其对细胞核的有效入侵;而最后Dna插入细胞核Dna的准确位点则取决于纳米粒子的大小和结构。此时的纳米粒子Dna本身所组成。

2、开发纳米机器人:纽约大学的一个实验室最近制造了一个纳米级机器人,研究人员认为,将来,纳米级机器人可遨游于人体微观世界,随时清除人体中的一切有害物质,激活细胞能量,使人不仅仅保持健康,而且延长寿命。含有纳米计算机的、可人机对话的、有自身复杂能力的纳米机器人(nanorobot)。这类分子机器一旦制成,能在一秒钟内完成数十亿个操作动作。

3、寻找生物兼容物质:在人工器官移植领域,只要在人工器官外面涂上纳米粒子,就可预防人工器官移植的排异反应。生物兼容物质的开发,是纳米材料在医学领域中的另一个重要应用。

医药纳米技术篇9

纳米材料(又称超细微粒、超细粉未)是处在原子簇和宏观物体交界过渡区域的一种典型系统,其结构既不同于体块材料,也不同于单个的原子。其特殊的结构层次使它具有表面效应、体积效应、量子尺寸效应等,拥有一系列新颖的物理和化学特性,在众多领域特别是在光、电、磁、催化等方面具有非常重大的应用价值。

纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

检查和治疗身体各部位的病变。对纳米微粒的临床医疗以及放射性治疗等方面的应用也进行了大量的研究工作。据《人民日报》报道,我国将纳米技术应用于医学领域获得成功。南京希科集团利用纳米银技术研制生产出医用敷料——长效广谱抗菌棉。这种抗菌棉的生产原理是通过纳米技术将银制成尺寸在纳米级的超细小微粒,然后使之附着在棉织物上。银具有预防溃烂和加速伤口愈合的作用,通过纳米技术处理后的银表面急剧增大,表面结构发生变化,杀菌能力提高200倍左右,对临床常见的外科感染细菌都有较好的抑制作用。

微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。

纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质特别是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。

医药纳米技术篇10

关键词:纳米材料;特性;应用

中图分类号:G712文献标识码:B文章编号:1002-7661(2014)14-001-01

一、引言

自从20世纪发现纳米材料以来,纳米材料被誉为是21世纪构成未来智能社会的四大支柱之一,而碳纳米管是纳米材料中最富有代表性,并且是性能最优异的材料。由于碳纳米管具有强度高、重量轻、性能稳定、柔软灵活、导热性好、比表面积大并具有许多吸引人的电子性质。

二、纳米材料的基本特性

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

1、表面效应

纳米材料的表面效应[1]是指纳米粒子的表面原子数与总原子数之比随粒径的变小而急剧增大后所引起的性质上的变化。随着粒径变小,表面原子所占百分数将会显著增加。当粒径降到1nm时,表面原子数比例达到约90%以上,原子几乎全部集中到纳米粒子表面。由于纳米粒子表面原子数增多,表面原子配位数不足和高的表面能,使这些原子易与其它原子相结合而稳定下来,故具有很高的化学活性。

2、小尺寸效应

由于颗粒尺寸变小所引起的宏观物理性质的变化称为小尺寸效应。对超微颗粒而言,尺寸变小,比表面积增加,从而产生一系列新奇的性质:

(1)力学性质

(2)热学性质

纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。

(3)电学性质

由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属――绝缘体转变(Simit)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。

(4)磁学性质

小尺寸的超微颗粒磁性与大块材料显著的不同,呈现出超顺磁性。利用磁性超微颗粒具有高矫顽力的特性,已做成高贮存密度的磁记录磁粉,大量应用于磁带、磁盘、磁卡等。利用超顺磁性,人们已将磁性超微颗粒制成用途广泛的磁性液体

三、纳米材料的应用前景

1、信息产业中的纳米技术

纳米技术在信息产业中应用主要表现在3个方面:①网络通讯、宽频带的网络通讯、纳米结构器件、芯片技术以及高清晰度数字显示技术。②光电子器件、分子电子器件、巨磁电子器件,这方面我国还很落后,但是这些原器件转为商品进入市场也还要10年时间,所以,中国要超前15年到20年对这些方面进行研究。③网络通讯的关键纳米器件,如网络通讯中激光、过滤器、谐振器、微电容、微电极等方面。

2、环境产业中的纳米技术

纳米技术对空气中20纳米以及水中的200纳米污染物的降解是不可替代的技术。要净化环境,必须用纳米技术。近年来,不少公司致力于把光催化等纳米技术移植到水处理产业,用于提高水的质量,已初见成效;采用稀土氧化铈和贵金属纳米组合技术对汽车尾气处理器件的改造效果也很明显;治理淡水湖内藻类引起的污染,最近已在实验室初步研究成功。

3、能源环保中的纳米技术

合理利用传统能源和开发新能源是我国当前和今后的一项重要任务。在合理利用传统能源方面,现在主要是净化剂、助燃剂,它们能使煤充分燃烧,燃烧当中自循环,使硫减少排放,不再需要辅助装置。另外,利用纳米改进汽油、柴油的添加剂已经有了,实际上它是一种液态小分子可燃烧的团簇物质,有助燃、净化作用。

4、精细化工方面的应用

精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。

5、纳米生物医药

这是我国进入wto以后一个最有潜力的领域。目前,国际医药行业面临新的决策,那就是用纳米尺度发展制药业。纳米生物医药就是从动植物中提取必要的物质,然后在纳米尺度组合,最大限度发挥药效,这恰恰是我国中医的想法。在提取精华后,用一种很少的骨架,比如人体可吸收的糖、淀粉,使其高效缓释和靶向药物。对传统药物的改进,采用纳米技术可以提高一个档次。

纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,尤其是能源、人类健康和环境保护等重大问题。可见,纳米技术对我们既是严峻的挑战。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。

参考文献:

[1]王旭.浅论纳米材料的特性.大观周刊,2012(6).

[2]汪云.纳米材料应用前景十分广阔.广州化工,2007.35(6).

[3]周震.纳米材料的特性及其在电催化中的应用.化学通报,1998(4).

[4]单志强.纳米材料特性及其在环境保护领域的应用.环境技术,2005,23(2).