首页范文人工智能与教学十篇人工智能与教学十篇

人工智能与教学十篇

发布时间:2024-04-29 17:15:38

人工智能与教学篇1

关键词:人工智能技术;教学方法;编程能力

中图分类号:tp3文献标识码:a文章编号:1009-3044(2014)16-3865-02

1概述

2008年11月16日,中国科协成立50周年新闻会在北京召开。在新闻会上,“五个10”系列评选活动,即10位传播科技的优秀人物、10部公众喜爱的科普作品、10个公众关注的科技问题、10个影响中国的科技事件、10项引领未来的科学技术评选结果揭晓。10项引领未来的科学技术是:基因修饰技术;未来家庭机器人;新型电池;人工智能技术;超高速交通工具;干细胞技术;光电信息技术;可服用诊疗芯片;感冒疫苗;无线能量传输技术。

人工智能技术学科是计算机科学中涉及研究、设计和应用智能机器的一个分支。指人类的各种脑力劳动或智能行为,诸如判断、推理、证明、判别、感知、理解、通信、设计、思考、规划、学习和问题求解等思维活动,可以用某种智能化的机器来予以人工实现[1]。

通过《人工智能技术》课程的学习,使学生对人工智能技术的发展概况、基本原理和应用领域有深入了解、对主要技术及应用有一定掌握,并对现代人工智能技术发展的方向有所研究。通过人工智能技术课程的学习与研究,启发学生对人工智能技术的兴趣,培养知识创新和技术创新能力,并能将人工智能技术融入到今后所开发的计算机软件之中。

《人工智能技术》是一门众多学科交叉的新兴课程,其涵盖范围广,涉及知识点多,知识更新快,内容抽象,不容易理解,理论性强,而且需要较好的数学基础和较强的逻辑思维能力,这给该课程的讲授带来了一定困难。《人工智能技术》也是一门应用型学科,怎样将理论运用到实践中,使学生将学到的人工智能技术知识和思想运用到自己的实际课题,这也是该课程需要解决的问题之一。

因此,对《人工智能技术》课程教学来说,我们要了解课程的最新信息,把握课程的特点,帮助学生找到好的学习方法,使他们能充分发挥自己的创新思维能力,提高学习兴趣,该文给出了《人工智能技术》课程的教学与实践的探索。

2教学与实践的探索

2.1教材和实验教学内容的选取

1)人工智能技术是整个计算机科学领域发展最快,知识更新最快,最前沿的学科之一。在教材选用方面,我们采用了蔡自兴教授等主编,由高等教育出版社出版的《人工智能基础》这本教材。蔡自兴教授的主要研究领域为人工智能、机器人学和智能控制等。这本教材是作者在美国国家工程院院士、普度大学教授傅京孙先生的指导和鼓励下编写,借鉴了国内外人工智能技术研究领域专家的最新研究成果和学术书籍的长处,该书比较全面地介绍了人工智能技术的基础知识与技术,材料新,易于理解,兼顾基础及应用[2]。

此外,我们还给学生自主学习提供多种类型的学习资料,其中包括参考书目,如:RusselS,norvigp.等编著的《artificialintelligence:amodernapproach》一书,人工智能技术国内外期刊,如电子学报,计算机学报,人工智能与模式识别,artificialintelligence,JournalofartificialintelligenceResearch,engineeringapplicationsofartificialintelligence和internationalJointConferenceonartificialintelligence,aaai:americanassociationforainationalConference等人工智能技术会议,使学生能够掌握人工智能技术的更多前沿动态,提高学习兴趣。

2)配套的实验教学内容。《人工智能技术》是一门理论性和实践性都很强的课程,实践性教学环节对该课程尤为重要。除了完成课本上的作业之外,还注重实验教学,培养学生的创新能力、算法设计能力和编程能力。首先,每个章节设置相应的实验,而实验内容经过严格的考虑,如:五子棋游戏,产生式系统,旅行商问题,传教士和野人问题,Bp神经网络实现简单的分类,遗传算法、人工生命程序等,要求学生运用所学章节的知识,独立地设计和实现实验内容。实验报告包括简述实验原理及方法,给出程序设计流程图,源程序清单,实验结果及分析等内容,通过这种方式,进一步加强学生的信息获取能力和研究能力。

2.2教学方法和手段的改革

人工智能技术课程交叉性强,涉及面广,传统的教学方法手段单一,缺少交流,课堂气氛沉闷,激发不起学生的学习兴趣,教学效果不理想。人工智能技术这门课程内容抽象,如何激发学生的学习兴趣是本课程需要解决的主要问题,也是关系教学改革成败的关键。本课程需采用多种方法进行教学,以此来激发学生的学习兴趣。

1)问题启发式教学。《人工智能技术》这门课程中有很多似是而非、引人入胜的问题,主要是用计算机模拟人类的智能来解决这种问题。在教学中,有目的的提出这些问题,鼓励学生思考,提出自己的想法和解决方案,并进行分析和比较,这样强化学生的主动学习意识,提高学习积极性[3]。

2)个性化学习和因材施教。学生中存在计算机专业和非计算机专业本科毕业的差别,由于他们每个人的基础不同,有的计算机知识比较匮乏,因此有必要针对每个学生的学习进度,课堂作业和实验报告情况进行及时评估,对学生提出个性化的教学。例如:在实验教学中,要求有能力和兴趣的学生可以做探究性和创新性的附加实验,从而引导学生发挥个性的空间,而对稍微吃力的学生则要求完成基本的实验,更注重基础知识的学习和夯实,这样就能达到因材施教的目的。同时对不同层次的学生进行分析,进一步提出学习建议,并进行有针对性的指导。

3)多媒体使用和多学科知识的融合。本课程ppt课件图文并茂,提纲挈领,便于学生理解。课堂讲授、板书与ppt手段相结合,注重课程中的关键词用英文表示,并适当指定英文参考书,使学生能够接触国外文献资料,加深对学习内容的理解,获得更宽广的知识。ppt课件运用了大量多媒体技术,如动画、声音、图像,通过动画和视频演示抽象的概念、算法和过程,使人工智能技术中抽象的知识形象化,在课件中融入了文学,历史等其他学科的相关知识,便于学生较好地理解知识难点和重点[4]。

4)师生互动和课内外答疑。在教学中,改变了传统的老师讲,学生听的教学模式。针对人工智能技术的实用性,适当提问,收集学生学习情况,尽量使用实例进行讲解。设置了实验讲解互动课程,对于实验的讲解,学生可以提出疑问,然后在课堂上展开讨论,学生可以看到问题从提出、分析到解决的整个过程,让学生自己在讨论中总结结论。为了解决教学中存在的疑难问题,还设有课后答疑,使学生能将所有的问题都理解透彻。

5)理论研究与实践结合。在教学内容的安排上,注重学生的理论研究和动手能力,适当布置一些课程相关的论文和实验编程。通过课程论文,可以培养学生钻研问题的兴趣;通过查阅科技文献使学生掌握如何查找相关文献的技能,可以培养学生撰写科技论文的能力。通过实验实践,使学生可以更加清楚地了解人工智能技术基本概念和难点,也能了解算法的设计具体运行过程,并对其进行验证,提高了学生的编程能力和和学习兴趣。

6)考试考核方式改革。本课程的考核考试也是一个值得探讨的问题,本课程应采用多种综合考试方法,注重学生对基础概念、知识和基本的技能的掌握以及理论联系实际的能力。平时作业考核成绩,实验实践教学成绩、提交课程论文成绩,以及最后的期末考试成绩形成一种有效的考试考核方法,促进学生主动学习,提高教学质量。实验的评价指标在于算法设计、编程的准确性和实验结果及分析。课程论文评价指是选题是否严谨科学和具可研究性,论文结构、思路是否严谨,论文内容科学性、正确性,能否提出自己的见解。考查查阅科技文献的能力主要通过是否查找到权威的、最新文献以及撰写是否规范。

2.3学生学好《人工智能技术》课程的建议

《人工智能技术》是一门理论与实践相结合的应用课程,学生如何学习这么课程,也是我们应该探讨的问题。

学生应该正确看待《人工智能技术》这门科学的发展。人工智能技术孕育于20世纪30、40年代,形成于60、70年代,发展至今,人工智能技术只有短短60多年的历史,它是一门不断发展和完善的崭新学科,还有许多课题处于探索中,理论和技术还远未成熟,我们应该对它有科学的认识。

针对非计算机专业本科毕业的学生,除了课堂听讲之外,还应该课下自学该课程的先修课程,如:数据结构、离散数学等课程。人工智能技术中涉及到大量的数学知识,如:模式识别需要具有较好的概率论,数理统计知识,另外还会用到少量随机过程、模糊数学的一些知识。人工智能技术是一门应用课程,编程语言的掌握必不可少,涉及到SVm算法,粒子群算法,免疫算法神经网络,遗传算法等算法,实现这些算法要求学生具有较强的编程能力。

学生应该多读,多查阅资料,特别是国外的期刊文献和重要国际会议论文,多了解人工智能技术最前沿的信息,理论联系实际,加深对基本算法的理解,并将人工智能技术的知识运用到自己所研究的领域,以做到学以致用。

3结论

人工智能技术在一定程度上代表着信息技术的前沿,该文对《人工智能技术》的课程教学进行了一些探讨,教学与实践效果有了显著提高,但仍然有许多方面还需要我们继续探讨和改进。

参考文献:

[1]蔡自兴,徐光佑.人工智能技术及其应用[m].北京:清华大学出版社,2003.

[2]蔡自兴,肖晓明,蒙祖强,等.树立精品意识搞好人工智能技术课程建设[J].中国大学教学,2004(1):28-29.

人工智能与教学篇2

关键词:学习对象元数据;学习导航;资源整合

随着无线互联网、“三网”融合等信息高速公路基础设施的逐步完善以及互联网教学资源的迅速增长,互联网作为一种信息与知识的传播手段正在改变教与学的关系。同时,现代社会对人才的多元化需求也要求学生具备通过互联网进行自主学习与评价的能力。

互联网教学资源具有数量多、形式多样、分布式存储、不断变化且无统一规范等特点。同时,教学资源与学习者及学科知识模型之间也没有统一的关联规范。对于大多数学习者而言,在利用含有海量教学资源的互联网进行学习时通常会迷失方向。为提高互联网优质教学资源的利用效率,迫切需要对互联网上不断增加的海量教学资源进行整合并为学习者提供个性化学习导航服务。关于教学资源整合以及学习导航的方法得到了广泛地研究[1-4]。

学习对象元数据(Lom,Learningobjectmetadata)规范是ieee采用的一种表示学习对象(教学资源)信息的规范。不但可以用于整合教学资源,还可以表示教学资源之间的依赖关系。

本文提出一种教学资源整合以及学习导航的框架,采用Lom表示教学资源元信息,利用XmL表示Lom,并将Lom的XmL数据转换为扩展知识结构图,并在扩展知识结构图的基础上实现教学规划与学习导航。

1基本框架

1.1基于学习对象元数据(Lom)的资源整合

全国信息技术标准化技术委员会(CeLtS)教育技术分会制定了教育信息相关规范,CeLtS将ieee的学习对象元数据(Lom,Learningobjectmetadata)规范封装在CeLtS-3中,包括3个子规范,其中CeLtS-3.1为信息模型规范,CeLtS-3.2为元数据的XmL绑定规范,CeLtS-3.3为实践指南,CeLtS-3.4为测试规范。Lom规范表示了学习对象的9大类元信息,包括:通用、生存期、元-元数据、技术、教育、权利、关系、评注、分类等。

Lom数据项如图1所示,有关Lom的详细描述参见文献[5-6]。

Lom数据项中,“关系”类信息描述了相关学习对象之间的关系,为学习导航提供了基础数据。CeLtS-3.1采用了DublinCore关于学习对象关系的类别,其中“a基于B”和“a需要B”两类关系表示a依赖B,“B基于a”和“B需要a”两类关系表示B依赖a。

1.2基于扩展知识结构图(eKG)的学习导航

文献[7]提出了一种基于扩展知识结构图的教学规划方法,其中扩展知识结构图(extentedKnowledgeGraph)定义为一个满足以下条件的有向无环图,(1)图中包含两类节点:知识节点和方法节点;(2)知识节点的后继节点为方法节点,表示完成该知识点教学的多种可选的教学方法。方法节点的后继节点为知识节点,表示运用该方法完成学习目标所需掌握的基础知识;(3)每个方法节点设多个置权值,表示不同的学习者通过该方法完成教学目标所需的费用。

一个示例性的扩展知识结构图如图2[7]所示。

Lom表示的学习对象(教学资源)信息可以很好的表示扩展知识结构图。设某一学习对象a(其标识为a),利用“a.通用类.标题”表示该学习对象所学习的目标知识点,学习对象a即为学习该目标知识点的一种学习方法,“a.教育类.难度”则表示该方法的初始难度,该难度值将根据不同学习者的评价进行调整。利用学习对象a来学习其目标知识点的基础知识集合则记录在“a.关系类”元数据中,包括所有“a.关系类.类型”为“a基于B”或“a需要B”的资源(用“a.关系类.资源”表示)。

1.3系统框架

系统管理学习对象(教学资源)元数据,学习者,教学专家(学习对象提供者)等信息,系统并不维护学习对象本身。系统基本功能包括:

1)为教学专家提供接口,将学习对象的Lom信息录入到Lom数据库,并转化为XmL表示形式;

2)自动将XmL表示的Lom数据库转换为扩展知识结构图;

3)根据扩展知识结构图进行学习导航;

4)为学习者提供接口,自主学习导航以及评价反馈。

系统结构如图3所示。

2人工智能教学资源整合和学习导航实例

以人工智能中状态空间搜索有关教学资源整合和学习导航为例,对上述系统加以说明。

与状态空间搜索有关的知识点包括:状态空间、状态空间搜索、盲目搜索、宽度优先搜索算法、深度优先搜索算法、启发式搜索、a*算法、a*算法的实现。学习这些知识点的依赖关系如图4所示。

以上示例分别说明了两个学习对象Lom的主要XmL元素,前者的元素说明了“a*算法”对于“状态空间搜索”的依赖关系。与a*算法有关的部分教学资源如表1所示,由于篇幅限制其他资源的Lom表示从略,一种典型的学习路径为:(9)-(7)-(11)-(12)-(1)-(5)-(13)-(4)。

3结语

本文对教学资源整合以及学习导航方法进行了探索。提出一种教学资源整合以及学习导航的框架,采用Lom表示教学资源元信息,利用XmL表示

Lom,并将Lom的XmL数据转换为扩展知识结构图,并在扩展知识结构图的基础上实现教学规划与学习导航。后续工作将建立Lom的XmL收集以及转换系统,为教学资料提供者以及学习者提供服务接口。

参考文献:

[1]梁汉立.基于概念网的知识组织与学习导航机制的研究[D].长沙:中南大学信息科学与工程学院,2003.

[2]陈其晖,徐海宁,凌培亮.基于知识点关系的学习导航系统建模方法研究[J].计算机科学,2007,34(12):193-196.

[3]李益才,张小真.模型驱动的智能教学系统分层规划的研究[J].重庆交通学院学报,2005,24(5):157-161.

[4]姜云飞.基于知识结构图的智能教学规划[J].计算机研究与发展,1998,35(9):787-792.

[5]史元春,沈中南,向欣,等.学习对象元数据:信息模型规范(CeLtS-3.1)[eB/oL].[2007-10-17].celtsc.edu.cn/680751c665875e93/folder.2006-04-03.8417036039/celts-3/celts-3-1-cd3-0.pdf.

[6]郑莉,史元春,沈中南,等.学习对象元数据:XmL绑定规范(CeLtS-3.2)[eB/oL].[2010-05-02].celtsc.edu.cn/680751c665875e93/folder.2006-04-03.8417036039/celts-3/celts-3-2-ts.pdf.

[7]段琢华.具有学习能力的智能教学规划[D].广州:中山大学软件研究所,2002.

tutorialmaterialintegrationandLearningnavigationforartificialintelligenceBasedonLom

DUanZhuo-hua

(SchoolofComputerScience,ShaoguanUniversity,Shaoguan512003,China)

人工智能与教学篇3

关键词:人工智能;创新性教学;精品课程;课程建设;教学改革

人工智能课程是计算机类专业的核心课程之一,也是智能科学与技术、自动化和电子信息等专业的重要课程,其知识点具有不可替代的重要作用。该课程内容广泛,具有很强的综合性、应用性、创新性和挑战性[1],其开设能够更好地培养学生的创新思维和技术创新能力,为学生提供了一种新的思维方法和问题求解手段。同时,本课程能够培养学生对计算机前沿技术的前瞻性,提高他们的科技素质和学术水平。通过课程的学习,学生对人工智能的定义和发展、基本原理和应用有一定的了解和掌握,启发了对人工智能的学习兴趣,培养创新能力。

中南大学人工智能课程开设于20世纪80年代中期。1983年,蔡自兴作为访问学者赴美国普度大学研修人工智能,并与美国国家工程科学院院士傅京孙(K.S.Fu)教授及清华大学徐光v教授合作研究人工智能。在傅京孙院士教授的指导下,蔡自兴和徐光v教授执笔编著《人工智能及其应用》一书,并于1987年5月在清华大学出版社问世,成为国内率先出版的具有自主知识产权的人工智能教材。本教材不仅为我校人工智能课程提供了一部好教材,而且促进了国内高校普遍开设人工智能课程。此后,又陆续编著出版了《人工智能及其应用》第二版、第三版“本科生用书”和“研究生用书”、第四版等,修读该课程的学生也与日俱增。该书第二版还获得国家教育部科技进步一等奖。经过近20年建设,该我校人工智能课程于2003年评为国家精品课程,并在2008年评为国家双语教学示范课程。这是至今国内唯一同时获得部级精品课程和双语教学示范课程的人工智能课程。同时,我们还开发了人工智能网络课程,具有网络化、智能化和个性化等特色,被国家教育部评为优秀网络课程,供兄弟院校人工智能教学参考使用,受到普遍欢迎[2]。

作为国内第一门人工智能精品课程,我们按照教育部精品课程标准建设《人工智能》课程,尤其是在教学内容、创新性教学方法和教学模式上进行不断进行改革与探索,取得了很好的效果。本文即为我校人工智能精品课程建设与改革经验的初步总结。

1教学内容优化

1.1课堂教学内容优化

教学内容的确定是课程的首要任务。如何选好教学内容,使学生既能了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件难事。教学内容除了包含基础理论外,还应该反映人工智能领域的新发展和新动态,跟上学科发展的步伐。本课程最初设定的教学内容分基础部分和扩展应用部分。基础部分主要包括人工智能的定义和发展、知识的表示以及推理,而扩展应用部分主要包括专家系统、机器学习、机器规划、机器视觉等。

近年来人工智能科学的快速发展,涌现出了大批新的方法和算法,研究热点问题也从符号计算发展到智能计算和agent等。

学内容,既能使学生了解本领域的概貌,又能适合学生的基础,便于他们在有限的时间完成学习任务,是一件难事。教学内容除了包含基础理论外,还应该反映人工智能领域的新发展和新动态,跟上学科发展的步伐。本人工智能课程最初设定的教学内容分基础部分和扩展应用部分。基础部分主要包括人工智能的定义和发展、知识的表示以及推理,而扩展应用部分主要包括专家系统、机器学习、机器规划、机器视觉等。

近年来人工智能科学的快速发展,涌现出了大批新的方法和算法,研究热点问题也从符号计算发展到智能计算和agent等。

随着科学技术的不断进步,在科学研究和工程实践中遇到的问题变得越来越复杂,传统的计算方法无法在一定时间内获得精确的解。为了在求解时间和求解精度上取得平衡,很多具有启发式特征的智能计算算法应运而生。这些算法通过模拟大自然和人类的智慧来实现对问题的优化求解。计算智能作为人工智能的一个新的分支是目前的研究热点,它主要涉及神经计算、模糊计算、进化计算和人工生命等领域,在如模式识别、图像处理、自动控制、通信网络等很多领域都得到了成功应用。另一个近10年来人工智能的研究热点是agent和多agent系统,其理论最早来自分布式人工智能,并随着并行计算和分布式处理等技术的发展而逐渐成为热点。

以上两个内容都是人工智能的重要分支。因此,我们在《人工智能及其应用》第三第3版[3]和第四第4版教材[4]中已经顺应形势加入了这方面的内容,并将教学内容也进行了相应的扩展,加入了计算智能、分布式人工智能与agent。由于不确定性推理和基于概率的推理方法应用也越来越广泛,我们也将此类非经典推理方法单独作为一章来进行教学。另外,还增加了一些新的内容,如本体论和非经典推理、粒群优化和蚁群计算、决策树学习和增强学习、词法分析和语料库语言学,以及路径规划和基于web的专家系统等。图1给出本课程的教学内容大纲。

人工智能的教学内容涉及面广且内容较多,要在有限课时内完成教学计划并让学生掌握,具有一定难度。因此需要根据教学对象的需求有所取舍。中南大度。因此需要根据教学对象的需求有所取舍。中南大学在智能科学与技术、计算机、自动化三3个专业中均开设了人工智能课程,根据相关专业课程教学对象,对学时和教学内容进行适当调整。对于智能科学与技术专业,人工智能课程为必修课,共48个学时含实验8个学时。表1表示为相关专业的人工智能课程教学内容分配情况。对于计算机和自动化专业,人工智能课程为选修课,共32个学时含实验8个学时。许多兄弟院校的计算机专业都把人工智能定为必修课,课程学时也在50学时左右。因此,我们一再强烈建议我校的计算机专业把人工智能列为必修课,并适当增加学时。由于智能科学与技术专业开设有专家系统和智能计算选修课程,因此在人工智能教学内容中只将这两部分做简要阐述,而将重点放在知识表示和推理以及扩展应用上。对于计算机专业学生来说,除基本的知识表示和推理外,计算智能和agent技术也是他们在软件开发和通讯技术理论学习中需掌握的重要概念。同时,计算智能、专家系统对自动控制和电气工程也十分重要,对自动化专业则应掌握该方面的内容。

1.2实验实践教学创新

国内人工智能课程在开设之初大多没有安排实验内容,仅为理论基础和概念讲授。由于理论比较抽象,很难理解,学习效果不理想,学生们对于其应用实现也十分困惑。此后,各高校也逐步在该课程中分配了实验学时,大多数采用prolog语言和专家系统作为实验语言和对象[5]。为了改进该课程的教学,我们也从没有实验到将实验学时从零调整为设置4个学时的实验课时,然后到现在的8个学时的实验课时。随着课堂教学内容的改革,实验内容也进行了优化和更新。

人工智能课程实验的目的是帮助学生掌握基本理论,发挥主动性,研究探讨人工智能算法和系统的运行和实现过程,提出思路并验证自己探索的思路,从而更好的地掌握知识,培养研究能力和创新能力。因此,在实验教学内容的设计上,实验项目应具备研究性和综合性。实验项目目标明确,要求学生带着问题和任务进行实验,但实验过程又要有一定的灵活性,学生可以根据自己的思考进行适当的调整。再者,充分采用虚拟实验方式进行实验,大大提高了学生的兴趣,提供了分析和探讨智能算法的很好平台。同时,学生的实验数据和实验结果分析既有格式要求,又给学生报告自己的研究的过程和结果留有空间,并在评分时加以充分考虑。这些做法能够鼓励学生,特别是鼓励优秀学生进行独立性研究,满足他们学习的需求。

1)人工智能课程的实验环节不足和课时分配问题。

中南大学的人工智能课程的实验环节经历了从精品课程建设前没有到开设,一直到其内容和形式上的不断改进过程。但目前实验还主要处于演示性和编程的实验阶段,而非设计和训练阶段。此外,由于人工智能课程涵盖范围广、内容多,而课程所设置的学时有限。,如何分配好课堂教学与实验课时也是一个需要在今后课程建设中不断探索的问题。

对于某些专业的人工智能课程,可以考虑单独开设人工智能实验课程或人工智能程序设计与实验课程。

2)人工智能技术发展迅速情况下如何保持该精品课程持续发展的问题。

人工智能作为一门高度融合的交叉科学,其发展速度迅速,不断有新理论、新问题涌现出来。我们的

人工智能教学既要注重基础理论知识,又要紧跟学科发展的步伐,势必要求对课程内容进行不断更新,这对我们的教学资源和教师素质都提出了更高的要求。

4结语

本文介绍了中南大学的精品课程――人工智能课程教学内容和创新性教学方法的一些探索,已在课堂教学内容的优化、实验环节的改进、教学方法的创新的实施上取得了很好的效果,充分激励了学生的学习积极性和主动性,多方位培养学生发现问题、分析问题和解决问题的能力。我们的想法和做法可供兄弟院校同行参考。不过,仍然存在一些不足之处。随着智能科学与技术的发展和更为广泛的应用,人工智能课程的重要地位必将更加突显,我们也需要继续努力,与时俱进,不断完善人工智能精品课程的建设。

注:本文受教育部质量工程部级精品课程人工智能(2003)、全国双语教学示范课程人工智能(2007)项目支持。

参考文献:

[1]薛莹.创新教育新途径人工智能与机器人教育:哈尔滨市教育研究院张丽华院长访谈录[J].中国信息技术教育,2010(1):20-22.

[2]蔡自兴,肖晓明,蒙祖强,等.树立精品意识搞好人工智能课程建设[J].中国大学教学,2004(1):28-29.

[3]蔡自兴,徐光佑.人工智能及其应用[m].3版.北京:清华大学出版社,2003.

[4]蔡自兴,徐光佑.人工智能及其应用[m].4版.北京:清华大学出版社,2010.

[5]韩洁琼,闫大顺.人工智能实验教学探讨[J].计算机教育,2009,(11):135-138.

[6]刘丽珏,陈白帆,王勇,等.精益求精建设人工智能精品课程[J].计算机教育,2009,(17):69-71.

explorationofinnovativeteachingmodeofartificialintelligenceelabrateCourse

――ConstructionandReformationinelaborateCourseofartificialintelligence

CHenBai-fan,CaiZi-xing,LiULi-jue

(instituteofinformationScienceandengineering,CentnalSouthUniversity,Changsha410083,China)

人工智能与教学篇4

自1956年人工智能概念在达特茅斯会议提出以来,人工智能的发展超出了人们的想象:1997年,iBm超级电脑深蓝击败国际象棋世界冠军卡斯帕罗夫;2016年,由Google旗下的深度学习公司Deepmind开发的人工智能围棋程序alphaGo战胜了世界围棋冠军李世石,这件事轰动了全世界[1]。随后有关人工智能的热点应用不断推出,比如无人驾驶、智能医生、语音与人脸识别等,让我们认识到人工智能的应用已与生活息息相关。在教育领域,人工智能应用也取得了重大突破,比如2017年高考期间,机器人艾达挑战高考数学,10分钟就答完,获得134分,激发了教育领域对人工智能的巨大热情,同时也引发了人们对教育的忧虑与反思[2]。2017年7月国务院印发了《新一代人工智能发展规划》,提出人工智能产业竞争力在2030年要达到国际领先水平。目前世界主要发达国家先后从国家层面人工智能政策规划,将人工智能作为国家经济发展、社会变革和国际竞争的新动力[1]。

1人工智能定义和发展阶段

人工智能的英文是artificialintelligence,简称ai,人工智能的内容不断丰富和发展,至今还没有统一的定义。比较权威的说法认为[3]:人工智能是关于人造物的智能行为,主要包括知觉、推理、学习、交流和在复杂环境中的行为。人工智能的长期目标是发明出可以像人类一样或能更好地完成以上行为的机器,短期目标是理解这种智能行为是否存在于机器、人类或其他动物中,所以它包含了科学和工程双重目标。根据其功能强弱,人工智能分为三类,即弱人工智能、强人工智能还有超级人工智能。人工智能的发展大体上经历了三个阶段,第一阶段是20世纪50~60年代,提出人工智能的概念。主要以命题逻辑、谓词逻辑等知识表达和启发式搜索算法为代表;第二阶段是20世纪70~80年代,提出了专家系统,同时基于人工神经网络的算法研究发展迅猛,伴随着半导体技术计算硬件能力的逐步提高,人工智能逐渐开始突破;第三阶段是自20世纪末以来,尤其是2006年开始进入了大数据和自主学习的认知智能时代。随着移动互联网的快速发展,人工智能的应用场景也开始增多,特别是深度学习算法在语音和视觉识别上实现了巨大的突破[4,5]。人工智能的技术体系主要分为四个方面,即机器学习、自然语言处理、图像识别以及人机交互等。当今击败世界围棋冠军李世石的alphaGo主要应用了机器学习中的深度学习算法。

2人工智能应用状况与反思

2017年,阿里的无人超市落地杭州,进店、挑选商品、付款支付一气呵成,消费者几乎在完全自主的状态下完成购物。与此类似,昆山富士康公司裁员6万名工人,全用机器人代替。京东、淘宝引入的智能机器人替代了原来的仓库管理、人工客服等岗位。因此有学者悲观地断言:在人工智能时代,因为很多职业岗位或技能将被智能机器人所代替,职业院校毕业生很有可能面临毕业就失业的窘境。笔者认为,我们不应该重蹈历史上英国制定的限制汽车推广使用的《红旗法案》的悲剧。正是这个在今天看来毫无道理的,但却持续了三十年的法案让德国和美国的汽车工业完全赶上来,最终远超英国。人工智能应用必将淘汰或替代很多现有就业岗位,但同时又会创造新的就业岗位,这是一个伴随着产业智能升级的、长期的艰难过程,对于职业教育来说,这既是一个严峻的挑战,也是一个难得的机遇。

3人工智能时代职业教育的发展策略

为了更积极地适应人工智能时代,除了国家层面的统筹规划、科学指导和政策、经费支持之外,建议还要做好以下几个方面的发展规划。

3.1解放思想,更新理念与制度

中国工程院院士潘云鹤提出,人工智能走向2.0阶段的真正原因是世界正从原来由人类社会与物理空间构成的二元空间,向着由物理空间、人类社会与信息空间构成的新三元空间演变[6]。因此,职业教育在教学和管理过程中应该加入人工智能等相关理念和技术,同时其办学定位、人才培养方案、专业建设、课程内容、考核评价标准等方面都需要做出相应的改进。比如当前大多数职业院校非计算机类专业的课程安排中,信息技术类课程课时偏少,数据处理、编程类或人工智能课程几乎没有,这样的安排不利于提升学生的信息素养,必须做出相应的调整,同时适当减少将来可被人工智能应用替代的技能课程的课时,比如电算会计、环境监测等。

3.2善用人工智能,提升教学与管理

在人工智能背景下,教师们现有的重复性工作和大量数据积淀的教学任务,比如批改作业或阅卷或课堂考勤都可能被人工智能取代,因此,教师能腾出更多的时间,更充分地关注学生的个性差异,从而为学习者提供更精确的个性化学习服务,教师也能够及时调整教学方法和手段,优化教学评价方式,补充教学资源,减少备课重复性工作,提升教学效率,真正地做得因材施教,同时学生们的学习方法和方式将不同程度地得到重构,基于大数据的智能在线学习平台大量出现,不同的学校、学科及专业课程不再封闭,学习时时处处都可以进行,碎片化与个性化学习将日益普遍。教师能完整地跟踪学生的整个学习过程,比如学生上课是否睡觉、是否玩手机、是否在教室里与其他同学合作学习等,都能够根据监测数据进行智能解析,有利于更有效、更全面地对学生进行过程性评价。大部分课程考试将全部自动化,考生资格审查利用人脸识别、监考与阅卷都由智能机器来完成。上述人工智能给教学带来的这些变化既需要网络硬件设施和相关软件系统来支撑,更需要职业教育的教师们继续提升信息技能、深化和加强信息素养。

3.3深化产教融合、优化实训筑牢就业

在人工智能时代,职业院校应与相关行业统筹发展,深化产教融合,拓宽企业参与的途径,深化引企入教改革,支持引导企业深度参与职业院校的教育教学改革,多种方式参与学校专业规划、教材开发、教学设计、课程设置、实习实训,促进企业需求融入人才培养环节;鼓励以引企驻校、引校进企、校企一体等方式吸引优势企业与学校共建共享生产性实训基地;全面推行现代学徒制和企业新型学徒制,推动学校就业与企业招工无缝衔接。比如职业教育将出现新师徒制,行业领域的行家里手将通过互联网以VR或者aR技术言传身教的方式,带领规模庞大的徒弟用碎片时间进行学习与实践。

3.4完善终身学习的职业教育体系

随着人工智能应用的深入推广,职业院校培养的技能型人才所掌握的技能如果不及时进行充电升级,中低端的重复性强的工作将面临被智能机器人不同程度进行替代的危险。所以对于不少技能岗位,守着一门技术吃一辈子老本的时代将一去不复返。因此,职业教育要继续完善终身教育体系,为职业教育学生的充电升级铺就一条纵深的通道。

3.5人文教育为道,智能教育为用

在人工智能的帮助下,简单重复性的工作将被机器替代,人们将从重复繁琐的事务中解脱出来,转去从事更具有创造性、创新性或者更具有情感类的工作,这些工作需要人与人之间的合作与沟通,因此,职业教育更需要注重学生思想道德水平、人文综合素质的培养,这是做人之道,在此基础之上激发学生们的学习主动性和创造力,促进跨界思维的形成,更好地掌握人工智能时代的相关职业岗位知识和相应的智能技能。著名理论物理学家霍金曾说:完全人工智能的研发可能意味着人类的末日。tesla汽车和SpaceX公司创始人马斯克说:我们必须非常小心人工智能。如果必须预测我们面临的最大现实威胁,恐怕就是人工智能了[7]。一群没有良好道德水平的,但掌握了智能技术或设备的人们是危险的,所以职业教育应该从学生入学起就开始,不断提升学生的思想道德水平,热爱社会、热爱生活、乐于助人、与人为善。只有这样,人工智能应用才能更好地服务人们、造福社会。

4结论

人工智能正在快速又深刻地改变我们的教学、生活和工作方式,也对职业教育提出了严峻的挑战,同时也是一个巨大的机遇。职业教育在面对人工智能时代的变革时,须要从国家政策、理念与制度、教学管理、产教融合、终身学习等方面做好应对,切实地把握人文教育之道对智能教育之用的统领原则,培养能很好地掌控人工智能技术和应用的人才。

参考文献

[1]谢青松.人工智能时代职业教育的转型和发展[J].教育与职业,2018(8):50-56.

[2]苏令.人工智能来了,教育当未雨绸缪[eB/oL].[2018-05-15].

[3]nilsJ.nilsson.人工智能[m].郑扣根,庄越挺,译.北京:机械工业出版社,2000.

[4]王璐菲.美国制定人工智能研发战略规划[J].防务视点,2017(3):59-61.

[5]贺倩.人工智能技术在移动互联网发展中的应用[J].电信网技术,2017(2):1-4.

人工智能与教学篇5

先给大家重点推荐一本期刊:中国职业技术教育

中国职业技术教育杂志征稿信息

《中国职业技术教育》杂志是由中华人民共和国教育部主管,教育部职业技术教育中心研究所、中国职业技术教育学会和高等教育出版社共同主办的一份综合性中文期刊,集政策指导性、学术理论性和应用服务于一身,是教育部指导全国职业教育工作的重要舆论工具,是服务各级各类职业教育机构的主要阵地。

中国职业技术教育投稿栏目:主要有职教要闻、专稿专访、综合管理方略、课程教材、教研与教学、师资队伍建设、研究与探讨、职业指导、职业培训、高等职业教育等栏目。

再给大家推荐职业教育范文:人工智能背景下职业教育变革及模式建构

董文娟1,黄尧2(1.天津大学教育学院,天津300350;2.北京师范大学国家职业教育研究院,北京100875)

摘要:顺应人工智能时代的浪潮,基于新兴技术的职业教育变革及新模式建构势在必行。该文从职业教育智慧化、经济发展、政策保障、信息化生态重构四个方面,剖析了人工智能时代职业教育变革的现实诉求,并进一步分析了当前职业教育外部环境及其自身发展的困境。人工智能背景下职业教育的变革体现出融合、创新、跨界、终身化的新特征。基于此,从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面,探究职业教育的变革路径及模式建构。最后探讨了职业教育模式变革还面临回归教育本质、规避技术弊端等挑战,并提出“适应—引领人工智能”的发展目标。

关键词:人工智能;职业教育变革;模式建构;智慧化

“人工智能的迅速发展将深刻改变人类社会生活、改变世界。特别是在移动互联网、超级计算等新理论、新技术及经济社会发展强烈需求的共同驱动下,人工智能发展呈现出深度学习、跨界融合、人机协同、群智开放、自主操控等新特征。”[1]人工智能作为新一轮产业变革的核心驱动力,为我国供给侧结构性改革下的“新常态”经济发展注入新动能,使人们的思维模式和生活方式发生了深刻变革。近年来,国家高度重视与社会经济发展联系最为密切的职业教育,积极推进职业教育信息化,运用人工智能改革教学方法和人才培养模式,构建新型智能职教体系,提升信息技术引领职业教育创新发展的能力。

一、人工智能背景下职业教育变革的现实诉求

人工智能对传统教育理念产生了革命性冲击,职业教育结构不断调整,劳动力素质与市场需求的矛盾、学习方式与自我价值实现的矛盾等促使职业教育向智慧化、智能化发展。目前,我国处于教育信息化2.0、工业4.0的新时期,全球范围内新一轮的科技革命和产业变革正在加速进行。“一带一路”“中国制造2025”人工智能等重大国家战略的提出,及以新技术、新产业为特征的新兴经济模式要求教育领域,尤其是职业教育培养行业、产业急需的技术技能型、智慧型人才,具备更高的创新创业能力和跨界整合能力,促进智慧化发展,助力经济转型升级。

(一)职业教育智慧化诉求:职业教育信息化发展的必然选择

“智慧教育是以物联网,大数据等信息技术为依托,创造智慧教学环境,转换教育方法,内容与手段,注重教育网络化,个性化和智能化的一种教育新模式。”[2]智慧教育作为“一种由学校、区域或国家提供的高学习体验、高内容适配性和高教学效率的教育行为(系统)”,被视为教育信息化发展的高端形态[3]。因此,职业教育的智慧化并非简单的数字化,强调信息技术推动职业教育教学模式和方法的变革,改变思维模式,创建价值等方面共享的学习共同体,培养创新型、智慧型人才。

职业教育智慧化是职业教育信息化发展的必然选择。目前,我国的职业教育信息化水平正在稳步提高,投入持续增加,各种智能信息技术应用于教育教学、实习实训、测量评价等领域,并逐步成熟,正在努力打造一个信息化、智慧化的现代职业教育生态系统。新时期我国很多地区及职业院校积极提升现有信息化系统的智慧化水平,积极创建智慧校园、智慧社区等,逐步实现了组织管理的智慧化、资源环境的智慧化和服务评价的智慧化。

(二)经济发展诉求:人工智能时代的新兴经济需要高技能智慧型人才

人工智能时代职业教育运用移动互联网、大数据等新兴技术,与经济及其他部门跨界融合,不断创造新产品、新业务,推动职业教育模式创新,形成了以互联网为基础设施、人工智能为实现手段的经济发展新常态。人工智能时代是以现代科学技术为支撑的新时代,各行各业的运作发展和对知识技术的掌握要求达到了更高层面,相应的教育需求也有所提升,市场环境渴求勇于创新、个性化的高技能智慧型人才。职业教育要应对行业上升发展的劳动力需求问题,基于人工智能应用,提高技能培养层级,以适应新的社会劳务需求。现代企业生产依托互联网科技,与智能化设备直接联接,通过数据分析和应用,促进科技成果转化为生产力。劳动密集型企业已不适应现代行业、产业发展,需升级为网络智能型,与此同时,职业院校的课程模式、专业设置、实习实训、师资结构等也做出相应的调整和革新,既促进了职业教育的智慧化、智能化,又推动了产业升级和工业变革。

(三)政策保障:国家从宏观层面保障人工智能时代的职业教育发展

2016年是我国人工智能元年,2017年我国颁布了《新一代人工智能发展规划》,提出了“将发展人工智能放在国家战略层面进行系统谋划和布局”,这预示着我国人工智能时代的全面到来,为我国职业教育的发展提供了良好的宏观政策环境。人工智能给职业教育带来了符合时代精神的新内容,积极融合信息技术,整合职业教育资源,提升公共服务水平,影响和改变了原有的教育生态。紧密依托信息共享平台,突破时空限制,让学习者自我选择,更加人性化和智能化。我国很多职业院校已经开启了智慧校园的行动计划,一些大中城市也在积极制定实施智慧城市的发展规划,在良好的政策保障中提升智慧化水平。

(四)信息化生态重构诉求:人工智能时代的职业教育变革是对职业教育信息化生态系统的重构

“依据《2006-2020年国家信息化发展战略》,我国正在有序推进数字教育向智慧教育的跃迁升级和创新发展。”[4]在新兴智能信息技术的催促下,技术变革带来了职业教育系统的颠覆性创新改革,打破现有的条条框框,改革传统教育模式,再造教育业务新流程。在职业教育领域创新应用物联网、大数据、人工智能等先进技术,提升各科各门教育教学业务,打造各级各类智能实训部门、培训机构,覆盖贯通中高职院校,整合系统内外现有资源,推进智慧教育生态有序发展,为各类用户提供最适合、最智能的职业教育资源和服务,完成对职业教育信息化生态系统的重构。

二、当前职业教育发展的现实困境

人工智能对各行各业的影响具有革命性和颠覆性,可能带来新的发展机遇,也可能带来不确定性的挑战,比如可能会改变就业结构、影响政府管理、威胁经济安全等,还可能会冲击法律与社会伦理,影响社会稳定乃至全球治理。当前,人工智能与“大众创业、万众创新”浪潮席卷而来,职业院校既是人工智能应用的战场,又是培养技术创新型人才的“梦工厂”[5]。人工智能时代的职业教育信息化发展迅速,影响是广而深的,对职业教育外部环境及其本身都造成了极大的冲击。

(一)职业教育外部环境发展困境

“据联合国教科文组织预测,到2020年,人工智能将替代20亿个工作岗位”[6],那些技术含量低、重复性强的技能将被智能机器、数码设备所替代,工业机器人也将大面积应用。智能设备替代行业劳动力,能够降低劳动成本,且具有高效、易操作等竞争优势。传统职业教育培养模式很难适应未来行业、产业的发展需求,人工智能冲击职业教育就业岗位,撼动其所依附的岗位基础,对职业教育的生存与定位产生了威胁。因此,根据智能时代职业教育的岗位特征与需求,提升职业人才的知识结构和专业技能,是新形势下职业教育的发展方向。

(二)职业教育自身发展困境

近年来,人工智能在职业教育领域内的应用和提高是目前职业教育的发展趋势。我国重视职业教育信息化、智能化发展,各级各类职业院校在信息化基础设施建设、校园信息化管理等方面都有了显著提升,但信息技术与职业教育的深度融合仍不够紧密,表现出信息化管理效率低、科学决策水平低等现象。人工智能背景下职业教育自身发展的困境表现在:

1.课程与教学困境

职业院校新课程改革提倡构建智慧课堂,制定个性化学习计划,注重课堂实施效果。但目前的实际课程教学仍是以教师为中心,强调知识的灌输,重视统一性和计划性,与教育改革提倡的个性化教学相去甚远。教学方法、教学理念更新慢,很难激发学生的内在学习动力,创新性思维弱,使得个性化教育的无法实现。近年来,中央、省、市、县四级教育平台逐步建立起来,课程与教学的层级设计逐步完善,但在实施的过程中,各级平台之间存在沟通不畅等问题,各级资源内容不系统,不衔接,导致无序叠加和资源的重复浪费,“精品课程”等项目丰富了课程资源,但质量不高。在线课程与教学以传统的科目、章节为单元,构建系统性的在线教育内容,为用户提供专业化的知识选择,但由于受时间条件等限制,大多数受教育者习惯于碎片化学习,连贯性和整体性差,缺乏对课程与教学体系的系统性学习。

2.认知困境

随着人工智能时代的到来,许多职业院校将“未来教室”“智慧课堂”定位为未来发展方向,进行了多种尝试和改革,如mooC混合教学、翻转课堂、多屏教学等,但“管理者和施教者对智慧教育的理解多停留在‘智慧课堂=多媒体+传统教学的层面’,教学观念和思维依然固化,并没有因为新技术的参与而得到实质改变”[7],缺乏对多媒体网络架构和智能学习平台的深层认识,更缺乏对管理评价和互动交流等模块的理解与掌握,虽投入大量人力财力采购了数量巨大、设备精良的多媒体设备和智能服务设备,但没有充分有效使用,大大限制了智慧教育的发展潜力。

3.用户困境

传统教学以群体教育为基本单元,教师和学习者作为学习共同体,在管理、学习的互动过程中形成强大的群体约束力,促进双方共同进步。在信息化教育时代,学习者自由掌握学习时间和进度,遇到问题可能无法及时解决并获得反馈,无法进行面对面交流,因此,基于人工智能网络化学习平台,学习者需要高自控力、高学习能力才能适应这种全新的学习方式。

4.评价困境

传统的评价方式多依靠经验和观察,智慧型评价则是基于学习过程的一种发展性评价,以采集到的学习数据为客观基础。在人工智能、数字信息化环境下教育效果的评价实际要受到很多因素的影响和局限,在信息技术与职业教育融合的过程之中,许多智能技术应用于教育教学实践,难以进行定性定量的智慧评价,如互动交流及深层次的学习评价等。

三、人工智能背景下职业教育变革的新特征

人工智能带来了思维模式的创新,改变了人们认识问题、思考和解决问题的方式,越来越多地依赖人与智能网络的协同创新。人工智能背景下的职业教育变革围绕经济社会发展大局,“主动服务国家重大发展战略,加大虚拟现实、云计算等新技术应用,体现校企合作、知行合一等职教特色,以应用促融合、以融合促创新、以创新促发展。”[8]人工智能背景下职业教育的变革必将加速推进职业教育的现代化、智能化进程,表现出了融合、创新、跨界和终身化的新特征。

(一)融合

人工智能技术科学应用于当前职业教育,在最短的时间内整合、重组大量的知识信息,形成科学的技术技能知识体系,为职业教育资源、企业资源、产业资源、社会资源等一切有可能联结的资源融合提供了可能。为促进职业教育的智慧化发展,在现有的合作模式、集团模式、产教融合模式等实体协作发展的基础上,建立智能互动的智慧教育供给平台、常态化智慧课堂和大数据化智慧教育生态系统,为我国新兴经济发展提供高技能、智慧型人才支撑。

(二)创新

信息化时代下“变”为创新立足之要点。创新时代最需要提升的就是创造智慧。“由知识的理解记忆,转向知识的迁移、应用并最终指向创造发明”[9],以提高学习者的学习能力和应用能力,提升其创新思维和智慧思维,不断开拓人类社会发展的高度和宽度。智能化、信息化的时代是创新不断的时代,是原有知识不断被更新、技术不断被升级的时代。人工智能促使社会化协同大规模发展,促进职业教育体系核心要素的重组与重构,创新生产关系,呈现出新的协作架构,开创了新的教育供给方式,增加了教育的选择性,推动了教育的民主化。学习者能够按照自己的价值观、兴趣与爱好等选择适合自己个性发展的学习方式和学习内容,促进学习者个性化、多样化发展,最终实现教育公平。

(三)跨界

智能科学与职业教育连接起来,搭建起两者沟通的桥梁,跨越了人工智能虚拟教育和线下实体教育的界限,实现了两者之间的融合。教育供给由竞争资源转变为协同合作,直线型的中心组织管理转向去中心化、泛化管理。通过大数据智能技术平台、远程教育平台等对职业教育资源进行整合共享,跨越教育边界,与市场、行业、企业以及职业教育培训机构对接,提供更加便捷的智慧化服务。

(四)终身化

人工智能时代职业教育的变革坚持“以人为本”的教育理念,满足学习者在任意时间、任意地点、以任意方式、任意步调终身学习的需求[10]。打破了地域和时间的限制,体现了教育的泛在化、个性化和终身化,与终身教育理念的发展目标不谋而合。人工智能时代社会经济发展加快,人们追求高层次自我价值的实现,充分体现出终身学习的必要性和紧迫性。目前,我国正在积极创建泛在学习环境,致力于构建终身化学习型社会,努力创造有利条件向全民提供终身教育与学习的机会。

四、人工智能背景下职业教育发展的模式建构

人工智能背景下职业教育的变革预示着全新思维意识形态、社会发展形态的变革,重塑职业教育可持续发展的新思维,重构信息时代职业教育的价值链和生态系统。智能化技术科学将现代职业教育内部各要素,以及内部要素与外部环境之间,通过虚拟技术和智能化手段互联贯通,突破传统教育价值的链状模式,使职业教育由传统模式走向“人工智能+职业教育”模式的建构。人工智能对职业教育课程、教学、评价、管理、教师发展等方面产生系统性影响,为职业教育提高教育质量和提升服务水平提供了技术支持和现实路径,解决不能兼顾职业教育规模和质量的矛盾问题。下面将从课程、教学、学习、环境、教师发展、评价、教育管理及组织等方面来探究职业教育的变革路径及模式建构。

(一)人工智能背景下职业教育的课程模式

人工智能时代的信息知识、科学技术正在以前所未有的速度增长、更新和迭代,呈现出了碎片化、多元化、创新性、社会性的特征。人工智能背景下职业教育的课程模式是为学习者提供按需可随时选择的知识储备智能模式,解决了传统职业院校课程教学的滞后性,呈现的是现代职业教育的前沿信息和内容。课程革命愈演愈烈,灵活多样的微课、慕课等形式层出不穷,在线课程将成为常态,信息传播媒介、知识获取方式等都发生了巨大改变,课程内容和结构的表现形态、呈现方式、实施及评价等也都进行了相应变革。智能化信息科学技术为课程的设计、架构、实施提供了快捷和便利,为学习者的个性化、终身化选择提供了多种渠道。人工智能背景下职业教育的课程模式的建构表现为:首先,线上线下融合的大规模开放课程融入现代职业教育,课程的表现形态和实施途径呈现出智能化、数字化、立体化的特征,成为学校常态课程的有机组成部分,为学习者提供了更多的可选择机会,使实施个性化课程成为可能。现代职业教育的课程内容强调学术性与生活性相互融合与转化,融入社会资源,立足于我国社会经济的新常态和学习者的全面发展,实现社会化协同发展,共赢共创;其次,课程实施的空间得以拓展,跨越了社会组织边界、职业院校边界,将从班级、年级、全校扩展到网络社区以及更大的空间。课程的整体结构从分散走向整合,以技术为媒介,形成跨学科、多学科整合的课程;最后,课程内容的组织、课程的实施逐步模块化、碎片化、移动化与泛在化,社会化分工更加精细,教师也将承担教学设计、技术开发、在线辅导等不同的角色。

(二)人工智能背景下职业教育的教学模式

人工智能时代将信息技术有效地融合于职业教育各学科的教学过程,从知识的传递转变为认知的建构,从注重讲授和内容,转变成重视学习过程[11],构建“以教师为主导,以学生为主体”的以数字化、智能化为特征的智慧教学模式,重视学生的主体地位,引导学生“自主、探究、合作”。人工智能背景下职业教育的教学模式的建构表现为:首先,人们的学习方法、认知方式和思维模式已经发生了巨大的转变。信息化教学使得信息技术已成为学习者认知的必要工具,认知方式也由“从技术中学”转型为“用技术学”。其次,信息化教学的重点从“面向内容设计”转变到“面向学习过程设计”,更加重视学习者发现问题、分析和解决问题能力的培养,关注学习者的学习过程,以及其获得学习活动的体验。同时,信息化教学要将课堂内的学习知识和课堂外的实践活动联结互动,按照学习者的个性化需求和认知方式自主选择学习内容。第三,智慧教学将成为课堂教学的新重点。日常教学工作形态不再是点线面的连接,而是呈现为智能化、立体化的教学空间,智慧课堂将会促进学习者的深度学习、交互学习和融合学习,智能备课、批阅以及个性化指导等也将成为教育者新的教学工作形式。从机械评价学习结果转变成适应性评价学习结果。第四,在线教学、整合技术的学科教学法将成为新的教学形态,促进教育均衡发展,实现跨学校、跨区域的流转。移动学习、远程协作等信息化教学模式,能够实现教师的“教”与学生的“学”的全面实时互动,最大限度地调动学习者的主观能动性,提升教学质量与人才培养质量。

(三)人工智能背景下职业教育的学习模式

智能系统和互联网络为学习者提供了丰富多元的学习资源和环境,推进了教育教学活动与学习环境的融合发展,人工智能背景下职业教育的学习模式也逐步建立起来,具体表现为:首先,智能时代的互联网络全面覆盖每一个人、每一个角落,活动空间由课堂内拓展到课堂外,学习与非正式学习正在互相补充、互相与融合,导致学习者的学习行为变化、学习方式的革新。其次,基于互联网出现了一批创新的学习方式,借助情景感知技术及智慧信息技术,进行真实过程体验的情境学习,促进学习者知识迁移运用的情境化和社会化。第三,借助互联网云技术和各种应用工具,学习者可根据自身学习需求,选择最优学习方式,也可利用数据分析技术,追踪记录学习路径和学习交互过程,随时随地获取个性化教学服务和量身定制的学习资源,拓宽了智慧教育视野。第四,各职业院校开始拓展校园智慧学习的时间和空间,以实现虚拟和现实相互结合的智慧校园育人环境。推进网络学习空间建设,加强教与学全过程的数据采集和分析,“引导各地各职业院校开发基于工作过程的虚拟仿真实训资源和个性化自主学习系统”[12],强化优质资源在学习环境中的实际应用。

(四)人工智能背景下职业教育的环境模式

智慧教育环境是以大数据、多媒体、云计算等智能信息技术为基础而构建的虚实融合、智能适应的均衡化生态系统。信息技术与职业教育的深度融合,为师生的全面发展提供了智慧化的成长环境,如智慧云平台、智慧校园。人工智能背景下职业教育的环境模式的建构表现为:首先,智慧教育环境将信息技术与职业教育服务结合、面对面教学和在线学习结合,形成数字化的、虚实结合的职业教育智能服务新模式。其次,智慧教育环境将促进各种智能化、数字化信息技术融入职业院校的各个业务范围和业务领域,与系统内的其他业务横向互联、纵向贯通,且信息能够适时生成和采集,全过程实现数字化与互联化。第三,智慧教育环境能够感知学习者所处的学习情境,理解学习者的行为与意图,满足学习者的个性化需求,提供多元化的适应服务和智能感知的信息服务。互联网应用基于智能数据分析,实现智能调节与自动监控,为学习者提供定制式的学习服务和个性化的学习环境。未来教室必将变成“虚拟+现实”的智慧课堂,在网络空间中参与线上课程、线下活动,实现线上线下互动交流。同时,智慧校园的创建和管理,能够对每个班级、学区进行动态管理,构建出一个以问题、任务为线索,学生实现自主学习的知识体系和促进师生互动、生生互动的智慧管理平台。到2020年,“90%以上的职业院校建成不低于《职业院校数字校园建设规范》要求的数字校园,各地普遍建立推进职业教育信息化持续健康发展的政策机制”[13],以学习者为中心的自主、泛在学习普遍开展,精准的智能服务能够满足职业教育的终身化定制。

(五)人工智能背景下职业教育的教师发展模式

人工智能背景下职业教育的变革对教师的专业发展、素质能力提出了新要求,改变了教师的能力结构和工作状态。教育信息化大背景下,互联网技术、多媒体手段的产生、智能化设备的使用极大提高了教师的专业发展和能力素养,以适应新课程改革与教育信息化的要求。人工智能背景下职业教育的教师发展模式的建构表现为:首先,新时代教师专业发展的内在要求和外在环境都要求教师能够认识、了解和应用互联网新技术工具,促使教师专业发展能力和素养的提升和丰富。其次,教师的专业发展要面向实际、情境化、网络化的教学问题,教师需要在多变的教育情境中综合运用核心教学技能,将信息技术知识、学科内容知识、教学法知识很好地融合并迁移运用。新时代的教师要学会掌握使用智能化设备和数字化网络资源,积极加强与其他专家、教师的合作,或远程工作,形成基于智慧教育技术的多元化的学习共同体。教师的工作状态由个体的单独工作转变为群体的共同协作,大大提升了教师的工作效率。第三,信息化背景下教师的教学理念要发生转变,由促进学生“接受学习”转变为“主动建构”,由“被动适应”转变为“主动参与”,越来越强调以学生为中心的过程体验,从了解信息技术转变为掌握智慧教育技术,保持学科知识,教学方法,核心技术的动态平衡,促进学生智慧学习的发生。第四,信息化教师要学会使用智能化教育技术,积极开发数字化学习资源,创设丰富多元的教学活动,鼓励学生掌握智能信息工具,学会探究和解决问题,发展提升学生的创新思维能力和信息化学习能力。教师的信息化教学能力和素养全面提升,信息技术应用能力实现常态化。

(六)人工智能背景下职业教育的评价模式

现代教育价值趋于多元,以互联网为基础的智能化信息技术使教育评价在评价依据、评价内容、评价主体等多个方面实现了全面转变。人工智能背景下职业教育的评价模式的建构表现为:首先,互联网信息技术应用于学习过程使得伴随式评价成为可能,更加关注学习者的个体差异和特点。强调过程评价和多元共同评价,更加客观全面,重视评价过程的诊断与改进功能,以促进学习者的个性化发展。其次,互联网、大数据、智能云技术的出现使得评价的技术和手段多样化、智能化,节省人力物力财力,提高了评价的科学性、针对性。第三,以大数据为基础的适应性评价因人而异,可获得及时反馈,可真实地测评学习者的认知结构、能力倾向和个性特征等,从知识领域扩展到技能领域、情感、态度与价值观,构建以学习者核心素养为导向的教育测量与评价体系,促进学习者发展。

(七)人工智能背景下职业教育的管理模式

智能化信息技术、云计算技术、大数据技术等能够促进大规模社会化协同,拓展教育资源与服务的共享性,提高教育管理、决策与评价的智慧性,因此,基于互联网的教育管理必将逐步走向“智慧管理”模式。人工智能背景下职业教育的管理模式的建构表现为:首先,互联网将家庭、学校、社区等紧密、方便地联系在一起,拓宽了家长和社会机构参与学校管理的渠道,各利益相关者可共同参与现代职业院校的学校管理,协作育人。其次,新时代的职业院校管理模式通过可视化界面进行智能化管理,业务数据几乎全部数字化,能有效降低信息管理系统的技术门槛,使管理工作更加轻松、高效。通过深度的数据挖掘与分析,能够实现个性化、精准资源信息的智能推荐和服务,为管理人员和决策者提供及时、全面、精准的数据支持,以提高决策的科学性。第三,通过互联网信息技术可以实现全方位、随时的远程监督与指导,从督导评估转变为实时评估,可以实现大规模的实时沟通与协作,促进社会化分工,促进职业院校内部重构管理业务流程,使管理智能化、网络化、专业化。

(八)人工智能背景下职业教育的组织模式

人工智能时代信息科学技术的蓬勃发展冲击着学校内部的组织结构向智能化、网络化的方向发展,各职业院校需要合理调整内部组织结构和资源分配,通过互联网加快信息流动等方式,提高各职业院校组织管理的效率和活力。人工智能背景下职业教育的组织模式的建构表现为:首先,当今时代人工智能的产生不可能替代学校教育,但可以改变学校教育的基本业务流程。人工智能推动了学校组织结构向网络化方向发展,教学与课程是提供信息数据的重要平台,学校组织则构成了教育大数据生态系统。其次,“互联网+职业教育”的跨界融合将打破学校的围墙的阻隔,互联网将学校组织与企业、科研院所等社会机构紧密联系起来,提供优质教育资源供给,共同承担知识的传授、传播、转化等功能,促进学校组织体系核心要素的重构。第三,建设“智慧校园”,实现线上线下融合的智慧校园育人环境,实施一体化校园网络认证,推动智能化教育资源共建共享,实现职业教育信息化建设的均衡发展。

五、人工智能背景下职业教育的模式变革面临的挑战及发展目标

人工智能将推进大数据、云技术等智能信息技术深层次融入职业教育课程与教学、组织与管理、评价与反馈等领域,形成社会化多元供给,为学习者提供多样化的参与方式、自主选择的学习形式和及时获得反馈的评价途径,有利于实现职业教育的共建、共享、共治。但其全面实现,还面临着诸多挑战。

(一)挑战

首先,职业教育的新模式建构需要充足的资金支持。各职业院校积极建构智慧校园,努力实现智慧化产学研环境,打造一体化智慧城市网络等核心技术的开发,都需要资金的根本保障。政府要给予资金政策保障并加强监管,资金管理部门要合理规划,合理利用,专款专用,落到实处。其次,职业教育的新模式建构的成果表现离不开学习者对技术的理解、掌握和应用。在实际实施过程中,教育工作者既要利用信息技术优势变革职业教育,也要避免技术中心主义倾向,“避免一味追赶技术新潮而不顾学生身心健康等,技术本身是一个祸福相依的辩证法。”[14]第三,“目前的教育实践中,仍未能充分实现人机合理分工和双边优势互补。人工智能终端系统擅长逻辑性、单调重复的工作,而人类则更适合情感性、创造性和社会性的工作。”[15]现阶段,信息化技术水平还有待提高,智能机器不能完全胜任知识传播、数据处理等工作,有待于进一步开发和完善,绝对依赖互联网络和设备,还存在一定的风险。

(二)发展目标

人工智能时代职业教育变革重新架构了职业教育发展模式,完成了对资源的重新整合配置,改变了人的思维方式、学习方式和生活方式。人工智能时代下没有职业教育模式的改革,就不可能建构真正的现代化职业教育。人工智能背景下职业教育的发展目标可以概括为个三方面:

1.“智慧脑”与“智能脑”融通

随着第四次产业革命的到来,信息技术爆发式发展,造就了以电脑、互联网为基础的智能脑。职业教育智慧化发展的一个目标就是如何让学习者发挥人脑“智慧脑”与机器设备“智能脑”的“双脑”共同协作[16]。人工智能时代职业教育与信息技术的深度融合,就是要通过“智慧脑”和“智能脑”的协同作用,发挥互补优势,进行融通式学习,而不是简单地人脑与电脑的技术对接。

2.“现实世界”与“虚拟世界”结合

在人工智能时代,网络虚拟技术的发展使人类拥有了真实与虚拟两个世界,虚拟信息技术的兴起在一定程度上会影响职业教育的实体教育,实体教育的发展也需要虚拟技术的支撑。但在具体的学习实践中,还会存在利用这两个世界时顾此失彼、难以平衡的问题。目前,虚拟化教育技术在职业教育领域不断应用与推广,职业教育的发展模式不断优化,使得职业院校线上线下的边界逐渐消融,“现实世界”与“虚拟世界”更好地结合。人工智能时代职业教育的本质没有发生根本改变,学习者要学会利用这两个世界虚实融合、高度互动,充分发挥出自身的优势,更好地学习与生活。

3.职业教育“适应人工智能”发展为“引领人工智能”

人工智能为职业教育带来了强大的技术支持,为职业教育带来了便利。初始阶段的职业教育基本知识和技能被数字化和智能化,通过人工智能相关课程,云教育模式,个性化学习计划等,适应并应用人工智能,以提高职业教育的效率和质量。职业教育重在技术创新,对于行业技术发展具有一定的引领性作用。未来人工智能将成为职业院校快速发展和转型的技术支撑。“如某些职业院校基于自身优势专业与相关行业的智能自动化企业合作,实现以职业教育发展引领人工智能。”[17]目前,人工智能处于适应性大发展阶段,随着信息化技术的提高和智能化设备的普及,人工智能时代必将由专用人工智能时代步入通用人工智能时代。在通用人工智能时代,人工智能与职业教育深度融合高效协作,职业教育完全适应且完美应用于人工智能,进一步引领人工智能发展,由“人工智能+职业教育”发展为“职业教育+人工智能”的时代。

人工智能与教学篇6

关键字:高职、智能楼宇、人才培养

智能楼宇专业作为现代化城市的应用越来越受到重视,社会对对智能楼宇专业人才的需求逐年加大,这一专业人才的培养,成为许多高职院校办学的热点,如何办好该专业,培养出适应社会需要的专业人才是高职院校教育工作者,同时也是智能楼宇业内人士关注和思考的内容。

一、对智能楼宇专业人才社会需求的目标分析

目前在全国许多省、市的建筑设计部门都设置了楼宇智能化或智能综合布线设计所(室),有些省市还设置了智能综合布线设计研究院,各种大小楼宇智能化设计工程公司更是如同雨后春笋般出现。国家建设部门也正在进一步规范楼宇智能化设计和工程建设市场。

调查情况显示:湖南省拥有楼宇智能化和综合布线技术人才约25000至30000人左右,其中90%以上从事建筑智能化设施的安装、调试、运行与维护工作。通过调查表明,迫切需要熟悉智能化系统设计规范与标准,能进行各子系统设备配置的设计人员,懂得智能化系统工程的施工组织与管理的现场专业项目经理,智能化系统工程现场施工的设备器材安装调试人员以及售后服务的专业维护与保养人员。此外,房地产开发商也需求智能化系统工程的现场专业管理人员;工程监理公司大量需要专职弱电智能化系统工程监理。

可见,本专业所培养的掌握智能楼宇专业具有强弱电系统的安装与调试和施工组织与管理能力的人才社会需求量很大。今后随着智能楼宇专业向更广更深的方向发展和行业技术含量的不断提高,急需一大批专科以上学历的人才。只要我们培养学生真正有胜任工作的能力,就会在楼宇智能化行业上大有用武之地。

从生源情况看,近些年来报考智能楼宇专业的考生一直是报考人数远远多于录取人数,在有些省区甚至接近百里挑一。从生源和就业两个方面看,继续办好智能楼宇专业是大势所趋,是社会发展的必然。

二、根据人才社会需求目标制定并逐步完善专业教学体系

智能楼宇专业的开办在我国历史较短,在高职院校中如何办好智能楼宇专业更没有现成的经验可借鉴。只有不断地研究探索,总结经验在办学实践中完善教学体系。

2006年高考招生增加了25个新专业,其中“建筑电气与智能化”包含其中,本专业是一个跨学科、交叉学科专业,要掌握的知识点较多,比如不但要掌握侧重于强电的建筑电气基本知识,还要具有适应于信息时代的弱电技术知识(包括自动控制技术、计算机软硬件技术、通信技术、网络技术等),报考“建筑电气与智能化”专业的学生应该喜欢上述专业课程的学习。另外本专业实践性较强,学生应通过学习实践要具有较强的动手能力。随着信息化技术的发展,国民经济对数字化城市与智能建筑的要求越来越高,社会对“建筑电气与智能化”专业人才的需求量会越来越大,开设“建筑电气与智能化”专业或与此相关专业方向的高等学校自然会越来越多。

湖南机电职业技术学院在2007年开始招收“智能楼宇专业”专业高职学生,走在了全国的前列。从湖南机电职业技术学院的专业建设看,参与智能楼宇专业策划与教学的人员主要由电气工程、自动控制和计算机专业学科的教师组成,彼此都在寻找从本专业角度如何相互渗透并实施楼宇智能化专业教学。教学内容的结合,各环节的连接,教师知识结构的更新等等是进一步调整和完善智能楼宇专业教学体系的焦点。经过多次社会对人才知识结构需求的调查,教师和学生在教与学两个方面的意见反馈,一个相对完整并具有高职院校特点的智能楼宇专业教学计划基本形成,课程内容也进行了切合专业实际的改动,在探索中大家逐步达成共识,把握好两者的结合是教师教好同时也是学生学好智能楼宇专业的关键。湖南机电职业技术学院电气工程系的教师们在教学过程中总结经验,修正不足,使专业教育不断完善,一个相对完整的专业教学体系基本形成。

三、以建设职业技术学院为依托办出专业特色

湖南机电职业技术学院电气工程系的教师充分意识到建立正确的教育思想的重要性,在深入贯彻学习了《教育部关于加强高职高专教育人才培养工作的意见》后,明确了专业教育教学改革和建设的指导思想,即以社会需求为导向,以专业技术应用能力和专业素质培养为主线,以优化专业教学内容、课程体系为重点,加强专业教材建设、教师队伍建设和实践教学基地建设,逐步形成特色鲜明的职业教育办学模式。

跨学科设置交叉专业,是培养和发展智能建筑领域“智能楼宇专业”新兴学科的重要途径。“智能楼宇专业”的支撑学科有计算机科学与技术、土木工程/建筑环境与设备工程学、控制科学与工程、电气工程、信息与通信工程。因此通过这一专业的学习,培养出来的专业人才掌握了上述学科的基础知识,并具有多学科、跨专业、密切联系实践的复合型人才的知识能力和结构。

通过不断的学习和实践,我们把高职院校培养学生的目标定位在技术应用性人才上。所以本专业为企业提供的专业技术人才大体上可分为:在建筑、安装、装饰、物业管理等企业中,承担楼宇智能化系统设备及一般建筑电气安装工程的施工和管理工作,包括电气照明、楼宇自动控制、建筑弱电系统及楼宇智能化等系统的工程设计、安装施工、调试检测和操作维护工作;承担楼宇智能安装工程的概预算、合同管理、施工组织管理和各专业间的协调工作;同时还可承担楼宇智能化工程及一般建筑电气安装工程的监理工作和相应的物业管理工作。

湖南机电职业技术学院智能楼宇专业的创办正是在这样一个特有的条件下发展起来,构成了区别于土木工程院校及其它工科院校开办智能楼宇专业的特点,以建筑设备为依托成为办学的优势。树立了在专业建设过程中以就业为导向,以服务为宗旨的思想,开展了有针对性的专业建设和教学改革及实践;创建了自己的专业特色和人才培养模式,并根据市场要求适时调整。我们应充分认识社会对智能楼宇专业施工及设计人才的需求状况并把握时机,把智能楼宇专业办成面向二十一世纪,具有建筑行业特色和较高专业水准的智能楼宇专业人才培养基地。

四、课程建设是专业建设的重要环节

二十一世纪将是充满机遇和挑战的年代,如何培养我国社会主义市场经济和现代化建设施工及设计人才,需要重新审视传统的教育观和人才观,只有敢于面对现实,才能跟上时展的步伐。当前重要的在于转变教育指导思想,改革人才培养模式,这一切是抓好课程建设的前提条件。

智能建筑人才市场对研究、开发、设计、施工、运行、维修、管理各个层次的人才都有广泛的需求。

在教学体系、教学内容中强调基础知识扎实,专业面宽泛的指导思想。在基础阶段选择部分建筑电气专业的专业基础、技术基础课程,同时加进具有本专业要求的基础课程,使学生打下良好的专业基础。在专业学习阶段强调以自动控制技术、通信技术、网络技术的主干课程设置,拓宽专业面。使学生在高职学习阶段,掌握较宽泛的知识,提高综合素质和适应性。在实践环节方面,充分利用短学期实习,有计划有目标地安排社会实践,参观调研,让学生接触社会,接触实践工程,在提高专业认识的同时,提高交流沟通能力,协作能力,组织能力,语言表达等方面的能力。对本学科的课程设置、教学内容进行合理优选,才能保证智能楼宇专业教育发展的健康性。

五、把握时机,完善智能楼宇专业建设

智能楼宇专业经过近些年的发展,初步完成了教学体系的建立,今后的完善和发展还有许多的工作,下一步专业建设的重点主要是加强内涵建设。

1、加强教学管理,提高教学质量教学质量的提高,有赖于完善的教学管理和秩序。在教学工作中,规章制度的建立、健全及落实与监督等方面的工作是提高教学质量的必要保证。

2、发挥、科研、生产作用,带动教学发展产学研相结合,促进教学的发展已被许多成功经验证实。在知识经济时代的今天,教育和科学技术对经济发展的重要促进作用备受世人瞩目。抓住时机结合专业建立有效的“产学研”机制是进一步推动专业发展的重要一步。实践教学是高职高专院校培养技术应用型人才的重要环节。网络综合布线技术与工程的实践教学从实训室延伸到网络综合布线工程项目这样真实的教学平台后,完成了实践教学由模拟环境向真实环境和技术实践向工程实践的转化,强调“工程意识”,培养学生的工作综合能力,在教学中突出体现了培养学生的岗位职业能力,从而较好地实现了课堂教学与职场岗位间的“短距离对接”。把学生培养成有扎实的专业知识、熟练的实践能力、能够适应建筑行业中的应用型技术人才。

人工智能与教学篇7

(中山大学信息科学与技术学院,广东广州510006)

摘要:结合中山大学智能科学与技术专业的建设情况,从教师队伍建设、本科教育的人才培养定位及课程体系设置、发展优势科学研究方向及学科建设等方面,提出有关交叉学科发展的思路。

关键词:智能科学与技术专业;教师队伍;课程体系;科学研究;学科建设

基金项目:广东省2014年本科高校教学质量与教学改革工程项目“智能科学与技术”(粤教高函[2014]97号);中山大学2014年校级本科教学改革项目“智能科学与技术专业复合型人才培养模式的改革研究”(中大教务[2014]148号)

作者简介:李晓东,男,教授,研究方向为智能控制、人工神经网络,lixd@mail.sysu.edu.cn。

引言

智能科学与技术是一门交叉学科,涉及脑科学、认知科学、人工智能、信息科学技术等学科,主要研究智能行为的基本理论和应用技术。它以人工智能的理论和方法为核心,研究如何用计算机去实现人工智能。它是信息科学技术的核心,也是现代科学技术的前沿和制高点。目前,对智能科学与技术的重要性认识已上升到国家科技发展战略的高度,智能科学已被列入2006年的《国家中长期科学发展规划纲要》中。

自2003年北京大学自主设置智能科学与技术本科专业并在教育部备案以来,我国先后有北京邮电大学、南开大学、西安电子科技大学等20多所高校开办了智能科学与技术本科专业,加快发展智能科学与技术专业教育已成为众多高校的共同愿望。然而实际上,智能科学与技术本身的内涵发展还很不成熟,教育部对此专业甚至还没有统一的教学大纲。2014年中国人工智能学会教育工作委员会对智能科学与技术专业的知识体系与课程设置给出了征求意见稿,可是各高校智能科学与技术专业的建立时间都很短,缺乏足够的办学经验,基本都处于独立发展、各自探索的阶段,不同程度地存在着专业建设问题。为此,笔者结合中山大学智能科学与技术专业的情况,给出以下几点思考。

1教师队伍建没

国内智能科学系或专业大多是在计算机专业或自动化专业的基础上建立起来的,发展时间短,这就决定了目前国内智能科学系或专业的教师主体具有很大的专业偏向性。智能科学与技术专业本质上是以脑科学、心理学等为基础,以信息学科为实现手段的交叉学科,其所承载的任务不是以上单个学科所能独立完成的。因此,教师队伍一定不能在原有基础上封闭发展,应邀请其他相关学科的教师加入发展,要特别注重引进心理认知学、逻辑学等方面的教师,不断优化教师队伍的知识结构,注意吸收青年教师,强调教师队伍构成的综合性。我们必须像医院培养“全科”医生一样来培养我们的智能科学教师。

以中山大学智能科学与技术专业为例,由于所在的信息科学与技术学院涵盖了电子与通信工程系、计算机系、智能科学与自动化系,涉及信息与通信工程、计算机科学与技术、软件工程、电子科学与技术、控制科学与工程等5个信息科学的一级学科,现阶段学院鼓励智能科学与技术专业在院内跨专业使用教师。因此,专业的课程教育实际上吸纳了5个信息科学一级学科的教师,具有很强的包容性。此外,专业充分利用学校学科门类齐全的优势,积极开展与校内心理学系、逻辑与认知研究所的合作办学,吸引这些系、所的教师为专业开设必修或选修课程,同时为这些科研教学工作提供发展的平台。各专业教师通过参与智能科学与技术这个交叉学科的专业教学,达到了相互学习交流、“全科”培养、共同提高的效果。

2本科教育

2.1人才培养模式的定位

智能科学与技术专业的本科教育人才培养模式的定位实际上是多学科交叉渗透人才培养模式的一种探索。专业人才培养应立足于计算机科学与技术、通信科学与工程、控制科学与工程、软件工程、电子科学与技术等学科的相互交叉特性,立足于信息科学的发展方向和《国家中长期科学发展规划纲要》要求,立足于国家,特别是高校所在地区对智能科学与技术专业人才的社会需求。经过几十年的发展,智能技术及其应用已经成为it行业创新的重要生长点,其广泛的应用前景日趋明显,如智能机器人、智能化机器、智能化电器、智能化楼宇、智能化社区、智能化物流、智能电网等。这些对人类生活的方方面面产生了重要的影响;迫切需要既掌握计算机系统工程的基本技能,又掌握复杂信息处理的智能科技知识,具有智能系统的搭建能力,擅长处理网络环境下大规模复杂的环境行为、机器行为和人类行为的专门科学技术人才。因此,为适应智能化应用的创新发展趋势,专业人才培养的目标应该是培养创新型、复合型的智能科技人才,努力做到两个“复合”,即学生在知识结构方面的复合和学生在理论知识、应用能力、创新能力方面的复合。此外,人才培养还应结合本专业师资力量的实际,扬长避短,努力办出自己的特色。

2.2课程体系建设

基于智能科学与技术专业创新型、复合型人才培养模式的定位.需要制订出相应的多学科交叉的课程体系,包括规划理论课程体系、实验课程体系和学生实习。具体来说,需要做好专业基础课程、专业主干课程和专业轨道课程的科目设计;需要处理好必修课程与选修课程的关系,合理分配各学期的学分;建设多功能集成的实验室,探索校企合作共同打造学生课外实习基地的模式等;重视基础理论知识,强化学生的应用能力和创新能力培养。课程体系的设置应参考2014年10月中国人工智能学会教育工作委员会对专业课程设置的征求意见稿,既要参考兄弟院校的做法,也要体现出校本专业的办学特色和发展优势。

中山大学智能科学与技术专业目前正在建设以智能系统为统领、以智能机器人为综合实验平台、兼顾物联网和大数据处理的课程体系,并且在数字电路与逻辑设计、信号与系统、人工智能原理、模式识别、计算机网络等专业基础课程和专业主干课程的基础上,设置了丰富的选修课程。特别地,把它们归类形成了不同的专业轨道选修课程集,具体包括:

(1)模式识别轨道选修课程:数字图像处理、人工神经网络原理、数据挖掘、多媒体信息处理、机器学习、计算机视觉等。

(2)智能系统轨道选修课程:机器人导论、自动控制原理、数字图像处理、智能控制与智能计算、人机交互技术、计算机视觉等。

(3)智能传感网络轨道选修课程:传感器与检测技术、嵌入式系统设计与实践、机器人导论、无线传感器网络、无线射频识别技术、物联网导论等。

每年当学生进入选课阶段时,我们都组织学生进行课程体系和轨道课程集的介绍宣讲,让学生了解各轨道方向的内涵,辅导学生的选课决策。借助课程体系的合理配置以及轨道选修课程集的功能发挥,我们引导学生根据自己的兴趣,往不同的智能科学子方向上发展。

中山大学智能科学与技术专业是在自动化系的基础上建立起来的,起初的课程体系难免与自动化专业过于贴近。几年来,通过专业课程体系的建设,我们逐渐改变了与自动化专业课程体系过于重复的现状,强化了多学科知识的融合和对学生实践能力的培养,切实向创新型、复合型人才培养的目标迈进。

3科学研究与学科建设

3.1科学研究

高校的教学和科研向来是相辅相成的。教学为科研提供了基础,科研则可以引领教学内容的发展。智能科学与技术专业涉及的学科面很广,如果在科学研究方面过分强调全面性,则会分散研究力量,不能形成明显优势。坚持特色发展,培养构建几个特色研究方向,则是科学研究的切实可行之路。中山大学智能科学与技术专业目前正在组建研究团队,设立学术带头人,制订研究规划,在智能系统与智能控制、认知科学与机器学习、智能电网与新能源等研究方向加强建设,形成研究优势。

智能系统与智能控制研究方向围绕医用穿戴智能设备、服务机器人系统和智能车载系统等;重点研究复杂系统分析与设计中信息处理、信息利用的新理论及新方法;探讨智能感知处理、人机交互方式、终端系统、智能医疗、服务机器人系统的控制等内容;解决车载高性能可靠的计算机系统、车载软件可靠性分析、车载网络优化以及这些理论在无人驾驶和车联网等特定领域的应用问题。

认知科学与机器学习方向以认知科学和人工智能等学科为基础,重点开展人脑、认知和人体行为的关系,智能视频监控.人脸识别和物体识别这3个方面的研究;重点解决智能终端的多媒体信息感知和智能处理问题,特别为服务机器人、智能家居和公共安全解决视觉感知和智能处理的问题。该方向主要研究认知科学与机器学习、智能场景分析与理解、基于生物特征的模式识别等,侧重于智能视觉的应用基础研究和新技术探索。

智能电网与新能源方向致力于为我国,特别是为广东省培养高水平的智能电网和新能源领域的专业人才。由于各种新能源(风能、太阳能、海洋能等)具有波动性和间断性的自然属性,其发电单元不能直接并网,否则会降低电网的电能质量;所以,新能源发电单元与电网之间必须用到功率电子变换器。因此,该研究方向主攻新型功率变换器优化设计及控制,其应用包括智能电网架构下的一系列领域,比如太阳能发电、风力发电、海洋能发电、燃料电池等。一个智能的电网系统将会使电力的传输和供应更加稳定可靠,让每家每户可以优化自己的用电习惯,享受到先进的家居设备。

3.2学科建设

对于一个学科,没有高层次的研究生教育和高水平的科研,该学科的发展就很难走在同行的前列。中山大学信息科学与技术学院在开办模式识别与智能系统学术型硕士学位研究生教育的基础上,依托自身信息学科齐全的优势,联合中山大学心理学系,正在筹备申报智能科学与技术交叉学科博士点,试图以高层次的博士点教育带动智能科学与技术专业本科和硕士研究生教育的整体发展,壮大科研力量。

我们处于一个信息技术的时代,信息技术不可能停留在电子化、数字化之上,而是要不断走向智能化,因此,智能技术越来越成为信息技术的主流。智能科学处于信息技术的前沿和制高点,掌握利用好信息技术发展的这个规律,对于实现高校信息学科的发展重点转移和跨越式发展具有重要的意义。

由于珠三角地区产业结构的调整与信息新技术的不断融入,传统自动化专业的发展遇到了瓶颈,我们及时调整学科发展战略,以智能科学与技术专业的发展来带动传统自动化专业的发展,结果在招生就业、人才引进、科学研究等方面都取得了良好的效果。另一方面,中山大学信息科学与技术学院的学科建设面比较宽,涉及5个一级学科,而相关教师的体量比较小,因此不可能5个一级学科都均衡建设,而应该重点建设这5个一级学科交叉的部分,即智能科学与技术专业。这对于完善交叉学科布局,提高人才培养质量,引领和推动这些一级学科及心理学专业的发展,有着重要的促进作用。

4结语

智能科学与技术的发展成果正影响着国民经济的很多领域,已成为一个国家科技发展水平和国民经济现代化、信息化的重要标志。社会需要大量的掌握智能科学与技术知识的高水平专门人才。智能科学与技术专业作为交叉学科来建设,在中国高等教育的历史还很短,其专业教育不同于一般的信息学科,具有一定的特殊性。我们今后还需在师资建设、学生培养、科学研究、学科发展等方面进一步探讨,培养合格人才,迎接智能化社会的到来。

参考文献:

[1]中华人民共和国国务院,国家中长期科学发展规划纲要(2006-2020)[S].2006.

[2]中国人工智能学会教育工作委员会,智能科学与技术专业知识体系与课程(本科)(征求意见稿)[S].2014.

[3]邓志鸿,谢昆青,刘宏,北京大学智能科学与技术专业建设的探索与实践[J]中国人工智能学会通讯,2011(2):36-40.

[4]胡军,李伟生,王国赢,等,重庆邮电大学“智能科学与技术”专业建设中的若干问题探讨[J].计算机教育,2009(11):57-60.

[5]陈毅东,李绍滋,潘伟.厦门大学智能科学与技术专业建设进展[J].计算机教育,2011(15):21-24.

[6]张俊,陈飞,冯士刚,大连海事大学“智能科学与技术”本科专业建设实践[J].计算机教育,2012(18):22-27,30.

[7]王万森.适应智能化应用发展趋势,培养创新型智能科技人才[J]计算机教育,2013(10):1.

人工智能与教学篇8

自2006年以来,人工智能(artificialintelligence,ai)的发展迎来了第三次浪潮。谷歌、iBm、百度、腾讯等商业巨头的参与,使得人工智能方向的科学研究从学术界的沙盘模拟演变为大规模团体实战[1]。2017年是中国人工智能战略驱动的最为关键的一年。3月,人工智能首次被写入政府工作报告。7月,国务院重点指出人工智能技术和产业的发展规划,即推动新一代人工智能技术的产业化与集成应用,发展高端智能产品,提升智能制造水平[2]。10月,报告指出促进人工智能和实体经济深度融合的战略方针。12月,工信部印发促进新一代人工智能产业发展的三年行动计划,旨在加快制造强国和网络强国建设。这一系列政策与方针都将人工智能作为重要的国家科技战略规划,为人工智能的发展布局提供了明确的时间表和路线图。

人工智能在国家战略层面地位已然举足轻重。人工智能方面的人才需要掌握系统而庞大的知识体系,涉及脑科学,数学、计算机等多门学科,这已经超出当前狭义计算机专业的培养内容。为加快人工智能方向的人才储备,2018年4月,教育部要求高校在计算机科学与技术学科设置人工智能方向,形成“人工智能+X”的复合专业培养新模式[3]。2018年,教育部正式批准35所高校首批建设本科人工智能专业,2019年9月首批人工智能专业的本科新生入学。到2020年,基本完成高校科技创新体系建设和学科体系的优化布局以适应新一代人工智能技术发展,在计算机大类专业下以人工智能为视角探讨本学科所应具备的新的内涵与外延。

目前,高校计算机专业采用的宽口径培养模式,在人工智能方面的人才培养具有相当的局限性,以至于高度浓缩到了仅仅给学生做高级科普的程度。学生难以全面深入地掌握人工智能知识技能,难以具备解决企业关键问题、适应产业发展趋势的能力。因此,在计算机大类专业下发展人工智能学科体系,独立建设人工智能专业,培养卓越的领域人才是当下人工智能战略发展的刚性需求。

二、人工智能产业发展现状

我国的人工智能发展仍处于探索阶段。图1显示了2017年全球高科技企业ai团队的规模统计数据。从图1可以看到,谷歌,微软等国外高科技企业,在ai团队上均有千人以上的规模,相较于国内行业领军者百度或腾讯等企业,领先幅度达到数倍之多。这一现象表明,我国在人工智能人才的储备上存在着巨大缺口,如何培养高质量、高水平、高素质的人工智能方向专业人才,是我国当前互联网、信息行业教育方向中一个亟待解决的重要命题。

图12017年全球高科技企业ai团队规模

图2全球ai领域高校数量分布

我国各重点大学早就展开了许多人工智能相关技术的研究,只是当时人工智能一般会放在研究生教育中,作为计算机科学、互联网信息技术等专业的一个研究方向进行具体探索。人工智能领域研究及学科建设方面都有着广泛而坚实的基础,教研成果丰富,师资力量雄厚。响应人工智能国家战略,我国各重点大学责无旁贷。

围绕人工智能专业建设,本文分析了国内外人工智能相关专业招生和就业现状,提出在计算机大类专业下建设人工智能的专业内涵,明确了人才培养目标,构建出有层次的课程体系架构。期望开拓出一条适应我国人工智能领域发展现状的人才培养模式,为人工智能学科体系布局做出贡献,有望为中国高等教育人工智能人才培养探索一条新的路径。

三、国内外人工智能相关专业招生及人才就业情况

一个领域的竞争归根结底是人才的竞争。人工智能的蓬勃发展造成了人工智能软硬件设计、算法设计、工程管理等各方面人才的稀缺。早在2016年的相关数据显示,中国人工智能的技术人才储备与市场需求之间存在着500万人的缺口。全球ai研究及直接从业者约有30万人,主要分布在高校、ai新兴企业、科技巨头以及其他领域。图2给出了截止2017年末,全球在相关人工智能相关领域高校专业的分布情况。全球主要有293所具有人工智能研究方向的高校,其中美国高校较早地开展了人工智能研究,占据全球的57.3%,一枝独秀。加拿大、中国、印度、英国等国家位于第二梯队,有着较大的提升空间。

国内外相关专业招生情况为人工智能专业的建设提供了一条认识与理解的渠道。斯坦福大学在人工智能领域居于世界领先地位,它在人工智能方面的本科教学涵盖的课程全面而前沿,包括计算生物学、语音识别、认知和机器学习等。学校授予计算机科学理学学士学位。加利福尼亚大学伯克利分校在研究生设置了计算机科学理学硕士学位,内置认知科学技术和人工智能相关的课程。卡内基梅隆大学拥有世界首屈一指的机器人技术,其计算机学院设有专门的机器学习系,包括机器学习辅修和统计机器学习专业。目前,国外高校还未直接将人工智能作为专业应用于本科学生培养。

人工智能的就业前景在当前相当广阔,人才市场需求亟大,但是大多集中于计算机视觉和语音识别等热门应用领域,造成其他领域的人才相对匮乏。国内的信息产业升级,互联网行业的转型,服务业、工业的智能研发都需要大量的人工智能专业人才。自2017年5月中国科学院大学成立人工智能技术学院以来,国内很多高校紧跟步伐,在人工智能人才培养上争相布局。清华大学计算机系从大一下学期开始,引导学有余力的学生进入智能技术与系统国家重点实验室或相关科研机构,跟随导师从事科研工作。北京大学开设的智能科学与技术专业主要建设机器感知、智能机器人、智能信息处理和机器学习等交叉学科的研究和教学。北京航空航天大学、上海交通大学和北京交通大学新设的人工智能研究院均是针对研究生集中培养。南京大学在2018年正式成立人工智能学院,由周志华教授任院长,建设机器学习与数据挖掘和智能系统与应用两个本科专业。

国内外大学本科教育阶段,都还未针对人工智能专业人才进行系统性、独立性地培养。我国每年人工智能方向的毕业生约2万人,远远不能满足市场对人才的需求。成都市人社局的报告明确指出,在成都市人工智能产业中,ai架构师、算法工程师、仿生机器人研发工程师等9类人才紧缺指数达到最高级别。本科教育阶段是学生掌握基础知识技能、形成科学思维、塑造人生价值观的黄金时期。因此,电子科技大学在本科计算机大类专业下开设人工智能专业进行优势提升和改进,直面国家战略需求,紧贴行业形势,为人工智能领域的发展增强年轻的生命力,为国家社会培养人工智能人才提供优质的平台和孵化园,为学生成材孕育强大的基础和肥沃的土壤。

四、人工智能专业建设探索

(一)把握专业建设内涵,明确人才培养目标

国家战略需求、社会人才缺口等宏观背景,是设立人工智能专业的必然因素。长久发展与传承,把握专业建设内涵和人才培养目标是教育的灵魂所在。在筹备人工智能专业的过程中,首先需要明确在计算机大类下建设人工智能专业的意义。自1956年约翰·麦卡锡等科学家正式提出人工智能学科以来,人工智能已逐渐发展成为一门广泛交叉的前沿科学。以计算机学科门类中各专业为基础,吸收生物科学、数学、哲学、文学等学科关键知识,不断促进人工智能学科的前向延伸和拓展。人工智能虽然是多学科融合发展的领域,但是它强调推理、知识、规划、学习、交流、感知,具备影像辨识、语言分析、人机对抗等计算机领域典型应用场景,与其它专业区分明显。同样的,人工智能的学科交叉特性明显不同于目前计算机大类下分的如大数据、信息安全等其他专业,应当作为计算机下独立的学科分支进行探索与研究。

aaa

图3人工智能专业人才培养的基本要求

人工智能旨在模拟人的意识与思维过程,智能信息处理是它的主流研究和产业化应用方向。其主要的研究内容包括语言识别、图像识别、自然语言处理和专家系统等。近年来,人工智能在经济政治决策,控制系统,仿真系统等应用场景中得到了愈加广泛的重视。无论是从科学技术发展历史,还是从当今新时代新经济发展趋势来看,增设人工智能专业具有十分明显的合理性、迫切性。国内的许多高校将相关专业设置于自动化大类下,没有考虑到由于互联网、大数据等新技术领域带来的影响和冲击,难以强调并突出人工智能自身理论和技术应用,不能很好地满足工业界普遍趋势所提出的人才需求。

面向国家“创新驱动发展战略”与“新一代人工智能发展规划”的重大需求,本文详细剖析了相适应的专业人才培养的基本要求。本文创新性地提出人工智能专业人才所需的各项基本要求,如图3所示。优秀的人工智能方向专业人才应当具备个人素养,创新实践,领导才能以及专业技能四个基本方面的能力。从这四个方面出发,全方位引导与培养学生具备良好的个人素养、扎实的人工智能专业技能、突出的创新实践能力和卓越的领导才能,有效地成长为国际一流工程师、科学家和企业家,在我国人工智能产业发展中贡献力量。

(二)构建课程体系架构,明确毕业评价要求

人工智能专业规划必须清晰、目标明确。在课程设置方面,以学生素质为核心完成课程体系架构设置,构建完备的专业人才培养方案。教学任务分配层次分明地落实在课程实施上,开发严整的教学培养体系。课程体系架构有四大类模块,详细分为公共基础课程、计算机学科基础课程、人工智能专业课程和实践进阶课程。四个模块相互依赖,公共基础课程、计算机学科基础课、人工智能专业课程层层深入,筑起坚实的知识体系高墙,教学过程步步为营,培养学生从基础到专业的能力思维。公共基础课程扎实培养学生基础的人文素养和数理知识,掌握数理相关的建模、仿真、测试与评价过程,完成高中到大学的自然衔接过渡。计算机学科基础课程以硬件类、软件类与计算工具类课程为类别划分,从三个方面循序渐进地培养学生掌握计算机领域的核心知识。学科基础课程侧重于对计算机底层知识、人工智能数学基础能力、计算机原理的教学,为大二专业课程打下坚实基础。

人工智能专业课程下分为核心类、技术支撑类和平台类课程,核心类课程引领学生熟悉人工智能知识基础、行业技术和核心理论。在研究人工智能的众多分支领域中,学习技术支撑类课程力助学生把握成熟的技术和模型。平台类课程基于智能机器人研究创新开发平台,进行智能制造和设计。这些理论课程锻炼学生获取知识、应用知识和创新思维能力,使之为从事人工智能理论研究、技术开发与创新实践保驾护航。

实践进阶课程可以检验学生对理论知识的掌握深度。实践课程与教学贯穿人工智能专业学习始终,以开发动手能力、发掘创新思维、塑造科研精神为目的,培养学生在理论实践、创新创业、合作领导多方面的才能。首先,人工智能专业实验全面覆盖所开设专业的课程。其次,综合素质实践、专业实习、基地实践、毕业设计等环节逐渐帮助学生将课堂知识转换为科研与工程能力。此外,鼓励大二以上的学生加入实验室参与科研,使科研与教学相互融合促进。为学生构建创新实践平台,校企合作的实践实训机制保障了学生真实地了解企业发展动态和社会需求。在人工智能理论与技术两方面都能提升学生的创新实践能力,尽早地明确未来发展方向,制定生涯规划。目前,许多高校学生为了快速迎合时代需求,对人工智能领域浅尝辄止,缺乏扎实的基本功与充分的研究成果,急于求成,在求职过程中屡屡碰壁。因此,学校应提供最大帮助与支持,让学生明确研究方向,鼓励学生在国内外继续深造,成为人工智能领域有真材实料的人才。

国家社会的需求在动态发展,学生受到的教育和训练也应有明确的规划。现阶段的专业培养,对学生的要求应当不仅局限于四年知识的系统传授,更多地要求学生锻炼综合知识,专业技能,创新实践,自我修养等几个方面的能力,使学生成为在人工智能领域独当一面的栋梁之才。

综合知识方面,培养学生具备坚实的人文社科基础知识;具有正确的道德观、社会责任感和工程职业道德;具备数学、自然科学以及人工智能相关基础学科的知识,具备在经济学、管理学等可能应用领域的基本知识,培养学生全方面、多元化的科学素养。

人工智能技能方面,培养学生具备扎实的人工智能专业基础知识,能够针对典型应用领域的复杂工程问题和需求,结合人工智能相关原理与技术,设计系统级或单元级的解决方案。了解人工智能技术前沿研究的状态及趋势,能够基于科学原理并采用科学方法对工程问题进行研究,包括建模、算法设计、程序实现及实验、进行实验收集数据、分析与解释数据以及通过信息综合得到合理有效的结论,加强学生对专业知识的深入理解,分析应用能力。

创新实践方面,借助案例分析、项目设计、科学研究、创新实践竞赛等方式,让学生掌握基本的创新方法,具有创新意识和态度,能够提出创新性的技术路线与方案,并具备较强的方案实现与分析能力。从信息产业、医学、生物学、经济学等实际应用出发,锻炼学生结合面对多样化的应用场景的理论结合、模型设计、实验分析能力。

自我修养方面,让学生对学习过程进行不断的探讨与思辨,组织学生参与知识技术的分享讨论,培养学生在知识综述、工程设计和沟通辩论的能力。通过综合性的实践项目,学生具备充分的组织管理能力、语言和文字表达能力、人际交往能力以及在团队协作能力。培养学生对学习的正确认识,不断适应发展的意识,具备国际视野、跨文化交流、竞争与合作能力,最终成长为人工智能产业的高级人才。

人工智能专业的毕业生可选择继续在人工智能领域深造,进行更深入地研究,或是于信息产业高新技术企业、科研院所、政府部门等行业就业,从事人工智能的技术研究、系统研发以及工程管理和教育等工作。成为该领域的软硬件高端工程师、交叉学科的应用架构师、创新创业家、算法研究与理论创新科学家,为国家科技进步贡献重要力量。

人工智能与教学篇9

〔关键词〕情绪智力;工作倦怠;工作满意度

〔中图分类号〕G44〔文献标识码〕a〔文章编号〕1671-2684(2016)13-0004-06

一、引言

自情绪智力这一概念提出以来,心理学界就掀起了一场关于人类智能的革命。在传统的研究中,研究者将研究焦点集中在智力的认知因素上,情绪智力的提出,让研究者将注意力转移到了智力的非认知因素上。Salovey和mayer将情绪智力看成是一种能力,认为“情绪智力是认识情绪意义及其关系,利用情绪知识进行推理并解决问题,使用情绪促进认知活动的一种能力”。在Salovey和mayer提出的情绪智力模型中,情绪智力包括如下几个方面:1.感知、表达情绪的能力;2.情绪促进思维的能力;3.理解情绪的能力;4.管理情绪的能力。除此之外,当前还有另外两种情绪智力理论:一是Goleman提出的情绪智力模型,二是Baron提出的情绪智力模型。Goleman在Salovey和mayer的模型中添加了动机、人格等因素,认为情绪智力不仅仅是一种能力,而是能力、人格和动机的整合体,将情绪智力分为个人能力和社会能力,包括自我意识、自我调节、自我激励、移情能力、社交能力。Baron认为“情绪智力是影响有效应对环境要求的一系列情绪的社会知识和能力”,其情绪智力理论与Goleman的情绪智力理论相类似,都强调了人格和动机在情绪智力中的重要作用。Baron的情绪智力模型认为情绪智力包括五个因素:个体内部成分、人际成分、适应性成分、压力管理能力成分、一般心境成分[1]。

近年来,在教育领域开展对情绪智力的研究越来越多,研究者开始关注教师群体的情绪智力现状、教师情绪智力对学生的影响,及教师情绪智力对教师自身心理健康状况的影响。大量的研究显示,教师情绪智力情况对教师本身、教学以及学生都有影响。例如,Chan在研究中发现,教师的情绪智力可以促使教师拥有良好的移情能力和人际适应能力,有助于对学生情绪智力的培养[2]。Chan[3,4]的研究表明,情绪智力的不同组成部分对自我效能感有显著的正向预测作用。吴静珊(2012)论述了教师情绪智力对教师教学和学生学习的影响[5]。曹蓉从教师知识传递、学生对知识的掌握、师生关系等方面论述了情绪智力对教学效果的影响[6]。

工作倦怠最早由临床心理学家Freudenberger提出,主要是指个体在工作过程中体验到的负性症状[7],但学界对工作倦怠的概念界定存在着很多不同的看法。有研究者将工作倦怠看成是一个动态的心理过程,主要研究工作倦怠的发生及发展阶段[8]。有研究者强调工作倦怠是一种心理状态,其中被普遍认同的是maslach和Jackson提出的三维概念,认为工作倦怠是指在以人为服务对象的工作领域中,个体呈现出的情感衰竭(emotionalexhaustion)、去人性化(depersonalization)和低个人成就感(reducedpersonalaccomplishment)[9]。情感衰竭是指个体由于身心资源透支而产生的极度疲劳的情绪、情感状态;去人性化是指个体采取消极、冷漠的态度对待工作对象和工作内容;低个人成就感是指个人自我效能和评价上的降低[9]。

国内外关于教师工作倦怠的研究很多,主要探索影响工作倦怠的因素,试图以此找到干预教师工作倦怠的方法。大量的研究发现,教师的人口学特质,如年龄、性别、学历、婚姻状况、人格特质等对教师的工作倦怠有一定影响,社会支持、领导风格等都对教师的工作倦怠有重要影响,例如,王芳和许燕研究了中小学教师工作倦怠和社会支持的关系,结果显示,学生和领导对教师的支持可以有效缓解教师的工作倦怠[10]。关于中小学教师工作倦怠现状的研究也显示,当前我国中小学教师呈现出较普遍和明显的工作倦怠情况[11-12]。教师工作倦怠会影响教师诸多方面的工作行为,从而影响学生的行为,因此关注教师工作倦怠,刻不容缓。

关于工作满意度,Hoppock最早给出了完整的定义,认为工作满意度是指个体对工作环境的感受以及生理和心理上的满足。教师工作满意度则为教师对其工作、工作条件以及工作状况的一种总体的、带有情绪解释的感受和情感反应[13]。教师工作满意度是教师工作投入和工作承诺的重要因素,关注教师的工作满意度问题,对提高教师工作热情,提高教学质量有重要的意义[14]。当前,对教师工作满意度的研究主要集中在考察教师们的工作满意度现状和探索工作满意度的影响因素。大量研究结果显示,中小学教师的总体工作满意度达到了较高水平,教师的学校区域、任教年级、职称、组织氛围、行为策略等因素会影响教师的工作满意度[15-18]。

在现阶段,国内外对情绪智力与教师工作倦怠和教师工作满意度的关系都有所探讨。Chan(2006)以香港167名中学教师为研究对象,考察了情绪智力和工作倦怠的关系,结果显示,教师情绪智力与工作倦怠的情绪衰竭成分有关[19]。国内一些研究也显示,情绪智力与教师工作倦怠之间存在负相关的关系[8,20]。李明军[18]以及李明军和管海娟[21]的研究显示,不同情绪智力水平的个体体验到的工作满意度存在差异。随着教育改革深化,素质教育工作推进,教师的工作压力与日俱增,教师工作倦怠问题日益凸显,工作满意度问题亟需重视。在这样的宏观背景下,我们希望能找到缓解教师工作倦怠、提高教师工作满意度的可行性方法。情绪智力作为一种可以通过训练提高的能力,可能会成为改进教师不良工作感受,增进教师工作满意度的突破口。所以,本研究试图通过调查当前北京市中小学教师情绪智力现状,探索情绪智力与工作倦怠、工作满意度的关系,为下一步开展干预研究提供理论依据。

二、研究对象和方法

(一)研究对象

本研究的研究对象是北京市中小学教师,最终获得有效数据596份。研究对象的平均年龄为35.5岁,平均教龄为13.0年,班主任龄为6.96年。其中,男性78人(13.1%),女性518人(86.9%);非班主任131人(22.0%),班主任465人(78.0%);第一学历为大专学历的有209人(35.1%),本科学历的有319人(53.5%),研究生及以上学历的有61人(10.2%);农村普通校有113人(19.0%),农村示范校64人(10.7%),城市普通校158人(26.5%),城市示范校259人(43.5%);小学334人(56.0%),初中176人(29.5%),高中68人(11.4%),职高18人(3.0%)。

(二)研究方法

本研究通过问卷调查的方式考察了教师的情绪智力、工作倦怠和工作满意度情况。问卷包括“教师情绪智力问卷”“教师工作倦怠量表”“教师工作满意度问卷”。通过SpSS16.0进行了数据分析。

“教师情绪智力问卷”由杨晓萍等人编制,其中包括四个分量表,情绪知觉、情绪表达、情绪理解和情绪管理。情绪知觉是指教师准确感知、认识、辨别自己和学生的情绪;情绪表达是指教师能够通过口头语言或者书面语言等形式表达自己的情绪;情绪理解是指教师对自己和学生的情绪做出客观、公正的评价;情绪管理是指教师对自己和学生的情绪进行调节和控制。该问卷共20题,采用六级评分,研究结果显示,该问卷具有较高的内部一致性信度和结构效度[1]。

“教师工作倦怠量表”(mBi)是由maslach等人编制,包括三个分量表:情绪耗竭、去人性化以及低个人成就感。本量表共有22个题目,7级评分。本问卷被大量研究采用,研究结果显示,该问卷的内部一致性信度和结构效度良好[22]。

“教师工作满意度问卷”由weiss等人编制,包括两个分量表:外在满意度和内在满意度。外在满意是指个体的满意与工作本身无直接关系,而与外在的因素有关系,如:领导的赞许、良好的同事关系、良好的福利、升职或高薪等令个体感到满意。内在满意是指个体的满意感来自工作本身,如:工作中感受到的成就感、自尊感、控制感等令个体感到满意。研究表明,该问卷的信度和效度良好[22]。本量表共有20个题目,每个题目按照非常不同意、不同意、普通、同意、非常同意5级进行评分。得分越高表示受测者的工作满意度越高。

三、研究结果

(一)中小学教师情绪智力、工作倦怠和工作满意度现状

研究结果显示,中小学教师情绪智力平均值为5.12,高于中间值3.5,表明北京市中小学教师情绪智力水平良好;工作倦怠得分的平均值为2.91,低于中间值4,表明北京市中小学教师工作倦怠程度还处于较低水平;工作满意度的平均值为3.58,高于中间值3,表明北京市中小学教师的工作满意度相对较高。具体结果见表1。

(二)教师人口学变量与情绪智力、工作倦怠和工作满意度的关系

本研究考察了教师性别、是否担任班主任、第一学历、学校类型、学段、年龄、班主任龄、教龄、周课时量与情绪智力、工作倦怠和工作满意度的关系。

研究结果显示:

(1)情绪智力总分、工作倦怠总分和工作满意度总分在教师性别上的差异均不显著,去人性化在性别上差异显著(F(1,591)=6.349,p=0.012,男生为2.57,女生为2.18)。

(2)情绪智力总分、工作倦怠总分和工作满意度总分在是否担任班主任这个维度上差异不显著,情绪耗竭(F(1,591)=5.295,p=0.022,非班主任为3.14,班主任为3.45)和外在满意度(F(1,590)=3.540,p=0.06,非班主任为3.40,班主任为3.24)在是否担任班主任这一维度上存在显著差异。

(3)情绪智力总分(F(2,582)=3.84,p=0.022,大专为5.23,本科为5.06,研究生为5.06)在第一学历上存在显著差异,工作倦怠总分和工作满意度总分在第一学历上均不存在显著差异。除此之外,情绪理解(F(2,582)=4.34,p=0.14,大专学历和本科学历间差异显著,大专为5.35,本科为5.14,研究生为5.17)、情绪管理(F(2,582)=4.08,p=0.017,大专和本科差异显著,大专为5.29,本科为5.11,研究生为5.03)和情绪耗竭(F(2,583)=4.14,p=0.016,大专为3.55,本科为3.33,研究生为3.01)在第一学历上均存在显著差异。这一结果显示,学历对情绪智力有影响。

(4)情绪智力总分(F(3,585)=3.421,p=0.017,农村示范校为4.89,城市普通校为5.22)在不同学校类型上差异显著。

(5)情绪智力、工作倦怠和工作满意度在不同学段上差异不显著。

(6)年龄与情绪理解(r=0.095,p=0.021)、情绪管理(r=0.120,p=0.004)相关。

(7)周课时量与情绪耗竭(r=0.087,p=0.035)、外在满意度(r=-0.098,p=0.017)、内在满意度(r=-0.109,p=0.008)、工作满意度(r=-0.111,p=0.007)相关。

(8)教龄与情绪理解(r=-0.121,p=0.003)、情绪管理(r=-0.127,p=0.002)、情绪智力(r=-0.098,p=0.017)有关。

(9)班主任龄与情绪理解(r=-0.089,p=0.033)、情绪管理(r=-0.135,p=0.001)、情绪耗竭(r=-0.089,p=0.032)有关。

(三)中小学教师情绪智力与工作倦怠、工作满意度的关系

1.中小学教师情绪智力与工作倦怠的相关分析

本研究考察了情绪智力总分及其各维度与工作倦怠总分及其各维度的相关关系,结果显示情绪智力与工作倦怠的相关显著,具体结果见表2。

2.中小学教师情绪智力与工作倦怠的回归分析

以情绪智力的情绪知觉、情绪理解和情绪管理这三个维度为预测变量,以工作倦怠总分为结果变量,考察情绪智力对工作倦怠的预测作用,三个预测变量经过逐步回归,情绪知觉和情绪管理进入了回归方程,剔除了情绪理解。情绪知觉和情绪管理对工作倦怠变异的解释率为9.5%(矫正的R2=9.2%,p

以情绪智力的情绪知觉、情绪理解和情绪管理这三个维度为预测变量,以个人成就感为结果变量,考察情绪智力对个人成就感的预测作用,三个预测变量经过逐步回归,只有情绪管理进入了回归方程,剔除了情绪知觉和情绪理解。情绪管理对个人成就感变异的解释率为11.9%(矫正的R2=0.118,p

3.中小学教师情绪智力与工作满意度的相关分析

本研究考察了情绪智力总分及其各维度与工作满意度总分及其各维度的相关关系,结果显示情绪智力与工作满意度的相关显著,具体结果见表3。

4.中小学教师情绪智力与工作满意度的回归分析

以情绪智力的情绪知觉、情绪理解和情绪管理这三个维度为预测变量,以内在满意度为结果变量,考察情绪智力对内在满意度的预测作用,三个预测变量经过逐步回归,最后情绪知觉、情绪管理进入了回归方程,剔除了情绪理解。情绪知觉和情绪管理对内在满意度变异的解释率为10.4%(矫正的R2=0.101,p

四、讨论

(一)中小学教师情绪智力、工作倦怠和工作满意度现状

关于情绪智力现状的研究结果显示,北京市中小学教师的情绪智力水平处于较高水平,情绪感知、情绪理解、情绪表达和情绪管理这四个分维度上的得分也都高于理论中值,这一研究结果说明,北京市中小学教师的情绪智力发展良好,能够有效地感知、表达、理解和管理情绪。

关于工作倦怠现状的研究结果显示,北京市中小学教师的工作倦怠处于中等偏下水平,情绪耗竭程度和去人性化程度较低,个人成就感较高,所以工作倦怠的总体程度较低。这一结果符合北京市中小学教师的工作特征,教师在职业过程中能够获得较高的个人成就感,由于面对的群体是学生群体,尽管会出现一些情绪耗竭现象,但是情绪耗竭的程度并不严重,去人性化的程度较低。

关于工作满意度的研究结果显示,北京市中小学教师的工作满意度处于较高水平,其中外在满意度相对内在满意度较低,但是也都高于理论中值,这一研究结果说明,北京市中小学教师对教师工作比较满意,尤其是对教师工作所带来了内在价值较满意。

(二)中小学教师人口学变量与情绪智力、工作倦怠和工作满意度的关系

1.班主任的特殊工作特征

关于是否担任班主任对情绪智力,工作倦怠和工作满意度的研究结果显示,班主任的情绪耗竭程度更严重,外在满意度更高,其他方面与非班主任教师没有差异。这一研究结果符合班主任的工作特征,因为班主任在工作中会面对更多的工作压力,但是学校会给班主任更多学习、晋升机会和待遇,因此,一方面班主任在面临巨大工作压力时,表现出较高的情绪耗竭,另一方面表现为对工作的外在满意度更高。这一研究结果还提示我们,班主任是一个特殊的群体,其心理健康值得关注。

2.情绪智力的相关因素

教师人口学变量与情绪智力的关系研究结果显示,性别、学段,课时量多少与教师情绪智力没有关系,学历、学校类型、年龄、教龄、班主任龄与教师的情绪智力有关,且这种相关性主要表现在情绪理解和情绪管理上。从学历、年龄、教龄、班主任龄与情绪智力的关系上我们可以推断,工作经验和生活经验的积累会有效提升教师的情绪智力水平,情绪智力在人的一生中不是一成不变的,它是可以通过学习而改变的。这一研究结果的一致性给予我们启示:我们可以开绪智力训练的相关方法和课程,帮助教师们提高情绪智力水平。

3.工作倦怠的相关因素

研究结果显示,性别、学段、学历、学校、年龄、教龄、班主任龄、周课时量都与工作倦怠总分没有关系,但是工作倦怠中的情绪耗竭成分与班主任龄和周课时量显著相关。这一研究结果显示,担任班主任的时间越久,就越容易出现情绪耗竭。与此同时,每周课时量越多,也就越容易出现情绪耗竭。需要注意的是,出现一定程度的情绪耗竭并不一定意味着这名教师出现了工作倦怠。工作倦怠表现为三个方面:情绪耗竭、去人性化和低个人成就感。如果一个人出现了某种程度的情绪耗竭,但是这个人可能还没有出现去人性化和低个人成就感的现象,那么就并没有出现工作倦怠。

4.工作满意度的相关因素

研究结果显示,性别、学段、学历、学校、年龄、教龄、班主任龄都与工作满意度没有关系,周课时量与工作满意度、外在工作满意度和内在工作满意度都有显著的负相关,这一研究结果表明,周课时量越多,那么工作满意度就会越低。

(三)情绪智力对工作倦怠和工作满意度的影响

1.情绪智力与工作倦怠的关系

关于情绪智力与工作倦怠的相关分析显示,情绪智力和工作倦怠的相关显著,相关系数小于0.3,大于0.2,属于低相关。情绪智力四个维度与工作倦怠的相关结果显示,情绪知觉、情绪理解、情绪管理与工作倦怠的相关显著,情绪表达与工作倦怠之间的相关不显著。情绪智力各维度与工作倦怠各维度之间的相关结果显示,情绪智力各维度与去人性化、情绪耗竭的相关系数低于0.2,不具有统计学意义,情绪知觉、情绪理解与情绪管理与个人成就感的相关在0.3以上,具有统计学意义。这一研究结果说明,情绪智力越高,那么其个人成就感就会越高,从而工作倦怠程度就会越低。进一步的回归分析结果显示,情绪知觉和情绪管理能有效预测工作倦怠,情绪管理能有效预测个人成就感。这一研究结果提示我们,在情绪智力中,情绪管理这一维度能有效影响个人成就感和工作倦怠感,因此,在进行情绪智力提升的过程中,可以重点加强对情绪管理的训练。

2.情绪智力与工作满意度的关系

关于情绪智力与工作满意度的相关分析显示,情绪智力与工作满意度、内在工作满意度相关显著,且相关系数大于0.2,这一结果说明,情绪智力越高,那么其内在工作满意度越高,工作满意度越高。情绪智力与外在工作满意度的相关系数小于0.2,不具有统计学意义。情绪智力各维度与工作满意度的相关结果显示,情绪知觉、情绪理解、情绪管理与工作满意度和内在工作满意度有相关,而情绪表达与之无关。进一步的回归分析结果显示,情绪管理能够有效预测内在工作满意度。结合情绪管理对工作倦怠和个人成就感的影响效应,我们可以推断,情绪管理是情绪智力的最核心成分,对情绪智力的提升起着至关重要的作用,情绪智力对工作倦怠、工作满意度的影响都是通过情绪管理这一能力去实现的。

五、结论

当前中小学教师情绪智力较高,工作倦怠程度较低,工作满意度程度较高。学历、学校类型、年龄、教龄、班主任龄与教师的情绪智力有关,这一研究结果说明,情绪智力是可以通过生活经验和工作经验的积累得以提高的。研究还进一步发现,情绪智力与工作倦怠和工作满意度有关,且情绪管理能力能够有效地预测教师的工作倦怠程度、个人成就感和内在工作满意度,因此,在进行情绪智力训练的过程中,可以重点强调对情绪管理能力的训练。

注:本文系朝阳区教育科学规划“十二五”第二批立项课题“朝阳区班主任情绪智力现状及其相关因素研究”(DHD1252127);北京市教育科学“十二五”规划一般课题“教师情绪智力现状及其与教师工作感受关系的研究”(DiB14176)的部分成果。

参考文献

[1]杨晓萍.中学教师情绪智力及其相关因素的研究[D].兰州:西北师范大学,2009.

[2]张小雪.初中教师情绪智力、职业倦怠与工作绩效的关系研究[D].呼和浩特:内蒙古师范大学,2012.

[3]ChanDw.perceivedemotionalintelligenceandself-efficacyamongChinesesecondaryschoolteachersinHongKong[J].personalityandindividualDifferences,2004,36:1781-1795.

[4]ChanDw.emotionalintelligence,self-efficacy,andcopingamongChineseprospectiveandin-serviceteachersinHongKong[J].educationalpsychology,2008,28(4):85-91.

[5]吴静珊.教师情绪智力对教学的影响[J].新课程研究:高等教育,2012.2:9-11.

[6]曹蓉.教师情绪智力影响教学效果的探析[J].高等理科教育,2001,(05):25-28.

[7]FreudenbergerHJ.Staffburn-out[J].JournalofSocialissues,1974,30:159-165.

[8]吴维库,余天亮,宋继文.情绪智力对工作倦怠影响的实证研究[J].清华大学学报(哲学社会科学版),2008,23(2).

[9]maslachC,SchaufeliwB&Leitermp.JobBurnout.annualReviewofpsychology,2001,52:397-422.

[10]王芳,许燕.中小学教师职业枯竭状况及其与社会支持的关系[J].心理学报,2004,(05):568-574.

[11]卢秋玲.现阶段中小学教师心理问题的成因与对策[J].赣南师范学院学报,2001,(04):81-84.

[12]刘晓明,邵海燕.中小学教师职业倦怠状况的现实分析[J].中小学教师培训,2003,(10):53-55.

[13]冯虹,陈士俊,张杨.初中教师工作满意度的调查研究[J].心理与行为研究,2010,8(2):141-145.

[14]黄丹媚,张敏强.教师工作满意度研究综述[J].社会心理科学,2004,19(3):17-19.

[15]徐志勇,赵志红.北京市小学教师工作满意度实证研究[J].教师教育研究,2012,24(1):162-164

[16]姜勇,钱琴珍,鄢超云.教师工作满意度的影响因素结构模型研究[J].心理科学.2006,29(1).

[17]胡咏梅.中学教师工作满意度及其影响因素的实证研究[J].教育学报,2007,3(5):46-52.

[18]李明军.中小学教师情绪工作策略、情绪智力与工作满意度的关系[J].中国健康心理学杂志,2011,19(6):675-677.

[19]ChanDw.emotionalintelligenceandcomponentsofburnoutamongChinesesecondaryschoolteachersinHongKong[J].teachingandteachereducation,2006,22:1042-1054

[20]姚计海,管海娟.中小学教师情绪智力与职业倦怠的关系研究[J].教育学报,2013,9(3):100-110.

[21]李明军.中小学教师情绪智力、工作家庭冲突与工作满意度的关系研究[J].中国健康心理学杂志,2012,20(9):1328-1331.

[22]刘衍玲.中小学教师情绪工作的探索性研究[D].重庆:西南大学,2007.

人工智能与教学篇10

【关键词】人工智能计算机辅助教学教学与控制

一、人工智能的定义

人工智能也称机器智能,它是计算机科学、控制论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统角度来看,人工智能是研究如何制造出智能机器或智能系统,实现模拟人类智能活动的能力,以延伸人们智能的科学。人工智能是一门交叉科学,逐渐形成一门涉及心理学、认知科学、思维可循、信息科学、系统科学和生物学科等多学科的综合性技术学科。

二、计算辅助教学体系和现状

计算救助教学是利用多媒体计算机的功能与特点,利用计算机辅助教师完成各个教学环节,并通过与计算机之间的交互活动,激发学生的学习积极性和主动性,帮助学生更有效地学习。实用计算机辅助教学,有利于认识主体作用的发挥,它所提供的图像、声音、动画等信息由利于学生知识的获得与保持,达到提高教学教学的目的。

目前为止,所实用的绝大多数传统以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学将全部教学信息以编程方式预置于课件中,这样的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。因此现有的以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。早期绝大多数计算机辅助教学系统面临许多挑战,它主要存在以下几个方面的问题。

1.计算机辅助教学系统的闭塞性

不具有开放性是目前以及理论证明等均被应用于计算机辅助教学系统,以提高其智能性和实用性。其弊端在于固定内容的局限性使课件的适用面狭窄,而且设定的运行路线使授课缺乏自主性;授课的针对性不强;无法利用新出现的资源在较高起点上进行二次开发。

2.智能性的欠缺

现有的计算机智能辅助课件系统不能对不同何曾度的学生进行有针对性的教育,学生的学习是被动的,不能由系统自动提供助学信息而使学生有选择地学习。。

3.人机交互能力较弱

现有计算机智能辅助大多以光盘作为信息的载体,将材料中的内容以多媒体的形式展现出来,教学信息是按预置的教学流程机械式地提供给学者,学习者使用计算机智能辅助课件学习是完全被动的。

4.教师与学生的互动在教学中的缺乏

现有计算机智能辅助课件在学生自学以及进行操作使用时,如何学习都是学生自己的事。教师不能全完了解学习者的情况,学生在蹦到问题时不能向教师求教,师生之间互相封闭,谈不上师生互动,因此课件所起的效果大打折扣。

5.课程特点没有突出

各门课程在教学上有不同的要求,但现有课件对于这些不同要求完全不予理会。例如很多课程都要涉及到大量的曲线或曲面,对有些课程来说,将这些曲线或曲面给出了一个简单的展示就足够了,而有些课程这样的展示不能达到教学目的的要求。

6.教学计划的欠缺

在课件的开发过程中实际上离不开教学策略的设计,但课件的制作者往往并未意识到这一点。例如:现有的绝大多数课件都是单一的展播式,这样的可见制作“精美”,但它不可逆、不能互动。实际上运用课件教学只是手段而不是目的,应该在教学设计理论的指导下讲求课件的实效性,着眼点在于学生学习新知识、掌握新技术、培养各种能力有帮助,而不是表面上的制作“精美”。

综上所述,现有的计算机智能辅助存在许多问题,随着新技术的不断出现,这些问题将使计算机智能辅助越来越不能适应新的要求。因此以智能计算机智能辅助为代表的心的计算机辅助教学系统将成为教育技术上需要不断探求、努力实现的发展方向。转贴于

三、智能计算机辅助教学系统

智能计算机辅助教学系统(intelligentComputeraidedinstruction),简称iCai。教学过程是一个复杂的教与学的思维过程,它需要教师以专门知识和经验为依据,经过吸取、讲解、推理、示例、综合等多个步骤才能较好地完成。计算机辅助教学实际上是一个由计算机系统辅助教师进行教学以及学生进行学习并得以实现的系统。在智能iCai中,教学思想、方法、学习内容可用知识形式表示,如何解决知识的形式化表示以及知识的访问与调用问题,是人工智能的核心技术之一,也是将iCai引入教育技术领域中所要面临的一个问题。知识库是实现知识推理与专家系统的基础,可以用知识库作为智能iCai的构建环境。在知识库中,教学内容等的有关知识可以用事实与规则表示,并存储于知识库内,教学与学习过程既是对知识库中知识进行推理,并最终得出所需结果的过程。iCai系统的一般包括以下几个模块:

1.知识库。知识库是关于教学内容的模块,解决“教什么”问题。知识库中的教学内容有待于教学与控制模块和学生模块进行选取、调用。

2.学生模块。学生模块是用于记录学生的学习情况,对学生学习的各个环节信息进行搜集,以便系统对学生的学习情况进行自动评估,提出具有针对性的学习建议和个别化的辅导。学生模块描述学生对教学内容理解、掌握的程度,系统可以根据学生模块的具体情况调整教学策略并提供适当的反馈。

3.用户接口模块。这是系统与用户交流的界面。整个系统依靠用户接口模块把教学内容呈现给用户、接受用户输入的信息、并向用户提供反馈。

4.教学与控制模块。这是教学过程与整个系统的控制模块,涉及到“如何教”的问题。它具有领域知识、教学策略和人机对话等方面的知识。根据学生模型提供的学生学习情况,通过智能系统的搜索与推理,得出智能化的教学方法与教学策略,能够较科学地评估学生的学习水平,可以通过分析学生以往的学习兴趣和学习习惯,预测学生的知识需求和常犯错误,动态地将不同的学习内容、学习方法与不同的学生匹配,智能地分析学生错误的原因进而针对地提出合理的教学建议、学习建议以及改进方法。

新世纪的教学将是以智能化的iCai为主线,是多学科、多方位发展的新技术的体现。随着人工智能技术的发展、计算机辅助教学的成效将更加明显。

参考文献