首页范文继电保护最新发展方向十篇继电保护最新发展方向十篇

继电保护最新发展方向十篇

发布时间:2024-04-25 23:55:39

继电保护最新发展方向篇1

【关键词】继电保护构成核心变革与提升

继电保护是指采用自动化的措施和设备保护电力系统及设备。随着经济的不断快速发展,电网系统规模的不断扩大,继电保护逐渐显示其必要性。计算机与继电保护相结合在计算机行业快速发展的大趋势下应运而生,这一结合很大程度上推动了供电企业的继电保护技术。

一、我国继电保护现状

随养我国经济的发展,各类用电设备急剧增加,电网系统规模不断扩大,继电保护技术也随之日益发展。继电保护与前沿技术相结合,尤其是计算机在继电保护中大量普及,使得电力企业能够利用计算机的数学运算能力和逻辑处理能力,从而提高安全保护的能力。更重要的是,随之计算机技术的发展,人工智能等先进技术也取得了长足进步。电力系统继电保护是一种普遍的离散控制,分布于系统的各个环节,而对系统状态进行判断,是实现保护止确动作的关键。由于人工智能的逻辑思维和快速处理能力,人工智能己经成为状态评估的重要工具,越来越多的应用与电力系统的多个方而,特别是继电保护方而。相比于人工操作,人工智能具有更强的灵敏性和速动性。不可否认的是,在可靠性方而,人工智能仍能还有很大的进步空间。另一方而,计算机网络作为新时代信息处理和数据通信工具己成为信息时代的技术支柱,将其与继电保护相结合是实现现代电力系统安全、稳定运行的重要保证。应用了网络技术的电力系统继电保护技术使每个保护单元都能共享安全系统的运行和故障信息的数据,使得各个保护单元在分析这些休息和数据的基础上协调动作。目前来看继电保护的网络化己经开始实施,但是还处于起步阶段,要实现我国继电保护的全而网络化,还需要广大技术人员的不懈努力。

二、智能电网继电保护的核心技术

智能电网的建设具有划时代的意义,它的出现使得我国电网技术有了很大的突破,产生了巨大的经济和社会效益。继电保护主要有以下几种核心技术:

(1)广域保护技术。传统的继电保护几乎没有自适应判断能力和保护能力。随着智能电网技术的出现,“广域保护”这个词逐渐被人们所认知。广域保护是指指定一个子域作为分析的单位,采集该子域的继电保护信息,并进行域内和域外的综合判定。目前,广域保护技术已经日趋成熟,主要分为继电保护和安全自动化控制,继电保护可以实现简化保护配合、缩短保护动作时间等目的。

(2)保护重构技术。智能电网中,保护重构技术是一项全新的继电保护技术,继电保护系统的重构应满足下述原则:一是功能完整性。通常重构后的继电保护系统达到或超过原有的保护系统的功能,同时允许紧急情况下对某些功能(例如保护动作速度、选择性)的降阶或解除,以满足系统最低安全指标。二是重构的快速性。由于一次系统一刻也不能脱离继电保护,因此继电保护系统自身的重构应快速有效。在有多套保护需要重构时应在维持最低功能的前提下选择分步实施或同时实施策略。三是重构的可靠性。继电保护重构时要重新选择设备组合,所构建的新系统必须保证可靠性指标满足要求。四是重构的经济性。继电保护系统的重构需要对设备资源进行重新划分,因此在保证可靠性的同时应尽量减少对资源的占用。

三、智能电网环境下继电保护技术的变革与提升

智能电网的规划与发展对电能传输的特点产生了巨大的影响,数字化和信息化使智能电网与传统电网产生了十分大的区别,因此,继电保护技术也要随着智能电网的发展而发展。

(1)向数字化方向发展。由于互感器故障的减少,我们不用再考虑由互感器故障所引起的回路接地和回路断线等故障,利用数字化的传感器,能够提高继电保护的整体性能,使所有的辅助功能得到简化,来提高继电保护水平,为我国智能电网建设提供先进的继电保护技术。

(2)向网络化方向发展。作为智能电网实现数字化转变的关键,网络化的继电保护装置可以有效提高智能电网的运行效率,电力管理者能够通过数字接口向继电保护装置发送控制信息,来对整个智能电网进行自动化的全操控。与此同时,还能将智能电网技术和网络技术结合在一起,让用户利用网络来实现对继电保护装置的配置,使继电保护装置的可操控性得到明显提高。

(3)向协同保护方向发展。传统保护仅能够对定值进行自整定保护,同时还要结合被保护线路的运行状态。智能电网的出现使得这种保护技术得到了全面提升,继电保护能对基于全网信息的保护状态实现自动化配置和整定,使整个继电保护系统能够实现互相保护,使传统的分散式独立保护转变为协同保护模式。

(4)应用新原理与新技术。智能电网中风能、太阳能和生物能等新型能源的随机接人,会给电网运行的安全性带来一定的挑战;同时,在智能电网背景下,更加快捷、灵活的调度方式将实现对电能传输方式和潮流方向的灵活调整;以电力电子控制为依托的电网灵活控制方式将取代传统电网的故障暂态特征。因此,应用和以上变化相适应的继电保护新原理和新技术,将是未来继电保护发展的主导方向,同时也是相关研究的关键课题。

四、继电保护在智能电网中的重要作用和意义

继电保护最新发展方向篇2

【关键词】电力系统;继电保护;自动化

1、前言

随着科学技术的日益发展,继电保护技术也取得了一定的技术进步,但科技进步也给继电保护技术的提出了新的要求。微机继电保护的发展是近些年继电保护领域的显著成就,继电保护装置作为电网安全稳定运行的防线,确保它的正常、健康运行始终具有非常重要的意义,与此同时,智能化电网的快速发展,加上系统继电保护装置类型也是日新月异,传统的继电保护装置对于当前电网的运行特性是否适用,在电网系统安全稳定运行中还能否发挥应有作用,就逐渐形成了严肃的课题。因此电力技术人员须不断完善继电保护自动化系统。

2、继电保护自动化的概念及工作原理

一般而言,继电保护是指电力技术人员继电保护技术如何有效的遏制电力系统中可能发生的或特殊情况,有效保障其的运行效率和运行质量。继电保护自动化是指只要继电保护技术能够检测潜在问题,便会发出报警信号、跳闸命令的自动装置,甚至直接把故障部分隔离或切除的一种措施。因此,当短路或过载运行等故障发生时,应保证此装置能及时传递报警信号,并做好对系统其它设备和装置的故障范围的控制工作,甚至直接排除故障。

继电保护的继电器通常由引脚,线圈,衔铁,触点等构成。输入信号是指源于其传输系统的保护对象的信号,测量模块通过采集被保护对象的有关运行特征信号,而得到测量信号,须与整定值进行对比,比较结果被送达至逻辑模块。逻辑模块依据测量模块的比较值的大小、性质及产生的次序或以上几种参数的组合,来进行逻辑运算,其逻辑值决定动作是否进行。

在自动化的电网实际运行中,它对于发电、配电、输电等电气设备的监控,都是由传感器来完成的,并且结合网络系统来采集和整合监控数据,然后把获得的数据通过网络系统进行收集、整合,最后对数据进行分析。利用这些信息可对运行状况进行监测,实现对保护功能和保护定值的远程动态监控和修正。因此,这种分布式发电、交互式供电对继电保护提出了更高要求。这就要求,自动化的继电保护装置不仅要确保保护对象信息的安全,还需要关联到其它电气设备的运行信息。

在新型的自动化继电保护系统中,主要通过监控系统,讲被保护对象所有的电气量信息以及与其关联节点的其他节点的运行状况信息进行分析和决策,实时对相应继电保护装置的保护功能和保护定值进行修正、调整,确保保护装置能够适应灵活变化的情况。

3、继电保护自动化关键环节

根据继电保护的工作范围和效果进行详细的特征分类,可分为选择性、灵敏性、快速性、可靠性,这四个点是继电保护的系统能否正常运行的客观要求。

3.1灵敏性

在继电保护系统中,当电力系统发生其维护范围之内的故障时,可以通过灵敏系数有效的反应,确保系统的运行安全。

3.2可靠性

继电保护系统的可靠性是指当在规定的范围之内,系统产生了其应该动作范围内的故障时,装置不该拒绝该动作。然而不是它的动作范围内的情况时,该装置不应误动作操作。

3.3快速性

为了防止故障蔓延,减轻危害,尽可能的恢复电压。因此,当系统发生故障时,装置应保证动作迅速,及时切除故障。

3.4选择性

当系统发生故障时,为了继续给无故障部分最大限度的供电,继电保护系统的设计与运行均须在尽可能的小区间移除故障。首先从离故障点最近的断路器切除故障线路,尽可能减少停电的范围,确保系统中没有故障的部分可以正常运行。

4、新时期电力系统对继电保护自动化的影响和挑战

新时期,电力系统和我国的电网将朝着数字化、自动化、智能化的方向发展,由此也对继电保护自动化带来了影响和挑战。因此,继电保护技术也应该朝着数字化的方向发展,以适应时代的需要,包活信息传输、测量手段等等都逐步实现数字化。其次,随着智能技术的不断进步与发展,继电保护工作中的信息平台的建立,促进智能电网不断朝着网络化的方向发展。相应的继电保护技术也应该与时俱进,向网络化方向发展。智能电网的快速建设,加大了整个电网系统的压力,因此,出现故障的机率也较传统要高。因此,要进行充分的后备保护服务,提高整个保护装置的性能,确保电力系统运行的安全与稳定。

目前,在电力系统的大力发展下,针对自动化的继电保护技术,需要解决的问题主要只有:时间和数据的同步性以及继电保护的整定计算。

智能电网中的额电子式互感器是分布式的,数据采集模式也是通过单元合并的,为了保证数据采集和传输的同步,在系统中需要精确的时钟同步。

在电网继电保护整定计算中,需要考虑很多的因素,比如电网的接线方式,以及运行方式,它们会对定值计算产生很大的影响。为了合理协调保护的灵敏性、速动性、选择性和可靠性之间的关系,保证各保护达到最佳的配合状态,就要求我们对电网的各种运行方式及多种故障情况进行反复而周密的计算。

5、继电保护自动化的发展

智能化、数字化、网络化是未来智能电网继电保护技术的发展趋势,特别是保护、控制、测量、数据通信的一体化。

对于继电保护技术来说,它是对电力系统中各种电气设备进行有效检测保护的重要手段,同时,智能化、数字化、网络化等都是它的未来发展趋势,尤其是监测、测量、保护以及数据通信的一体化。但是目前对于网络整定管理技术方面,还存在一些问题,比如系统数据结构和网络结构对维护人员带来的阻力;系统的定值计算与管理系统定值分离,操作失误较大。

在继电保护智能化的应用方面,将神经网络、遗传算法、进化规划、模糊逻辑这些人工智能方法适当结合可使求解速度更快。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。自适应继电也是值得发展和研究的内容,它的基本思想是使继电保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。这种新型保护原理的出现引起了人们的极大关注和兴趣,是微机保护具有生命力和不断发展的重要内容。

6、结语

科技发展飞速,继电保护技术发展的趋势将是更加计算机、网络化和智能化,将会为电力系统的保护做出更大的贡献。只要充分考虑各种情况,正确做出判别,都能发挥其独特的求解复杂问题的能力。在实现继电保护的计算机化和网络化的条件下,使保护、控制、测量、数据通信一体化,并逐渐实现继电保护的智能化,是当今电力系统继电保护技术发展的主要趋势。

参考文献

继电保护最新发展方向篇3

关键词:变电站继电保护电力系统

中图分类号:tm77文献标识码:a文章编号:1674-098X(2013)02(c)-0-01

随着人类社会和现代化的不断发展,人们已经越来越离不开电带给我们的帮助,离开了电力,人类几乎无法生存。所以,电力系统合理高效的保证供电不但与经济发展有关,更关乎举国上下的民生问题。而电力系统中最重要的一个环节就是继电保护系统,它使供电系统可以有条不紊的安全运行。因此,研究继电保护的现状与未来的发展前景具有非常重要的意义。

1电力系统继电保护的发展现状

随着中国的计算机技术,电子技术和通信技术的高速腾飞,我国的电力系统也是得到了日新月异的发展。现阶段最值得国人骄傲的就是电力系统微机继电保护技术的研发、成熟与应用。微机继电保护技术与过去几十年的机电式继电保护、晶体管继电保护、集成电路保护三种继电保护技术不同,它的数字计算能力和逻辑处理能力强劲,自我检测和记忆能力也是远远超越前几代的继电保护技术。如今,这种微机继电保护技术已经广泛的应用在了我国的高低压线路、电气设备以及低压网络当中,尤其是220kv以上的线路已经几乎全部被微机保护。重要的事,经过多年实践验证,实际应用中的微机继电保护确实比其他的保护技术具有更加显著的效果。目前我国具有自主产权的微机保护设备已经渐入佳境,不再依靠进口的继电保护技术和设备,甚至在原理和技术上已经超过了其他国家的继电保护。因此,微机继电保护技术在我国电力系统的应用已经被人们普遍认可,而且达到了不可取代的地步。

2对继电保护发展的展望

继电保护装置经过几十年天翻地覆的变换,经历了结构由繁到简、由分散到集中的过程。现如今,光电互感技术、计算机网络技术和自动化变电站技术这三大技术群的迅速发展使得变电站又开始进入数字化变电站时代。

数字化变电站最大的特点就是分成了过程层、间隔层和站控层三层设备。三层设备的重新划分使控制、数据通信、测量等原来由微机保护完成的任务也重新划分给了其他层的设备。比如过程层中的智能断路器、电子互感器和合并单元共同完成控制、模拟量及信号量的采集任务,而这些任务都是由原来的微机保护独自完成的。

这种继电保护任务的分层处理使得现在的继电保护只保存了数据计算、逻辑处理等非常少的任务,也必然会导致包括运行维护以及功能配置等方面的影响。笔者认为,未来的继电保护将会出现以下变化。

2.1硬件向模块化发展

过去的微机保护是一个整体装置,它的各个功能都集成在了几块互相交互的模块上,包括数据采集和计算以及信号逻辑处理的CpU模块、出口模块、电源模块、电流电压互换的Ct/pt交流模块。设计制作继电保护装置时,针对不同的保护装置和原件,其设计出的设备的采集交流量和跳合闸出口的数据和性能都也各不相同,这样的话就没法做到硬件的模块化处理。而新式的变电站将功能分为三层,过程层负责交流采集功能,智能操作箱负责跳合闸的功能。这样的话,保护装置的模块就缩减为电源模块和CpU模块,这两个模块一般情况下都是标准化处理。因此,全站的保护设备就可以进行硬件的模块化处理,这样不但减少了工作人员的工作量,也使设计方便,节省了成本。

2.2软件向元件化发展

目前继电器的保护原理和技术基本已经成熟,而且保护功能一般情况下也不会进行革命性的更改,所以,我们可以利用某种高级语言,将这些程序封装在标准的控制元件当中,再将这些元件针对不同的保护性质和功能嵌入到相应的位置。对于未来不会修改的功能可以做成完全封闭的元件,而对于将来可能进行修改的,可以开放元件的进出口进行修改和完善。为了避免使用和操作的过程中出现麻烦,可以将元件按照某项标准进行合理划分。这样不但有利于元件厂商推出新产品,而且增强了继电保护装置的适应性,同事避免了由于设计者的不同设计思路导致产品的不合适。

2.3保护功能向网络化发展

随着网络信息共享的发展,可以利用计算机网络的时效性和共享性将过程层所采集的数据共享到整个系统的所有设备上,让所有工作人员都可以随时查阅。这样不但极大地提高了继电保护装置的时效性和工作效率,而且通过信息的全站共享,可以将多台机器的保护功能集成在一台超级计算机上一同实现,同时也有利于优化变电站的自动化、元件化和模块发的发展。全站的网络共享是变电站整体工作效率提高的基础,只有网络共享、数字化进一步深入发展和广泛应用,将计算机网络和数据处理的效果达到最大化,才能最终实现整个变电站数据的统一化、智能化、共享化处理,变电站的保护功能网络化必然会发展到新的天地。

2.4装置功能向集成化发展

现阶段,随着处理器逻辑运算速度的快速发展、需要处理的继电保护现场情况也是越来越繁杂、又要考虑到成本的节省问题,集成化的继电保护装置逐渐受到人们的关注。比如一个110/10kV的变电站,我们可以将整个变电站的变压器设计成由10kV的出线、110kV的进线和变压器在内的三台间隔层的保护单位组成的系统,这样这三台保护单元就可以对整个变电站进行继电保护,而不再像以往那样浪费人力物力。当然这其中也需要对不同的精度和算法进行相应的调整。装置功能向集成化发展不但可以通过压缩变电站的设备大大的节省成本,而且在维修时只需要维修或者更换损坏的部件,备份时都只需要对这三台设备的设置进行备份即可,不再需要在乎其他方面,也极大的缩减了劳动量,提高劳动效率。

3结语

继电保护产品不断推陈出新,新的数字化变电站的推广也使得微机继电保护技术进入了新的发展阶段。经过该文对继电保护设备模块化、网络化、元件化、集成化的讨论,可以看出我国未来新式继电保护技术和设备必然会走出新的一步。

参考文献

继电保护最新发展方向篇4

关键词:继电保护发展趋势测试智能电网

1继电保护基本概念及其发展趋势

1.1继电保护装置基本组成

一般而言,整套继电保护装置由三个部分组成的,即测量部分、逻辑部分和执行部分,其原理结构如图1-1所示。

①测量部分测量被保护元件工作状态(正常工作、故障状态)的电气参数,并与整定值进行比较,从而判断保护装置是否应该启动。

②逻辑部分根据测量部分输出逻辑信号的性质、先后顺序、持续时间等,使保护装置按一定的逻辑关系判定故障类型和范围,确定保护装置如何动作。

③执行部分根据逻辑部分送的信号,完成保护装置所担负的任务。如发出信号,跳闸或不动作等。

1.2继电保护的基本要求

①可靠性――指继电保护装置在保护范围内该动作时应可靠动作,不该动作时应可靠不动作。可靠性是对继电保护装置性能的最根本的要求。

②选择性――指只有当故障设备或线路本身的保护或断路器拒动时,才允许由相邻设备保护、线路保护或断路器失灵保护来切除故障。

③速动性――指保护装置应尽快切除短路故障,减轻故障设备和线路的损坏程度,缩小故障波及范围。

④速动性――指在设备或线路的被保护范围内发生金属性短路时,保护装置应具有必要的灵敏系数。

1.3继电保护的发展趋势

1.3.1计算机化

在微机保护发展初期,曾设想过用一台小型计算机做成继电保护装置。由于当时小型机体积大、成本高、可靠性差,这个设想是不现实的。现在,同微机保护装置大小相似的工控机的功能、速度、存储容量大大超过了当年的小型机,因此,用成套工控机做成继电保护的时机已经成熟。继电保护的计算机化是不可逆转的发展趋势,但对如何更好地满足电力系统要求,如何进一步提高继电保护的可靠性,如何取得更大的经济效益和社会效益,尚须进行具体深入的研究。

1.3.2网络化

网络保护是计算机技术、网络技术和通信技术相互结合的产物,它可以实现对变压器、高低压线路和母线的相关保护等功能。资源共享是网络保护的最显著特性,还可以结合高频保护和光纤保护来实现纵联保护。天津大学1993年针对未来三峡水电站500kV超高压多回路母线提出了一种分布式母线保护的原理,即将传统的集中式母线保护分散成若干个保护单元,各保护单元接收本回路的输入量后,经量化处理,通过网络传送给其它回路的保护单元,然后各保护单元进行母线差动保护的计算,如果计算结果证明是母线内部故障则跳开本回路断路器,隔离故障母线,其它情况时各保护单元均不动作。这种用计算机网络实现的分布式母线保护,显然比传统的集中式母线保护有更高的可靠性。

1.3.3保护、控制、测量、数据通信一体化

在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。即实现了保护、控制、测量、数据通信的一体化。如果将保护装置就地安装在室外变电站的被保护设备旁,则可免除大量的控制电缆。如果用光纤作为网络的传输介质,还可免除电磁干扰。现在光电流互感器(ota)和光电压互感器(otV)已在研究试验阶段,将来必然在电力系统中得到应用。

1.3.4智能化

近年来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统保护领域内的一些研究工作也转向人工智能的研究,专家系统、人工神经网络和模糊控制理论逐步应用于电力系统继电保护中,为继电保护解决许多常规问题提供了新的方法。人工智能技术给电力系统继电保护的发展注入了新的活力,具有非常美好的发展前景。

2继电保护测试内容和测试方法的发展

目前国内继电保护产品检测主要依据ieC60255系列标准和GB/t14047国家标准进行。

2.1继电保护测试内容

传统的继电保护测试包括基本性能试验、功率消耗试验、温度试验、电源影响试验、机械试验、绝缘实验、过载试验、触点试验和电磁兼容试验。

在原有继电保护测试项目的基础上,根据继电保护装置发展的新特点,新增加的测试内容包括基于61850技术的继电保护产品检测,时间同步能力检测,产品通信协议检测,软件测试,以及装置可靠性检测和安全性检测。

2.2微机保护测试自动化

测试自动化是指测试系统可以按照事先编制的测试计划,自动、连续的完成继电保护装置的电气性能、可靠性、通信协议、信息安全的测试。完整的测试体系由以下几部分组成:①电气性能在静态模拟中的自动测试系统;②电气性能在动态模拟中的自动测试系统;③监控系统的自动测试系统;④通信协议的测试系统;⑤信息安全的测试系统;⑥继电保护测试专家系统。

3智能电网对继电保护的影响

随着国家电网公司智能电网建设的开展,智能电网的特征带来的网络重构、分布式电源接入、微网运行等技术,对继电保护提出了新的要求。

未来智能电网中,电网的自愈特征将会对继电保护的选择性、可靠性、速动性、灵敏性提出更高的要求,对常规继电保护的配置方法提出新的要求。分布式电源的灵活接入、多变压器的运行方式带来的后备保护配合、双向潮流、系统阻抗的变化等问题均会给继电保护定值整定带来困难。

同时,智能电网将给继电保护的发展带来新的契机,智能电网中所采用的新型传感器技术,数据同步技术、时钟同步技术、通信技术、计算机技术以及ieC61850标准的应用,可以提供区域范围内数据采集的高精度同步,满足数据采集传输的实时性,保障数据传输过程的冗余和可靠性。

4结语

随着智能电网建设的推进,继电保护要适应电网需求向计算机化、网络化、智能化、功能一体化方向发展,同时继电保护测试内容和测试方法也应不断补充和完善,为智能电网提供技术支持。

参考文献:

[1]智能电网中广域继电保护的应用,it专家网,2011.

[2]韩士杰,胥岱遐,施玉祥等.继电保护测试的发展方向(a),电工电气,2011(12).

[3]黄宝民,张晶.电力系统的现状与发展(a),科技资讯,2006(14).

[4]李世荣.继电保护发展的历史及其趋势(B),甘肃冶金,(4):30,

2008.

[5]钱雪峰.电力系统继电保护发展趋势探究(a),科技论坛,2010(12).

[6]邵宝珠,王优胤,宋丹.智能电网对继电保护发展的影响(B),东北电力技术,2010(2).

[7]姚致清.继电保护测试发展方向的思考(B),继电器,(11):36,

2008.

继电保护最新发展方向篇5

关键词:110kV;微机继电保护;特点

中图分类号:F40文献标识码:a

随着科学技术的发展,继电保护技术得到了前所未有的发展。传统的继电保护主要是针对电力系统中产生故障以及安全运行异常时,系统在最短时间和最小区域范围内将发生故障的设备切换到系统以外,以保证整体系统的安全,一般是由值班人员对产生异常的工况进行处理。随着计算机技术的发展,微机继电保护技术得到了广泛的应用,其以计算机指令为信号,通过信号来切换保护装置,这大大的减少了设备的损坏,避免了系统整体瘫痪所带来了影响。如何利用好计算机提高继电保护装置的可靠性就成为了时下电力部门日益关注的重要课题。本文从微机继电保护技术的主要特点出发,论述了110kV微机继电保护的方式,并详尽的分析了110kV微机继电保护的发展方向。

1微机继电保护技术的主要特点

微机继电保护技术与传统继电保护不同,其特点主要包括:微机继电保护的动作和性能得到了极大的提高,同时动作的正确率较高,一般不会出现偏差,在系统中能够很好的实现故障的分量保护,并且利用自动控制和状态预警提高了保护的正确率;微机继电保护还可以扩充其他的辅助功能,如:波形分析、故障录波、设备状态、故障分离等,利用这些辅助功能可以方便的完成自动合闸、低频减载、故障测距等功能;微机继电保护的工艺结相对简单,硬件接口也比较通用,不容易出现设备互联时产生的障碍,同时设备体积较小,减少了盘位数量的功耗;微机继电保护的可靠性较强,其数字元件不易受到温度和电源的影响,长时间使用自检和巡检能力也较强,不容易出现元件故障;微机继电保护系统操作灵活,人机界面直观,方便系统的调试、维护、管理,并且能够了最大的减少维修时间,同时还具备远程监控功能,能够及时的对设备运行状态进行监控。

2110kV微机继电保护的方式

2.1110kV微机继电保护的振荡闭锁

在微机继电保护系统功能上具有距离保护这一功能,所以系统运行过程中,如果出现闭锁现象,距离保护会马上起作用,如果距离保出现了问题,可以通过振荡闭锁或自动控制装置来减少前端的负荷,这可以保证整体系统运行不受影响。在保护闭锁向振荡闭锁过渡时,需要对整个状态进行观察,如果振荡停止,则系统会重新开放保护功能。判断系统是否存在振荡,应采用过流元件的判距进行衡量,所以在微机保护中找到适当的判距就可以区别系统是否发生振荡。

2.2110kV微机继电纵差保护

纵差保护主要是对全线路上的设备进行功能性保护。在系统运行中距离保护和零序电流保护存在一定限制,所以不能实现全线路的设备保护。一般传统保护采用的是距离元件或零序元件相结合的方式,但是在110kV变配电系统中,系统运行存在一定的振荡现象,所以需要对振荡闭锁进行关闭后再运行。高频保护的工作状态可以是开放式的,但必然会造成系统运行过程中的延时,尤其是元件选取时,负序和零序的元件不建议采用,一般选取工频变化量方向的继电器,这在事故出现过程中会起到关键性作用,同时也是变配电系统中的比较常用的元件。

2.3110kV微机继电零序电流保护

110kV微机继电零序电流保护主要是一种方向性保护,其对保护设备或元件的选取要求较高。零序电流保护在系统运行中具有抗电阻能力强、操作方便、运行可靠等特点,在110kV微机继电保护系统中应用较为广泛。110kV微机继电系统的零序电流保护,一般在pt断线时才转为这种形式,主要因为工作中零序方向的接地存在着一定的漏洞,如果真的出现故障,系统电流或电压超过了规定范围,会给整个系统的运行状态带来麻烦,所以在系统运行中必须要将二、三次的线分开,系统才能正常运行。运行中回路的影响也较大,同时距离保护和高频保护都要退出运行,零序方向也不能正常运作,所以要有无方向的零序电流保护和一相电流保护才能保护线路的正常运作。

3110kV微机继电保护的发展方向

110kV微机继电保护装置在国内使用已经有20多年的历史了,随着微机的发展,继电保护装置也更新了几代,无论是国内品牌还是国际厂商,其保护原理到系统整体运行都非常成熟。但随着使用功能和要求的不断提升,微机继电保护还存在着一定的缺陷,这也对110kV微机继电保护的发展方向提出了更高的要求。

3.1110kV微机继电保护的自动化与智能化

近年来,随着我国智能电网概念的提出,其相关技术和标准都做出了明确的规定,这就对继电保护技术提出了更高的要求,所以在继电保护设计时需要对智能技术进行挖掘,如:智能传感、神经网络、逻辑判断、模糊查询、遗传算法等,在充分利用的微机技术的基础上,研究生产和运行中的智能技术,以达到解决生产中的实际问题。

3.2110kV微机继电保护的设备管理与事件记录

现阶段110kV微机继电保护系统除了完成保护、监控、测量、通信的功能外,还应对使用设备的状态进行记录,这样可以直接反应出设备使用状态的周期,以及故障周期,尤其是一些重要设备的状态,如:日最大负荷电流、设备检修记录、断路器开断电流水平、断路器的分闸、合闸次数、累计故障次数、断路器动作时间监视、断路器触头寿命、分区段平均负荷电流、设备累计运行时间、日平均负荷电流、设备累计停电时间、累计电度等。这些设备管理包括对变压器保护测控装置,如果有油温、压力等模拟量接入,还可进一步监视变压器的其它运行工况。

参考文献

[1]侯巍.有关电力系统继电保护技术的运用[J].科技资讯,2012,28.

[2]李劼,臧杭杭.继电保护设备故障快速检测方法综述[J].河南科技,2012,14.

继电保护最新发展方向篇6

【关键词】智能电网;继电保护技术;电力系统

智能电网在我国应用广泛,规模和数量已经增加了很多,是电力系统中最重要的防御方式,因此在继电保护技术方面有了更好的技术需要。继电保护技术就是为了保护国家电网,和优化电网的结构和功能。在为了智能电网快速发展的同时还要不断深入研究继电保护系统,保证智能电网可以更加安全有效的运行下去。

1我国智能电网的具体含义以及特点

智能电网简单的说就是将电网智能化,我国建设的智能电网大多是采用的都是电网的网架,通过对各级电网共同协调发展下去。目前,将信息技术、高科技通信技术纳入到智能电网的应用中,从而形成一个自动化和互动性的统一系统。智能电网在现实中使用,目的就是在电网出现事故或者问题的时候能在最短时间内回复电力的正常供应,同时将电力故障造成的不良影响以及后果降到最低,减少造成的损失。智能电网的特点主要为,可以快速的输送电力,供电能力更加安全以及可靠,有效的减少了能源的消耗和浪费,减少污染物的排放量,环境因此而得到了有效的保护,提高了国家电力的经济效益。智能电网的运行平台更加智能化,更加灵活的对用户进行调整,方便用户的接入以及退出,可以将用户信息、电源以及电网的所有信息共享,帮助信息公开化更加透明化。

2智能电网中应用继电保护技术

保护电力网以及保护有关设备以及检测等技术属于继电保护的功能,目前,我国计算机信息技术、计算机通讯技术以及网络不断智能化的快速发展,智能电网和有关的先进技术不断应用起来,将传统的电力网系统应用状态完全改变,让智能电网保护技术能够更加长久的发展下去。智能电网中使用新型技术,对系统的反应速度以及安全方面都有很大的提高。

2.1传统电网中继电保护的具体组成方式

传统使用的电网中,继电保护的电源点电流流向都是一定的,按照一定的顺序,从中输出的主要电气量有三相电流中的电流与电压。只有正确的检测电气量,并对其进行评判才能发挥出继电保护的主要功能和作用。从而可以降低由于操作上的问题导致有关方面的功能不能正常的实现。

2.2构成智能电网继电保护的结构以及系统升级

交互式与分布式这两种方式是智能电网的主要发电方式,因此增大了继电保护对电网的保护。在信息化技术以及通信技术的快速发展和推动之下,智能电网中采用数字化技术已经成为了新的发展方向,因此要对新的继电原来进行保护和挖掘。智能电网中引进了传感器设备,可以让电力系统在发电和供电时都采用实时监控,将设备在运行期间的的各种数据进行整合再做分析,对其中缺陷和漏洞的地方做到即时的修补。

智能电网在一定周期内要进行升级,由于目前数字化以及网络化的快速普及。数字化传感器的主要功能为将继电保护的整体性快速提高,将原来的辅助功能不断简化,让电气量信息在传输的过程中更加真实,对继电设备的装置也进行有效的保护,更加完善。网络技术的快速发展并带动传统电路系统不断的现代化,因此采用的继电保护在获得信息方面也采用了数字化以及信息化的方式进行,实现网站内部所有信息可以共享,将继电保护装置更加简单化,也是未来智能电网的发展方向,其中有很多技术值得研究。

2.3智能电网中继电保护的主要原理

设备在运行中,正在发电、输入输出电力、对用户进行供电和配电等多种运行环节,在智能电网运行中使用传感器对其做更加高效的控制和管理,获得更多信息再将所有信息整个起来进行分析,让智能电网的运行状态和动态监护更好的起到保护作用。智能电网整个系统中,继电保护啊是对功能上的保护,同时也能够保护传感器可以按照正确的方式开始运行,在运行中的信息以及设备的信息都做到有效保护作用。这些都需要资源的准确性才能让信息共享,一旦保护设施出现问题,在不需要人工进行维修的情况下可以通过系统让其恢复正常,降低了由于大面积出现故障对企业和人民造成麻烦,让智能供电系统在运行中具有稳定性以及有效性。

3未来智能电网中采用继电保护技术的发展方向

目前,我国智能电网继电保护技术不断的走向自动化、数字化、网络化以及自动化,因此对继电保护装置进行测量和控制的数据实现一体化。

3.1继电保护技术向智能化的发展和应用

智能电网在实施中,大多数主要采用遗传算法和神经网络的方法,电力作为基础的情况下降智能化的方式更好的进行应用。非线性中存在的弊端可以通过神经网络来解决,人工神经网络采用人工神经的方式对设备实施保护,并对其中的故障进行判断,电力系统中使用继电保护有了很大的效果。神经网络的方法将出现故障的所有信息做了全面的分析,采用最科学的方式找到故障的地方,并对其进行解决,效率高,速度快。

3.2继电保护中综合性的自动化应用设备

现代科技带动网络技术的快速发展,继电保护被当做为一种功能种类多的计算机装置设备,对网络的智能终端进行指导。从互联网上通过继电保护装置得到电力系统中出现问题和故障的信息以及最新数据,再将数据通过网络传递给电力系统的网络中心。目前,智能电网的电力系统也在不断的完善,走向综合性的自动发展方向,实现了变电站中的多项功能,让电力系统可以更加健康的发展下去。

3.3继电保护技术使用范围扩大

人们生活水平不断提高,生产和生活中都会电有很大的需求,因此电网的电压等级也提高了很多。更多的是要求在高压下输入电力,一旦供电的稳定性比较差就会造成出现故障和问题的几率比较高。由此可见,智能电网想要得到发展必须提高信息技术和通信技术,采用广域测量的技术作为电力系统中的核心技术,可以输送电力并对电力进行保护,让系统的自动化性能得到提高,降低出现故障率,让电力系统更加稳定和安全。

4继电保护以及维修工作人员的专业素养和职业技术

继电保护技术的目的就是为了防智能电网更加稳定安全的运行,人们正常生活,企业正常生产都离不开电力系统,因此工作人员有很大的责任,因此在此工作人员的业务水平要不断提高。对维修和保障安全的工作人员按照一定的时间开展技术培训工作,做一些关于电力设备方面的知识竞赛,储备更多的人才。制定工作人员的考核标准,提高个人素质,上岗之前进行培训工作,建立起一批高素质高技能的综合性素质人才队伍,让继电保住技术得到发展。

5结语

我国的现状为,智能电网还在建设和发展的阶段,信息技术的发展和通讯技术的提高已经在电网系统的建设中体现,对继电保护装置的功能也有更高的要求,能够不断的成为自动化、数字化以及自动化的方向发展。因此,需要工作人员在工作的同时再总结和积累一些经验,对自身的专业知识加强,提高个人素质,对新技术的学习能力强,工作人员对继电保护在工作时的重要性要有一个更加深入的认识,让智能电网可以更加安全,效率更快,同时稳定性高,可靠性不断增强。

参考文献:

[1]王向东,吴立志.浅析智能电网框架下的继电保护技术[J].机电信息,2011(18).

继电保护最新发展方向篇7

关键词:继电保护自动化技术人工智能

abstract:thesafetyoftheelectricitysystemrelayprotectionisanimportantlinkintheproductionsystem.therelayprotectionsystemstabilityandthedesignprinciple,configurationandsettingcloselyrelated.thispaperismainlytotheanalysisofthepresentsituationandrelayprotectionnarration,thispaperexpoundsthedevelopmentdirectionoftherelayprotection.

Keywords:relayprotectionautomationtechnologyofartificialintelligence

中图分类号:F407.61文献标识码:a文章编号:

1继电保护的基本概念

继电保护是对运行中电力系统的设备和线路,在一定范围内经常监测有无发生异常或事故情况,并能发出跳闸命令或信号的自动装置。因在其发展过程中曾主要用有触点的继电器来保护电力系统及其元件使之免遭损害,所以沿称继电保护。电力系统继电保护的基本任务是:当电力系统发生故障或异常工况时,在可能实现的最短时间和最小区域内自动将故障设备从系统中切除,或者给出信号由值班人员消除异常工况的根源,以减轻或避免设备的损坏和对相邻地区供电的影响可靠性是指一个元件、设备或系统在预定时间内,在规定的条件下完成规定功能的能力、可靠性工程涉及到元件失效数据的统计和处理,系统可靠性的定量评定,运行维护,可靠性和经济性的协调等各方面。

2继电保护现状

现阶段各种主电气设备、低高压线路都有相对应的微机保护装置对其进行保护,特别是线路保护已形成系列产品,并得到广泛应用。在实际的工作生活中微机保护是比较高的,远远高于其他的各种保护措施。目前对于220KV的继电保护装置已经基本是国产的,我国继电保护技术发展非常迅速,国产的继电器优势方面非常明显。

2继电保护的发展

继电保护是否能安全可靠的工作直接关系到整个电力系统的安全运行情况。因此在电力系统中对继电保护有很高的要求。传统上采用独立的装置有专门人负责,希望继电保护装置能快速有效地检出,切除、隔离故障,并能快速恢复供电。电力系统继电保护先后经历了不同的发展时期,机电式继电保护、晶体管继电保护、基于集成运算放大器的集成电路保护,到了20世纪90年代继电保护技术进入了微机保护时代,微机保护有强大的逻辑处理能力,数值计算能力和记忆能力。对于微机型继电保护装置由于其性能的优越运行可靠,越来越得到用户的认可而在电力系统中大量使用。

4继电保护发展趋势

4.1人工神经网络

人工神经网络下简称是模拟生物神经元的结构而提出的一种信息处理方法。具有本质的非线形特征并行处理能力强鲁棒性以及自组织自学习的能力其应用研究发展十分迅速。目前主要集中在人工智能信息处理自动控制和非线性优化等问题。近年来电力系统继电保护领域内出现了用人工神经网络来实现故障类型的判别故障距离的测定方向保护主设备保护等。例如在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一非线性问题。距离保护很难正确作出故障位置的判别从而造成误动或拒动。如果用神经网络方法经过大量故障样本的训练只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其它如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快。可以预见对于电力系统这个存在着大量非线性的复杂大系统来讲。人工智能理论在电力系统中的应用具有很大的潜力。目前已涉及到如暂态,动稳分析、负荷预报机组最优组合,警报处理与故障诊断,配电网线损,计算发电规划经济运行及电力系统控制等方面。

4.2自适应控制技术

自适应继电保护是为能根据电力系统运行方式和故障状态的变化而实时改变保护性能、特性或定值的新型继电保护。自适应继电保护的基本思想是使保护能尽可能地适应电力系统的各种变化,进一步改善保护的性能。这种新型保护原理的出现引起了人们的极大关注和兴趣是微机保护具有生命力和不断发展的重要内容。自适应继电保护具有改善系统的响应,增强可靠性和提高经济效益等优点。在输电线路的距离保护、变压器保护、发电机保护、自动重合闸等领域内有着广泛的应用前景。针对电力系统频率变化的影响、单相接地短路时过渡电阻的影响、电力系统振荡的影响以及故障发展问题。采用自适应控制技术,从而提高保护的性能。对自适应保护原理的研究已经过很长的时间,也取得了一定的成果但要真正实现保护对系统运行方式和故障状态的自适应必须获得更多的系统运行和故障信息只有实现保护的计算机网络化才能做到这一点。

4.3变电所综合自动化技术

现代计算机技术、通信技术和网络技术为改变变电站目前监视、控制保护和计量装置及系统分割的状态提供了优化组合和系统集成的技术基础。高压超高压变电站正面临着一场技术创新实现继电保护和综合自动化的紧密结合它表现在集成与资源共享远方控制与信息共享。以远方终端单元、微机保护装置为核心,将变电所的控制、信号、测量、计费等回路纳入计算机系统,取代传统的控制保护屏能够降低变电所的占地面积和设备投资,提高二次系统的可靠性

4.4智能电网的特点

智能电网的特点是电力和信息的双向流动,便于建立一个高度自动化和广泛分布的能量交换网络。为了实时的交换信息和设备层次上近乎瞬间的供需平衡,在这个关键目标下,继电系统的保护发展取得了一个广阔的空间,也催生了一批新的商业模式,其技术涉猎广泛,如再生能源、计算机网络技术等,许多工作集中于分布式电源的并网及灵活运行的控制策略上。未来电力系统的继电保护技术的发展将在传统电力系统趋向智能系统的转变中迎来技术的革新。

结束语:

现代电力系统是一个由电能产生、输送、分配和用电环节组成的大系统。电力系统的飞速发展对电力系统的继电保护不断提出新的要求,在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响。继电保护必将得到大力的发展。

参考文献:

[1]陈德树继电保护运行状况评价方法的探讨[J]电网技术2000

[2]严兴畴继电保护技术极其应用[J]科技资讯2007

继电保护最新发展方向篇8

【关键词】继电保护;配置应用;维护;发展

1.前言

近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。

2.继电保护发展现状

目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着电力改革的不断深入,电力系统继电保护技术将为我国经济的大发展做出贡献。

3.电力系统中继电保护的配置

3.1继电保护装置的任务

继电保护主要利用电力系统中原件发生短路或异常情况时电气量(电流、电压、功率等)的变化来构成继电保护动作。继电保护装置的任务在于:在供电系统运行正常时.安全地、完整地监视各种设备的运行状况,为值班人员提供可靠的运行依据:供电系统发生故障时,自动地、迅速地、并有选择地切除故障部分,保证非故障部分继续运行:当供电系统中出现异常运行工作状况时,它应能及时、准确地发出信号或警报,通知值班人员尽快做出处理。

3.2继电保护装置的基本要求

(a)选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除首先断开距离故障点最近的断路器,以保证系统中其他非故障部分能继续正常运行。

(b)灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。

(c)速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。

(d)可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。

4.电力系统继电保护发展趋势

继电保护技术向计算机化、网络化、智能化、保护、控制、测量和数据通信一体化方向发展。随着计算机硬件的飞速发展,电力系统对微机保护的要求也在不断提高,除了保护的基本功能外,还应具有大容量故障信息和数据的长期存放空间,快速的数据处理功能,强大的通信能力,与其他保护,控制装置和调度联网以共享全系统数据,信息和网络资源的能力,高级语言编程等,使微机保护装置具备一台pC的功能。为保证系统的安全运行,各个保护单元与重合装置必须协调工作,因此,必须实现微机保护装置的网络化,这在当前的技术条件下是完全可行的。在实现继电保护的计算机化和网络化的条件下,保护装置实际上是一台高性能,为了测量、保护和控制的需要,室外变电站的所有设备,如变压器、线路等的二次电压、电流都必须用控制电缆引到主控室。所敷设的大量控制电缆投资大,且使得二次回路非常复杂。但是如果将上述的保护、控制、测量、数据通信一体化的计算机装置,就地安装在室外变电站的被保护设备旁,将被保护设备的电压、电流量在此装置内转换成数字量后,通过计算机网络送到主控室,则可免除大量的控制电缆。

5.继电保护装置简介、维护及实际应用

5.1继电保护装置的简介

(1)wStJ-1微机式继电保护数字通讯接口装置

这是近几年兴起的一种较为先进的继电保护装置,这套装置采用传统数字通信5群中的64kbi/s数据接口,但是却利用了最先进的专业光缆通道传输多路继电保护的开关量信号。

装置中的继电保护接口可与相间距离和零序方向保护配合,实现闭锁式或允许式保护逻辑,构成方向比较纵联保护。该装置可与微机线路保护配合,构成各种闭锁式和允许式保护。

(2)继电保护装置的维护

(a)对新投运好和运作中的继电保护装置应按照《继电保护和电网安全自动装置检验条例》要求的项目进行检验;一般对10kV~35kV用户的继电保护装置,应该每两年进行一次检验,对供电可靠性较高的35kV及以上用户每年进行一次检验。(b)在交接班时应检查中央信号装置、闪光装置的完好情况,并检查直流系统的绝缘情况、电容储能装置的能量情况等。(c)对操作电源进行定期维护。(d)对继电器、端子排以及二次线将进行定期清扫、检查,此工作可以带电进行,也可以停电进行。

5.2继电保护装置的实际运用

近年来,由于电网继电保护技术均已达到先进水平,在经过实际应用,相信该系统在电网安全运行方面将发挥重要作用。

电网继电保护及故障信息处理系统主要由网、省、地级电力调度中心或集控站的主站,各级电厂、变电站端的子站及录波装置通过电力信息传输网络共同组成。系统设计目的是能够切实提高电网的信息化和智能化,并具有高安全性和高可靠性,要优先采用电力调度数据网络,保障故障录波数据能实时上传。因此系统必须具有分层、分布、开放、易扩展的特性。

该系统实现了事故推画面、故事汇总、网络探测和跨安全区应用的技术创新,至投入使用以来,经历了夏季高温用电高峰、暴风雨,冬季冰雪等突发事件的检验,结果表明继电保护装置能够较好的保证电网的安全运行。

6.结语

总之,在电力系统继电保护工作中,只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,才能提高供电的可靠性。

参考文献

[1]王翠平.继电保护装置的维护及试验[J].科苑论坛,2013(8).

继电保护最新发展方向篇9

关键词:电力;智能电网;继电保护;

pickto:electricpowersystemofourcountryintheprocessofdevelopment,smartgridconstructionanimportantreform,notonlyisChina'spowergridofthefuturedevelopmentdirection,itistomakesuresocial,economicrapiddevelopmentfoundation.intheconstructionprocessofintelligentpowergrid,asthefoundationofthepowergridlineprotection,relayprotectionprofessionalalsofaceagooddevelopmentprospectandspaceforintelligentpowergridfortheconstructionofthepowerfulbacking.thisarticlefromtheconceptofintelligentpowergridtospeakabout,tellsthestoryofthekeylinkofintelligentpowergrid-relayprotection,andpowerontherelayprotectiontechnologyandtheinfluenceofthetechnologydevelopmentprinciple.

Keywords:electricpower;Smartgrid;therelayprotection;

中图分类号:F407.61文献标识码:a文章编号:

引言:

当前形势下,智能电网被认为是历史跨入新世纪时电力系统最大的创新,是全球电力发展的趋势,电子式互感器、数字化变电站、光与测量技术等等包含了电子、信息、机械、管理各项先进的科学技术,智能电网导致的网络结构重组会使电力系统的复杂程度不断提高,同时新技术、新设备不断应用于智能电网建设工作中,所以继电保护作为电力系统安全稳定运行的基础保障,全新的挑战也随之而来。

为了实现智能化电网的功能,智能电网会把智能化的优点运用并体现在电力系统的每一个环节,达成这些环节的互动交易和智能化的决策。它还兼有高效运行、安全可靠、很强的自愈力和结构灵活开放的风格和优点,还能实现各种形式的发电方式的输送和优化对接。

一、智能电网

电网的智能化成为智能电网,它是基于高速通行、集成系统的基础上的并可以进行双向信息处理,以特高压电网为主干网架,掌握灵敏的控制方法,利用先进的电子传感技术,运用更为有效快捷的管理手段,对信息进行统一收集、处理,小到实现电网达到整个国民经济的安全、高速运行的目标。但是智能电网并不只是单纯利用先进的技术来解决单个设备或是变电站的网络,它是内涵实现整体电网的数字化、互动化、信息化,满足社会要求的高性能、高质量的电能,智能电网建设中先进的技术为决定了继电保护发展的高起点、发高基础。另一方面,对继电保护技术作深入研究和分析,也是智能电网安全运行的保障。

二、继电保护技术在智能电网中的应用

无论是传统电网还是未来的高智能化电网,继电保护都是不得忽视的问题,是电力系统稳定运行的关键,随着智能电网建设工作不断开展,继电保护过程日益复杂,因为保护技术虚融合信息技术、网络技术、电子技术、控制技术等多专业技术,据科学报道截止到2010年底,我国220kV及以上系统继电保护装置的网络化控制率已超过96.41%。

三、智能电网影响继电保护技术的发展

智能电网一个重要特征是自愈性。在不利用人为检查的情况下,电网中有问题的元件自动从电力系统中分隔出来,使系统恢复正常工作从而保证电网的稳定运行,称之为“自愈”。看似简单,实际上,“自愈”这一过程是对继电保护的挑战,随着高压、大规模电网的出现,网路中线路电流必然会比原来增大,解决这些问题就需要考虑到短路电路的可靠系数、增加抑制短路电流的设备等,会对继电保护的安全性、快速性、敏感性、可选性造成一定的困难。同时,智能电网也给继电保护技术提供了新的发展契机,利用其各项先进技术,例如新型传感器技术,可以更为精确的采集电气量,在发生故障的情况下,缩短数据计算时间,都会影响并促进机电保护技术的前进步伐。

1、广域继电保护技术[1]

由于电网系统规模不断扩大,广域继电保护就必须实现在庞大的电力系统中实现整体保护的目标,要在大范围内保持时间和数据同步进行以及大量的采集数据、长距离传输、快速反应等等技术要求会给其带来不小的难度,所以结合智能电网先进的技术提高继电保护技术是必要的,简单来说,广域继电保护技术主要包括时间数据同步、重组广域保护的区域结构、研究后备保护新设备、在线调整保护定值等。要在较大的范围内,利用统一精准的时钟源,实现同步数据采集,交换各个保护信息,并且要赋予区域内的继电保护决策功能,以便适应具有自主性的智能电网的工作形式。

2、数字化继电保护[2]

数字化是电力系统由传统电网向智能化电网转变的标志性技术,所以继电保护从传输、测量、收集、处理都必须发展为数字化形式,数字化传输方式是指采用电子式互感器传输,提高互感传输性能,减少传输故障,从而简化电流互感、二次回路线路连接,但是提高继电保护在智能电网中的整体性能,完善并简化其各项辅助功能智能,是继电保护未来发展方向的主要研究课题。

3、网络化继电保护

对于智能化电网来说,继电保护承担着处理网络化信息的任务,网络数据传输具有共享性,这就意味着继电保护的信息获取和信息传输将面临前所未有的交换平台。处理手段将利用网络上共享的电气量及控制信号,简化继电保护的配置结构,这些都是在数字化变电站的基础之上,优化其保护性能。所以电气量和传输信号必须可靠、安全,这关系到继电保护的结构组态和电网是否安全稳定运行。

4、继电保护在线整定[3]

与传统保护定值不同,在线整定技术实现了对整个电网甚至是电力系统线路保护的联网在线整定,利用全网可靠准确的信息实时的判断,并对其自动配置来调整定值,可以快速准确反映并分析故障,在线整定再也不是传统的各自独立分散的进行信息处理,而是通过继电保护技术整合信息并协调发展,这才是智能电网的发展趋势。

四、继电保护技术发展原则[3]

由上文可见,为适应智能化电网建设,就必须要求继电保护系统重新组建以达到保护电网安全运行的目的。在重构过程中必须满足继电保护技术的快速更新和其功能完整性两大原则,快速更新性原则是因为,在电网的运行工作过程中一秒钟都不能离开继电保护,所以其技术更新需要紧跟电网的发展脚步,要快速完成,在满足电力需求的情况下选择同时或是独立实施策略。功能完整性原则是指保护技术发展后必须优于原来的保护技术,以适应智能电网的线路保护要求。

结语语:智能电网是电网未来的必然发展方向,具有无可比拟的各项优点。在建设高性能电网的过程中,机电保护领域随着新技术和新设备的不断应用会发生翻天覆地的变化,新技术、新设备的不断投入使用,智能电网运行研究的不断深入,都要继电保护技术向更高层次发展,其功能和应用范围将会越来越广阔,为智能电网提供稳定的基础。

参考文献

[1]项巍.智能电网时代继电保护技术研究[J].科协论坛(下半月),2011(07).

[2]胡磊.浅析智能电网对继电保护的影响[J].无线互联科技,2011(04).

[3]于波,原宇光.浅谈电网继电保护综合自动化系统[J].黑龙江科技信息,2007(02).

继电保护最新发展方向篇10

【关键词】继电保护测试;发展方向;思考

随着电力系统的高速发展和计算机技术的进步,继电保护装置是电力系统的重要组成部分,对电力系统的安全有效运行、防止事故发生等起着决定性作用,因为电力系统的发展,设备容量不断增大,继电保护装置动作的正确性对保持电力系统的暂态稳定起着极其重要的作用,对于继电保护装置预防故障的发生以及解决故障有着重要的意义。本文结合继电保护发展的新特点以及需要注意的新问题进行了以下几个方面的论述:

1.当前继电保护产品技术发展的新特点

随着相关标准的以及产品的发展,也会对继电保护带来一定的影响与变化。采用数字pt与Ct,给继电保护的发展带来了变化,新的保护方案需要应对通信结构,通过交换保护信号来有效的满足分布式保护方面的要求。同时要求研发人员参考装置的可靠性以及稳定性。对于不并列运行的分段母线,应装设电流速断保护,但仅在断路器合闸的瞬间投入,合闸后自动解除:另外应装设过电流保护。如采用的是反时限过电流保护时,其瞬动部分应解除;对于负荷等级较低的配电所可不装设保护。与此同时,还需要建立一个统一的硬件平台,其与继电保护的原理没有关系,而是通过文件的配置来转变继电保护的具体类型,从而大大的降低了维护人员的工作量以及工作难度。

2.构建继电保护测试分析中心

2.1构建继电保护测试分析中心的具体技术要求

在当今条件下,若想成功的建立继电保护测试分析中心,需要满足下列技术要求:(1)拥有能够传递保护测试相关数据的网络以及运输的通道。(2)在电网系统里的继电保护方面的装置,应该均为由计算机进行操控的数字保护方面装置。(3)拥有电网系统之上的动模仿真的测试平台,这是对测试分析中心的具体要求,从而能够使其模仿类型不同的故障,以及不同的运行方式。(4)能够通过数据的传输通道,来将电压仿真方面数据,传递到计算机的保护装置中。

2.2构建继电保护测试分析中心的具体措施与方法

对于继电保护测试分析中心的构建而言,需要建立动模仿真方面的测试平台,其主要方式为以下几个方面:

(1)物理动模仿真方法

这种方式具体而言,是在动模的实验室里,构建电网系统的相关物理模型,从而有效的构建动模仿真的测试平台。而在电网系统方面,其物理模型能够满足运动方式不同的动模仿真。又或者其可以在物理模型之上,来对不同点上类型不同的故障来进行动模的仿真。在实际的工作中,还是可以使用三段式的电流保护。也就是说,在第一阶段中,使用的是瞬时电流速断来进行保护的,它是作为一种辅助保护而存在的,能够在极短的时间内把线路首端的故障切除带掉;在第二个阶段中,使用的是略带时限的电流速断来进行保护的,它是作为主要的保护存在的,对全长的线路进行保护;在第三个阶段中,使用的是定时限过电流来进行保护的,它作为一种后备保护,一来可以对全长的线路保护,二来可以作为下一级的线路的后备保护。

(2)软件动模仿真方法

这种方式主要是用来解决,物理动模仿真具有较大的工作量,和费用比较高方面的问题。因此为了降低工作量以及费用,可以使用软件方式来构建动模仿真测试的平台。使用软件模拟进行仿真计算,可以得到大量的能够展现电网系统运行状况,以及电网在故障的情形下,各个保护装置所安装的电流,来获得相关数据。在电网系统中,当其发生故障时,可以采取各种保护装置的故障录波的数据来进行科学有效的分析与比较验证,结合相关数据从而使得软件动模仿真方式能够愈来愈接近事实真相。

3.继电保护检测装置里需要添加的具体内容

由于经济和社会不断发展与进步,因此继电保护装置也得到了新发展,根据新特点,需要添加以下方面的测试内容与相关解决办法。

3.1时间同步的检测能力

这主要是由于GpS等一些时间同步技术的开发与广泛使用,从而解决了传统继电保护装置无法随着时间同步的缺陷。替换法指的是用相同并良好的元件代替怀疑有故障的元件进行检验,进而判断元件的好坏,这也是快速缩小故障查找范围的一种有效方法。通常情况下,当元件出现故障时,要用备用或暂时正在检修的并具有相同作用和功能的元件来进行替换,这也是处理合自动化保护装置内故障最常用的方法。替换之后如果继电保护装置恢复正常的运行状态,说明故障在换下来的元件内,反之则用相同的方法继续在其他地方进行检查。这种方法在微机型继电保护装置的故障检查中比较常用。

3.2装置可靠性的检测能力

当前的继电保护测试的主要内容均是关于样品功能以及性能的测试,有时候也会对其可靠性来进行寿命的测验,然而在其可靠性上则缺少相关检测。当前的可靠性试验可以从装置硬件可靠性以及软件自身运行可靠性来着手。二次回路故障是继电保护系统中最常见的故障,想要及时有效的确认继电保护系统故障的位置,可以采用相对原始的方法,如:可以先将二次回路按顺序拆除,然后再逐个安放回去,以此来确认回路中存在的问题,等确认故障之后再将回路中的构件按照相应顺序进行安装,从而确定故障回路中的构建。

3.3软件的测试能力

这主要是由于软件得到了广泛的使用,其承担的工作日益增多,若软件本身具备较多的缺陷会引发继电保护装置其无法正常运行。可以采用对比法,主要指的是通过校验报告进行比较或进行非正常设备与正常的同型号、同规格的设备的技术参数的对比,如两者之间相差较大时则证明此处为故障产生的原因。在继电保护系统的安装过程中,通常采用此类方法的原因是因为技术人员不可避免的失误造成的接线错误等,从而使继电保护系统进行回路改造或设备更换后不能恢复正确接线产生故障。

4.结束语

电力系统故障能够准确分析、及时处理的依据和手段主要是因为继电保护故障信息分析处理系统的开发和使用,保证系统无故障设备正常运行。本文结合不断发展的时代要求,针对当前继电保护产品技术发展的新特点,提出了构建继电保护测试分析中心以及添加新测试能力等,来保证继电护装置对电网的稳定作用,最终提高供电的可靠性。

参考文献:

[1]李本胜.继电保护装置故障诊断与维修[m].北京:化学工业出版社,2011.5(04):12-13.

[2]王斌,卢广建.继电保护装置故障诊断分析[J].电力系统,2011.6(01):23-24.

[3]郭丽.继电保护装置运行故障的原因分析[J].科技风,2013.5(01):22-23.

[4]万里科.继电保护在变电站中的应用[J].中国高新技术企业.2010.6(13):41-47.