首页范文纳米技术治疗十篇纳米技术治疗十篇

纳米技术治疗十篇

发布时间:2024-04-25 23:52:50

纳米技术治疗篇1

关键词纳米技术肿瘤治疗

羧基磷灰石

近年武汉理工大学李世谱教授发现羧基磷灰石的纳米材料可杀死癌细胞,其委托北京医科大学等权威机构进行了细胞生物实验。结果表明,该纳米粒子可杀死人类肺癌、肝癌、食道癌等多种癌细胞;并且认为纳米材料具备杀死癌细胞而不伤害正常细胞的奇特功效,但必须具备2个条件:①纳米粒子具备一定的超微尺度,一般在20~100nm之间;②纳米粒子要呈均匀分布,才具有药效[1]。

磁性材料

德国柏林“沙理特”临床医院已经尝试借助磁性纳米微粒治疗癌症。研究人员将氧化铁纳米微粒注射到瘤体内,然后置于可变的磁场中,在磁场的作用下氧化铁纳米微粒可升温至45~47℃,这种温度下完全可以杀灭肿瘤细胞,而周围的组织中没有氧化铁微粒,所以周围组织不会受到明显的损伤,这样便达到了既消灭肿瘤又保存正常组织的目的。

纳米药物

纳米颗粒具有表面积大、表面反应活性高、活性中心多、吸附能力强等特性。但目前应用的微囊材料生物相容性差。特别是在肝癌的治疗上,目前采用纳米级脂质体-碘油乳剂及聚氰基丙烯酸正丁酯纳米微粒碘油乳剂,用于肝癌栓塞化疗,具有良好的肝靶向性、缓释性及生物可降解性,还具有抗耐药性,临床上用阿霉素纳米微粒-碘油乳剂治疗肝癌效果良好[2]。

另外,纳米粒子作为药物传递与控释的载体,是一种新的药物控释体系。纳米控释系统直径在10~500nm,可以通过人体最小的毛细血管。其控释机理可以是药物通过囊壁沥滤、渗透和扩散,也可以由基质本身的溶蚀而释放。该系统具有缓释性、靶向性、定时性、稳定性等优点,而且可减少药物使用剂量,减轻或避免其不良反应。

陷阱细胞

tomalia等采用树形聚合物形成的纳米陷阱。此陷阱为超小分子,能够在病毒进入细胞前与病毒结合使病毒失去致病力。tomalia把能够与病毒结合的硅铝酸位点覆盖在陷阱细胞表面,当病毒与陷阱细胞结合后,就不能再感染人体细胞了。陷阱细胞能够繁殖,生成不同的后代,体积较大的后代能够携带更多的药物,而且体积越大效果越好。目前体外实验证明,纳米陷阱能够在流感病毒感染细胞前就捕获它们。人们期待采用同样的方法捕获艾滋病病毒等更复杂的病毒。该细胞是由外壳、内腔和核3部分组成的;其内腔装载化疗药物,可直接送达肿瘤部位对肿瘤进行局部治疗[3]。

纳米“智能炸弹”

为了在形成致命性的肿瘤之前早期发现并杀灭癌细胞,美国密歇根大学的Baker博士正在设计一种纳米“智能炸弹”,此“智能炸弹”直径仅有20nm左右,可以识别出癌细胞的化学特征,能够进入并摧毁单个癌细胞。

纳米生物导弹

利用磁性纳米微粒表面包覆制造定向医疗药物已经成为目前医药学研究的一个热点。人们在磁性纳米微粒表面涂敷高分子层,再与特殊蛋白及药物结合,注入生物体后,此药物载体在外界磁场的作用下,通过磁性导航,到达靶器官或靶部位,此载体如携带抗体、受体和核酸等,通过抗原-抗体和受体配体特异性结合,便形成了“生物导弹”[4],可定向治疗癌细胞。

纳米机器人

纳米机器人也称分子机器人,它是纳米机械装置与生物系统的有机结合,是纳米技术中最具有诱惑力的产品。纳米机器人凭借其特有的构造与性质在许多领域都替代了传统意义上的药物。如将纳米机器人注入血管中,它可以清除血栓和脂肪沉积物;在基因工程领域,它可以从病变基因中去除有害的Dna并把正常的Dna安装在基因中,使引起癌症的Dna发生逆转;纳米机器人还可以直接杀灭癌细胞。

纳米激光

该技术是新近研究成功的,主要应用于肿瘤的诊断与治疗。

参考文献

1李基文.21世纪纳米技术在医学应用中的展望.中国公共卫生,2001,17(8):717-718

2韩本立,叶晟.21世纪的实验外科学展望.中华实验外科杂志,2002,19(1):7-8

纳米技术治疗篇2

1.1细胞分离与染色

纳米细胞分离技术的出现有助于解决生物医学中快速获取细胞标本的难题。将15~20nm的Sio2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮(pVp)溶液中,利用梯度原理,通过离心技术快速分离所需要的细胞[1]。用这种方法很容易将怀孕仅8周左右的孕妇血样中极少量的胎儿细胞分离出来,通过对其染色体的分析,判断胎儿是否有遗传缺陷。应用纳米免疫磁珠检测早期肺癌患者循环血液中的肿瘤细胞,可以监测肺癌的转移情况[2]。

纳米颗粒也为建立新的细胞染色技术提供了新的途径。段箐华等[3]用联吡啶钌配合物[Ru(Ⅱ)(bpy)3]2+、异硫氰酸罗丹明B(tRitC)、异硫氰酸荧光素等荧光分子标记Sio2纳米颗粒,实现了体外对B淋巴细胞、肝癌细胞、早期凋亡乳腺癌细胞、系统性红斑狼疮细胞的特异性识别。异硫氰酸荧光素标记的Sio2纳米颗粒表面接特异抗体,可用于免疫学检测[4]。

1.2纳米造影剂

无机纳米粒子因其形状、尺寸和组成的不同而具有独特的物化性能,可用作新型生物造影材料,能提供良好的检测信号对比度和生物分布度,提高诊断效率,并有望将现有的解剖学层面的造影技术推向分子水平,即“分子造影”[5-7]。纳米造影剂一般需要3个组成部分:(1)无机纳米粒子核,如金、氧化铁等,用以实现造影增强效果;(2)水可分散的壳层,如聚乙二醇等,用以提高无机纳米粒子核的溶液稳定性;(3)赋予靶向功能的生物活性分子,如蛋白、多肽和抗体等。

高分子修饰的氧化铁纳米粒子,如葡聚糖包裹的超顺磁性氧化铁纳米粒子已被用于临床以提高解剖学层面的磁共振造影[8],也被用于分子造影[9]。传统的检测方法对Ⅰ、Ⅱ期癌症检出率小于15%,使用高磁共振对比度的造影剂能够提高早期癌症的检出率。例如,乳腺癌细胞过度表达人上皮增长因子受体2基因(HeR2/neu)[10],将磁性纳米粒子(mnps)偶联上HeR2的抗体赫赛汀,就可以将SK-BR-3乳腺癌细胞检测出来[11]。用mnps偶联赫赛汀探针还可以测出不同细胞的HeR2表达量[12]。同样,可以用偶联了rch24抗体的Fe3o4靶向癌胚抗原来诊断结肠癌[13];用偶联了HmenB1抗体的Fept-au来靶向成神经细胞瘤细胞(CHp134)过度表达的聚唾液酸(pSa)[14]。合金mnps,如Fept@CoS2等兼具造影和治疗功能。

Fep@tCoS2纳米粒子被HeLa细胞摄入以后,在癌细胞的酸性环境中释放出的pt+能导致癌细胞凋亡[15]。Sio2@Fe3o4@au纳米粒子可以用于磁共振造影和治疗,当其与抗HeR2基因抗体偶联后有明显的t2加权造影效果,再加上持续的光照,由金壳产生的能量能将癌细胞杀死,起到治疗作用[16]。

金纳米粒子因为其独特的表面等离子共振效应被用作光学造影剂和传感器[17-19]。利用金纳米粒子的表面易于功能化的特性,el-Sayed等[20]在金纳米粒子表面偶联表皮生长因子抗体(anti-eGFR),使金纳米粒子靶向富集在表皮生长因子高表达的口腔上皮癌HoC313细胞上。与普通上皮细胞HaCat相比,经表面改性的金纳米粒子在HoC313细胞中表现出了更清晰的造影效果。以壳聚糖为纳米载体的复合微球成功地将包覆的金纳米粒子与药物一同送入细胞核,起到了细胞核给药和细胞核造影的双重功能,实现了金纳米粒子的多功能化[21-22]。

半导体纳米粒子(又称量子点)已经被用作荧光探针,用于细胞标记和光学探针[23-24]。美国华盛顿大学的研究人员用蛋白将一个量子点内核包裹在一个直径为3nm的超薄金壳中,使两部分的光电特性不受彼此的干扰,从而首次实现了将半导体和金属纳米粒子结合在一起而仍能保留各自的功能,量子点可用于荧光成像,金球则可用于散射成像。

1.3纳米传感器和新型纳米诊断技术

虽然对纳米传感器的研究时间较短,但其优点是不容置疑的。由生物大分子构成,利用化学能进行机械做功的分子马达纳米传感器,使其尖端插入活细胞内而又不干扰细胞的正常生理过程,来获取活细胞内多种反应的动态化学信息、电化学信息。如利用atp酶作为分子马达的纳米传感器能进入人体细胞,完成在人体细胞内监测和药物释放等任务,可以连续监测体内代谢变化,对肺部小血管内no和Co的监测结果对于高血压和心血管疾病的诊断和治疗具有重要意义[25]。其他的分子马达还包括Rna聚合酶、肌球蛋白和驱动蛋白等[26]。在糖尿病治疗中可将纳米生物传感器置于真皮层检测葡萄糖水平,从而指导给药。斯坦福大学的科学家最近利用纳米科技及电磁效应发明了一种生化传感器,这种传感器可以及早发现癌症的早期症状,利于对患者及时进行治疗。

随着隧道扫描显微镜和原子力显微镜的问世,人们能够在纳米尺度上了解生物大分子的精细结构及其与功能的关系,并动态获取生命信息[27]。利用原子力显微镜可以在纳米水平揭示肿瘤细胞的形态特点,通过寻找特异性的纳米结构改变实现对肿瘤的早期诊断,从而解决肿瘤诊断的难题[28]。

2纳米药物载体和纳米药物

纳米药物与传统的分子药物(molecularmedicine)的根本区别在于它是颗粒药物(particulatemedicine)。广义的纳米药物可分为两类:一类是纳米药物载体,即指溶解或分散有分子药物的各种纳米颗粒,如纳米球、纳米囊、纳米脂质体等。二是纳米药物,即指直接将原料药物加工成的纳米颗粒,或利用崭新的纳米结构或纳米特性,发现基于新型纳米颗粒的高效低毒的治疗或诊断药物。前者是对传统药物的改良,而后者强调的是把纳米材料本身作为药物[29]。

2.1纳米药物载体

实现细胞和亚细胞层次上药物的靶向传递和智能控制释放,是降低药物毒副作用、提高治疗效果的共性问题。纳米粒子介导的药物输送是纳米医学领域的一个关键技术,在药物输送方面具有许多优越性。目前,用作药物载体的材料有金属纳米颗粒、生物降解性高分子纳米颗粒及生物活性纳米颗粒等[30]。理想的纳米药物载体应具备以下性质:毒性较低或没有毒性;具有适宜的制备及提纯方法;具有合适的粒径与形状;具有较高的载药量;具有较高的包封率;对药物具有良好的释放特性;具有良好的生物相容性,可生物降解或可被机体排出;具有较长的体内循环时间,并能在疗效相关部位持久存在等。

2.1.1抗肿瘤药物载体肿瘤的纳米靶向治疗以纳米粒为载体,将药物或制剂定向于肿瘤部位,可以大幅度提高药物的生物利用率,提高疗效,降低用药量,减少毒副作用,已成为国际肿瘤药物研制中的热点和前沿。

恶性肿瘤周围及其实质有大量的新生毛细血管形成,这些血管通透性高,400~600nm以下的纳米颗粒可穿过血管到达肿瘤组织。alexiou等[31]在动物模型上用磁性纳米粒负载抗癌药物进行区域动脉灌注,外加磁场定位浓集,发现纳米粒子随血液流入肿瘤部位并渗透到肿瘤组织内,提高了药物的治疗指数。mu等[32]将生物可降解聚合物pLGa纳米粒、Vitamine、tpGS和抗肿瘤药物紫杉醇混合在一起,药物可较容易地到达肿瘤部位而发挥靶向效应作用。杨凯等[33]在治疗口腔癌颈淋巴结转移灶时,将抗癌药物葫芦素Be装载到聚乳酸纳米微粒上,发现药物可靶向到达病变部位,毒副作用和局部刺激作用显著减小。

恶性肿瘤的纳米粒磁导靶向热疗也是有效的方法,热疗本身可以破坏肿瘤细胞。将磁性纳米粒子经包裹或修饰后选择性地注射到肿瘤部位,然后施加交变磁场,纳米粒子受到交变作用而产热,可提高放疗和化疗的效果。口腔颌面部肿瘤位置相对表浅,是最适合作磁导靶向化疗和磁导靶向热疗的部位。此外,由于纳米脂质体载体具有较好的药物、基因和成影剂包封率,在肿瘤造影成像等方面显示出较好的优势[34]。

2.1.2中枢神经系统(CnS)药物载体血脑屏障对于维持CnS的相对稳定起着重要作用,但其毛细血管连接紧密,大多数药物很难通过血脑屏障进入CnS。因此,如何使CnS药物跨越血脑屏障从血液进入脑内且发挥药效是药物传递系统需要解决的一个难题。纳米粒子作为药物载体,为不能透过血脑屏障的CnS药物入脑提供了新途径。Sun等[35]以聚乳酸为基质,制备了装载异硫氰酸荧光素-右旋糖酐的纳米粒,并将纳米粒用聚山梨酯-80包衣,给小鼠尾静脉注射后发现纳米粒可主动靶向脑组织。Kepan等[36]同时给小鼠注射采用聚山梨酯-80包衣的甲氨蝶呤聚氰丙稀酸丁酯纳米粒子(pBCa-np),未包衣np及甲氨蝶呤溶液,通过检测脑脊液及脑组织内药物浓度显示,采用聚山梨酯-80包衣的甲氨蝶呤pBCa-np能显著提高脑内甲氨蝶呤药物浓度。petri等[37]研究显示,泊洛沙姆-188包衣的pBCa-np与聚山梨酯-80包衣的pBCa-np均能显著提高阿霉素的抗脑肿瘤活性。

oliver[38]发现,用聚山梨酯-80修饰的pBCa-np通过血脑屏障的机理,部分是由于载体降解产生的毒性打开了脑血管内皮的紧密连接。Ulbrich等[39]发现,用人血清白蛋白纳米粒子包无跨血脑屏障能力的药物洛哌丁胺(loperamide),并与转铁蛋白或转铁蛋白受体的单克隆抗体oX26共价结合后,能够借助血脑屏障上转铁蛋白受体介导的胞吞作用进入脑组织,产生强烈的抗伤害性药效。将神经生长因子载入表面经聚山梨酯-80修饰的pBCa-np,注射帕金森病小鼠模型后可在21d内持续发挥抗帕金森病的疗效[40]。抗菌药物环丙沙星(ciprofloxacin)装载入表面修饰了HiV-1反式激活蛋白(tat)的聚乙二醇纳米粒子,利用tat能将异源蛋白导入细胞内或穿过血脑屏障的特点,通过检测发现该抗菌药物能被人类星型胶质细胞摄取,此法还可用于使其他抗生素跨越血脑屏障,从而治疗脑部感染[41]。

2.1.3其他胰岛素(insulin,inS)的降糖疗效明显,但普通制剂的inS口服给药不易吸收,且容易被胃蛋白酶、胰蛋白酶和肠激酶等降解,因此目前临床上inS的常规给药途径为注射给药。大量的研究工作证实,口服纳米囊可保护inS不被酶破坏,提高inS的生物利用度,减少用药次数。mesiha等[42]制备的聚氰基异丁酯丙烯酸纳米粒可将药物作用时间从6h延长至72h,生物利用度更好。merisko等[43]制得inS纳米粒,通过体外实验证明其有良好的缓释能力。Christiane等[44]用生物聚合物和非生物聚合物复配制得纳米粒子,可将inS包裹在纳米粒子的内核,对inS的包封率可达到约96%,并且实验证明有很好的缓控释效果。纳米药物控释系统还被用来防治血管再狭窄[45]。

再狭窄是冠状动脉经皮腔内成形术(ptCa)后常见而严重的并发症,运用微孔球囊介入导管将纳米粒子自由分散形成的乳状悬浮液置于ptCa部位,可以达到防治再狭窄的效果。另外,载药纳米粒子进入动脉壁后,随着可降解材料的逐渐水解,其内含的药物便缓慢持续释放出来,从而实现药物在动脉内局部定位。用纳米颗粒,包括纳米胶束、纳米脂质体等作为基因转移载体,已引起医学界广泛重视。其原理是纳米颗粒作为载体将Dna、Rna、pna(肽核苷酸)、dsRna(双链Rna)等基因治疗分子包裹其中,或者通过静电引力或吸附将治疗分子固定在其表面形成复合物,在胞吞作用下纳米颗粒进入细胞,释放基因治疗分子,发挥治疗效能[46]。

2.2纳米药物

直接以纳米颗粒作为药物的应用之一是抗菌药物。纳米抗菌药物具有广谱、亲水、环保、遇水后杀菌力更强、不会诱导细菌耐药性等多种性能。以这种抗菌颗粒为原料,成功地开发出了创伤贴、溃疡贴等纳米医药类产品。例如,纳米二氧化钛树脂基托材料具有一定的抗变形链球菌和抗白色念珠菌的效果,当树脂基托中抗菌剂的浓度达到3%时,即可达到满意的抗菌效果[47]。郭春兰[48]用纳米银医用抗菌敷料对142例患者的手术切口进行护理,所有切口均无感染并Ⅰ期愈合,同常规使用普通无菌敷贴覆盖切口的方法相比,平均每例的愈合时间提前1.69d。

无机纳米颗粒作为新型的抗癌药物为肿瘤治疗提供了新的思路。Liu等[49]用Gd@C82(oH)22处理荷肝癌的小鼠,在10-7mol·kg-1的注射剂量下能有效地抑制肿瘤生长,同时对机体不产生任何毒性。其抑瘤效应不是通过纳米颗粒对肿瘤的直接杀伤起作用,而是可能通过激活机体免疫来实现对肿瘤的抑制作用。纳米羟基磷灰石在体外对恶性肿瘤细胞产生明显的抑制作用,而对正常细胞作用甚微,可望通过进一步的研究获得一种区别于传统的化疗药物的纳米无机抗癌药物[50-51]。此外,有的物质纳米化后出现新的治疗作用,如二氧化钛纳米粒子可抑制癌细胞增殖[52];二氧化铈纳米颗粒可以清除眼中的电抗性分子并防治一些由于视网膜老化而带来的疾病[53]。

3组织修复和再生医学中的纳米材料

将纳米技术与组织工程技术相结合,构建具有纳米拓扑结构的细胞生长支架正在形成一个崭新的研究方向。相对于微米尺度,纳米尺度的拓扑结构与机体内细胞生长的自然环境更为相似。纳米拓扑结构的构建有可能从分子和细胞水平上控制生物材料与细胞间的相互作用,引发特异性细胞反应,对于组织再生与修复具有潜在的应用前景和重要意义[54]。将纳米纤维水凝胶作为神经组织的支架,在其中生长的鼠神经前体细胞的生长速度明显快于对照材料[55]。向高分子材料中加入碳纳米管可以显著改善原有聚合物的传导性、强度、弹性、韧性和耐久性,同时还可以改进基体材料的生物相容性。研究发现,随着复合物中碳纳米管含量的增加,神经元细胞和成骨细胞在复合材料上的黏附与生长也越来越活跃,而星形细胞和成纤维细胞的活性则呈现同等程度的下降[56-57]。Freites[58]设计的人造红细胞输送氧的能力是同等体积天然红细胞的236倍,可应用于贫血症的局部治疗、人工呼吸、肺功能丧失和体育运动需要的额外耗氧等。murphy等[59]成功合成了模拟骨骼亚结构的纳米物质,该物质可取代目前骨科常用的合金材料,其物理特性符合理想的骨骼替代物的模数匹配,不易骨折,且与正常骨组织连接紧密,显示出明显的正畸应用优势。

纳米自组装短肽材料RaDa16-i与细胞外基质具有很高相似性,RaDa16-i纳米支架可以作为一种临时性的细胞培养人工支架,它能很好地支持功能型细胞在受损位置附近生长、迁移和分化,因而有利于细胞抵达伤口缝隙,使组织得以再生。有研究人员[60]利用RaDa16-i纳米支架修复了仓鼠脑部的急性创伤,并且恢复了仓鼠的视觉功能。RaDa16-i形成的水凝胶可用作新型的简易止血剂,用于多种组织和多种不同类型伤口的止血。

4纳米中药

“纳米中药”是运用纳米技术制造的粒径小于100nm的中药有效成分、有效部位、原药及其复方制剂[61]。纳米中药不是简单地将中药材粉碎至纳米数量级,而是针对组成中药方剂的某味药的有效部位甚至是有效成分,进行纳米技术加工处理,赋予传统中药以新的功能。

中药纳米化可以使细胞破壁,大大提高中药有效成分的渗透性或溶解度,提高生物利用度;利用纳米化的中药所具有的缓释功能和靶向给药功能,在提高药效的同时降低毒副作用;利用中药的纳米包覆技术能改变一些中药制剂的亲水、亲油性,提高临床疗效。例如,用纳米粉碎技术将中药黄芩、黄连、黄柏、地榆超微粒化,添加纳米锌、硒等微量元素,加广谱强效纳米银系(at)抗菌剂、麦饭石纳米粉、远红外二氧化钛、电气石在传统中药配方基础上制成的纳米中药,用于烧烫伤的治疗,提高了药物疗效[62]。将超临界二氧化碳萃取技术用于中药挥发油提取和中药有效成分的提取,通过包覆技术把中药挥发油和中药有效成分制备成纳米药物。超临界二氧化碳萃取技术已广泛用于对菖蒲根、金丝桃叶、月桂叶、肉豆蔻、苍术、高良姜等的有效成分进行提取和对紫苏、香薷、防风、辛夷、苍术、厚朴、细辛、木香等挥发油的提取[63]。

对中药挥发油采用包合技术制备包合物,用纳米尺度的分子材料(主要是环糊精类)作为载体材料,形成不到2nm的药物超微粒,其内径为0.7~0.8nm,可容纳几个药物分子,这样的包合物又称为分子型包囊[64]。由于载体是种多羟基物质,且羟基排列于筒状结构的外壁,极易分散于水中,筒内侧可包裹水难溶性的药物分子,从而大大提高水难溶性药物在水中的溶出和体内的吸收,提高生物利用度,还可降低药物的刺激性,增加药物的稳定性。药物脂质体制剂在纳米中药的研制中也得到了日益广泛的关注。如纳米雄黄脂质体[65]、辛夷挥发油纳米脂质体[66]、马钱子碱脂质体的研究[67];鱼腥草挥发油纳米脂质体的制备及其肺靶向效果[68]等。

纳米中药的研究和应用仍处于起步阶段,存在许多亟待解决的问题,如纳米中药的药效不确定性及可能的毒副作用、纳米中药的有效成分和稳定性难以控制等。但目前已经取得的一些成果表明,纳米中药的研究极大地丰富了中药的剂型,对中药的研究和开发产生了巨大的推动作用。这方面研究的深入能在纳米中药的制药技术、药效等诸方面建立更多具有自主知识产权的专利技术和创新方法,促进中药制剂的标准化和国际化,提升中药的市场竞争力。

5纳米医学材料的安全性

纳米材料在医学领域已应用于药物载体、癌症治疗、基因治疗、抗菌材料、组织工程、医学诊断等方面,给人类带来了许多好处。然而,有关纳米材料毒理学的报道也很多[69-70]。由于纳米材料具有小尺寸效应、表面和界面效应以及量子尺寸效应等特性,可能引发特殊的生物学效应,给人类健康和环境带来负面影响。例如,Yeo等[71]指出具有抗菌效果的纳米银可在水生环境中蓄积,对斑马鱼胚胎发育有毒性作用。

从纳米医学材料大小与Dna、蛋白质、病毒等生物分子的尺寸相当这一事实很容易想到,即使化学组成相同,纳米物质的生物毒性也可能不同于微米尺寸以上的常规物质[72]。根据常规物质研究所得到的毒理学数据库与安全性评价结果,可能不适用于纳米物质;现有的安全评价方法、技术又都不太适用于纳米医学材料对人体风险评价[73]。这些问题正是目前纳米医学材料安全性评价的困难所在。

纳米材料的安全性评估是一个全球性关注的问题,美国、欧盟、日本纷纷斥巨资展开纳米材料的安全性研究,我国也已将其列入国家“973”重点基础研究规划项目。纳米技术涉及很多学科,如电子、生物、物理、化学等等。因此,对医用纳米材料安全性的评估不是单一的某个学科可以完成的,而是需要临床医学、基础医学、毒理学、物理学、分子生物学、化学和环境科学等多学科的融合,充分利用各种先进的分析技术,开展多学科的综合研究。

6展望

虽然纳米医学刚刚问世,但其发展的巨大潜力已经展示在我们面前。21世纪是纳米科技的世纪,人们将以全新的角度和视野看待生物医学问题,在纳米水平上可以更加深入地研究各种组织的结构和功能,并充分发挥其优势。纳米医学技术的发展必将为基础与临床研究带来新的机遇,为现阶段尚不能解决的问题带来新的思路和方法。

纳米技术治疗篇3

纳米技术(nanotechnology)是指在纳米尺度下对物质进行制备、研究和工业化,以及利用纳米尺度物质进行交叉研究和工业化的一门综合性的技术体系。

1.纳米尺度空间

国际上公认0.1~100nm为纳米尺度空间。为研究工作方便,有人把尺寸0.1~1μm视为亚微米体系,尺寸1~100nm划分纳米体系,典型尺寸

纳米尺度空间所涉及的物质层次,是既非宏观又非微观的相对独立的中间领域,被人称之为介观(mesoscopy)研究领域。

2.纳米技术范畴

(1)纳米材料与技术:纳米材料包括纳米微粒与纳米固体。纳米微粒通常>1nm,需用电子显微镜才能看到;纳米固体系纳米结构材料,尺寸为1―100nm的纳米微粒凝聚而成的块体、薄膜、多层膜和纤维。又分为晶态、准晶态和非晶态三类。

纳米材料技术(包括纳米相材料技术和纳米复合改性技术)是缘于纳米颗粒的性能发生了变化,从而使纳米材料在力学、磁学、热学、光学、电学、催化等性能及生物活性方面发生变化,因而被广泛应用于各种材料领域;医学上可用于人造骨、人造牙齿等。

(2)纳米器件及技术:其一,微型传感器:利用尖端直径小到足以插入活细胞内而不严重干扰细胞的正常生理过程,以获取活细胞内足够的动态信息来反映其功能状态。这将为临床相应疾病提供诊断及治疗的客观指标,也为药理学、细胞工程、蛋白质工程、酶工程等研究提供相应的材料和技术。

其二,微机器人(包括微型机器人与微操作机器人)微型机器人是指外形很小,便于进入微小空间进行可控操作的微型机器。如果机械结构能做到前所未有的微细,再集成高度的智能的话,那么人们将创造出面目全非的机械,建立一门概念全新的学科。

纳米技术能为医学做些什么

1.纳米生物学(nanobiology)研究以纳米为尺度,研究(1)细胞内各种细胞器的结构和功能(如线粒体、细胞核)(2)细胞内外之间及生物体的物质、能量和信息交换;(3)生物反应机理:包括修复、复制和调控等方面的生物过程:(4)根据生物学原理,发展分子工程,包括纳米生物分子机器人和纳米信息处理系统。

2.生物与医学工程研究

微操作机器人系统可在生物与医学工程研究中进行显微注射与显微切割,这是一项复杂的微操作过程,其精度要求在微米级。目前上述操作基本上由人工在显微镜下手动或半自动完成。手工操作效率极低,如微注射产生转基因家畜的成功率只有5%左右,一个熟练的操作人员一天大约可注射100个受精卵,而培养一名熟练的操作人员要花5年时间。

3.诊断与监测

(1)光学相干层析术(oCt)已于1997年12月24日,由清华大学单原子探测实验室研制成功,可望1999年进入临床,被科学家誉为“分子雷达”。

oCt的分辨率可达1个微米级,较Ct和核磁共振术的精密度高出上千倍。它能每秒2000次完成生物体内活细胞的动态成像,观察活细胞的动态,发现单个细胞病变,且不会像X光、Ct、磁共振那样杀死活细胞。有了如此准确的依据,人们或许有办法把疾病“扼杀在萌芽状态中”而不必等到生命的尾声才被Ct与磁共振检查出癌组织病变。

(2)激光单原子分子探测术:此术同样具有超高灵敏性,可在含有1000亿亿(1019)个原子或分子的1Cm3气态物质中,在单个原子分子层次上准确获取其中一个。按照这一办法,科学家希望对生物体尤其是人体内生物分子的活动进行探测,以找到影响人类健康的某些答案。通过人的唾液、血液、粪便以及呼出的气体,及时发现人体中哪怕只有亿万分之一的各种致病或带病游离分子(或标志体),相信已不再是一件遥远的事情。

(3)微小探针技术可向人体内植入,根据不同的诊断和监测目的,可定位于体内的不同部位,也可随血液在体内运行,随时将体内的各种生物信息反馈于体外记录装置。此项技术有可能成为21世纪医学界常用的手段。

4.临床治疗

(1)显微外科术的革命――细胞修复术众所周知,本世纪器官移植,人工器官技术的发展,曾使得外科从修复外科时代(对病变器官与组织的切除)向替代外科时代(器官移植、人工器官)发展,并有专家预言21世纪医学仍然是替代外科为主的时代。

(2)定点给药:利用微型机器人深人体内做到定点给药,将是21世纪内科疾病治疗的革命。①糖尿病:外源性补充胰岛素,需要准确了解体内血糖的变化,且常年肌注,病人极为不便。胰岛移植的手术费用、病人痛苦以及成功率等方面都存在不少问题。利用纳米药物存储器,定点存放在人体胰岛部位,根据纳米监测器对体内血糖水平的变化情况,自动调控对胰岛素的释放。对此,日本科学家已有初步的研究成果。②肿瘤:肿瘤的放疗、化疗及外科手术以及器官移植,心血管疾病的现行治疗方法,因其功用只是弥补疾病后果或推迟死亡,尽管在大众传媒中被视为高技术的同义词,而实际上耗资巨大,已成为西方医疗危机的主要原因,故被刘易斯・托玛斯称为“半拉子”医疗技术。而纳米技术正是向类似的“牛拉子”医疗技术挑战的有力武器,因为利用纳米技术制成的“生物导弹”可导向定点给药,将肿瘤杀灭在萌芽状态之中。

机遇与对策

1.纳米技术在医学领域内的发展前景

除纳米材料在替代医学中得到广泛的应用之外,纳米器件有可能成为未来保卫人类健康的一支忠实可靠的“卫队”。(1)纳米生物传感器用于监测、收集、播送体内细胞的健康状态和病变信息(2)纳米药物存储器(药泵)用于存储、运输指定存储的药物,并按指定的部位存放,即定点给药,其体积可达数个微米(3)纳米生物导弹直接用于治疗各种细胞水平的疾病,对病变组织有亲和力,对病变细胞有杀伤力,可特异性地杀灭肿瘤细胞(4)纳米细胞修复器用于修复细胞内的各种病变,如线粒体、细胞核的病变(5)纳米细胞监督器用于监视免疫细胞、白细胞等细胞正常功能的发挥;(6)纳米细胞清扫器:帮助清除体内的代谢废物以及外界进入体内的有害物质;(7)纳米细胞检疫器:巴西和美国科学家最近发明了世界上最小的“秤”,能够称量10-9克的物体,即相当于一个病毒的重量。利用纳米“秤”可称出不同病毒的重量,以发现新的病毒。可定点于口腔、咽喉、食道、气管等外界开放的部位,以充当“检疫”。

2.迎接纳米技术的挑战

纳米技术治疗篇4

【关键词】纳米材料;纳米技术;口腔内外学科

1纳米的概念

纳米(符号为nm)是长度单位,1nm=1×10-9m。“纳米材料”的概念是20世纪80年代初形成的,是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。

纳米材料具有以下主要特点:纳米粒子大小在1~100nm;有大量的自由表面或界面;纳米单元之间存在着相互作用,作用或强或弱。纳米材料与组成相同的微米晶体材料比较具有其许多优异的性能,主要表现在催化、磁性、光学、力学等许多方面。

2纳米材料在口腔内科中的应用

2.1纳米复合树脂

复合树脂的基本组成部分是无机填料,根据填料的粒径大小分为大颗粒型、超微颗粒型和混合填料型。混合填料型树脂填料粒径近几年不断向纳米级发展。使复合树脂的强度增强的纳米粒子包括纳米二氧化硅、纳米氧化锆、纳米羟基磷灰石等。为使材料发生聚合时不收缩或收缩减小,在光化聚合丙烯酸脂或异丁烯酸脂基的向列液晶单体中,加入二氧化硅纳米微粒和较高含量的金属氧化物,使形成高分子量的聚合物粘结性增强,体积收缩减小。二氧化锆用于口腔科具有X射线阻射性高、强度高和硬度高等优点。纳米氧化锆复合树脂光学透明性极高,是理想的口腔科复合树脂增强材料。将氧化锆纳米粒子通过运用纳米技术填充入树脂材料中,材料的物理强度会得到增强。而将氧化锆纳米粒子加入玻璃离子材料中,能使材料克服容易溶解的不足,同时强度增强,与一般的复合树脂相比,具有更好的耐磨性。研究人员在口腔科复合树脂中加入熔附了纳米硅颗粒的晶须和纳米二钙或四钙磷酸盐,可达到自修复的目的。

2.2纳米粘结材料

随着纳米技术的日益发展,将纳米杂化树脂作为基质,用它与硅基纳米材料发生共聚,从而得到高强度、热稳定、耐久性的高粘结性材料。这种材料不仅能很好地克服酸蚀过程中造成的牙本质小管闭合问题,而且能在牙体和材料之间发挥较高的粘结性,使粘接技术和粘接材料达到一个更高更新的水平。牙本质过敏是口腔内科临床上常见病多发病,是牙齿上暴露的牙本质在受到外界刺激,如温度、化学性、机械性刺激后,引起牙齿的酸、软、疼痛症状,这主要是牙本质暴露后,牙本质小管内的液体,即牙本质液对外界刺激产生机械性反应所引起。临床主要是通过在暴露的牙本质表面涂布粘结剂来缓解敏感症状。在临床口腔常用的光固化粘结剂中加入一些纳米材料,主要是利用纳米粘结材料来封堵牙本质小管,可以使牙本质过敏得到迅速和永久的治愈。

2.3纳米根管充填材料

随着纳米羟基磷灰石生物材料的出现,能很好解决填充材料存在的关于生物相容性的难题。经过大量临床研究,发现纳米羟基磷灰石的结构与天然骨的无机成分很相似,均有良好的生物相容性,两者可以紧密结合,结合后周围组织未见有炎症和细胞毒性的发生,其对骨组织还有良好的诱导性。材料的组成和构造与脊柱动物硬组织相似,生物相容性良好。研究指出,用纳米羟基磷灰石根充与传统氧化锌丁香油糊剂根充两者相比较,在根管壁密合度方面,前者明显优于后者。纳米羟基磷灰石具有良好的根尖封闭特性,用其作根管封闭剂可减少微渗漏的出现。纳米羟基磷灰石材料本身无杀菌作用,将碘或其他抗生素加入其中可以使该材料的抑菌和抗菌效果提高。对难治性根尖周炎应用无机抗菌剂作为根管充填剂进行根管治疗,取得很好临床疗效。本身没有成骨性的纳米羟基磷灰石,可为新生骨的沉积提供合适的生理基质,引导牙骨质不断沉积来封闭根尖处的根尖孔。

3纳米技术与纳米材料在口腔外科中的应用

3.1纳米技术在拔牙麻醉上的应用

随着纳米技术的发展,口外医生可将纳米粒子活性麻醉剂悬液直接涂布在牙龈和牙龈沟内,在声学信号或程序化的化学反应链的指引下,经牙齿的薄弱区牙颈部,药物通过牙本质小管到达牙髓腔,达到无痛麻醉,给患者减少疼痛和恐惧感。

3.2纳米复合体材料修复骨缺损

羟基磷灰石作为新兴的材料,可大量用于口腔骨组织缺损的修复,如牙槽骨再造、牙周骨组织缺损、颌骨囊肿等。纳米羟基磷灰石的晶体无细胞毒性,生物相容性好,故认为其是多种口腔疾患造成天然骨质缺陷最好的替代物。纳米羟基磷灰石材料既可作为骨形成的支架,而且还对骨细胞有引导的作用。有学者用纳米羟基磷灰石复合胶原植入术,对牙周病造成骨组织缺损的患者进行临床治疗及疗效观察,取得令人满意的临床效果。羟基磷灰石复合胶原与周围组织相容性好,其组成和构造跟天然骨相似,本身无细胞毒性,对牙周膜细胞的生长和新生骨的形成有促进作用,故认为它是一种良好的组织工程支架材料。

3.3纳米控释系统在肿瘤治疗中的应用

纳米控释系统包括纳米粒子和纳米胶囊,它们直径在10~500nm之间。药物可以通过吸附作用、附着作用位于粒子表面或者通过溶解、包裹作用位于粒子内部。在外磁场的引导下,将磁性纳米颗粒作为药剂载体引导到肿瘤患者的患病部位,对病变部位进行定位治疗这样可以减少治癌药的毒副作用,提高药物疗效。作为抗恶性肿瘤药物的输送系统,纳米控释系统被认为是最有发展的应用之一。大量研究显示,具有纳米级的一些抗肿瘤药物,延长在肿瘤内停留时间,肿瘤生长缓慢,同时减少对组织器官的毒性和副作用,减少药物剂量。纳米脂质载体在肿瘤造影和成像等方面具有较好的优势,因为其对药物、基因、成影剂有较好的包封率。

4结论

由此可见,纳米技术的快速发展,为口腔材料学的研究提供了一种全新的方法。使我们能以全新的思维模式在纳米水平来重新探索和研究材料的成份与结构,从而为口腔医学领域研制出更好更理想的口腔材料。

参考文献:

[1]陈治清:口腔生物材料学化学工业出版社2009

[2]刘秀丽,刘曦.复方羟基磷灰石充填根管临床疗效观察西安医科大学学报2010

纳米技术治疗篇5

论文摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。?

?

1应用于生物医学中的纳米材料的主要类型及其特性?

1.1纳米碳材料?

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。?

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的afm探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属fe、co、ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873k~1473k的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称dlc)是一种具有大量金刚石结构c—c键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。?

1.2纳米高分子材料?

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。?

1.3纳米复合材料?

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米zro2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。?

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。?

2纳米材料在生物医学应用中的前景?

2.1用纳米材料进行细胞分离?

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米sio2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。?

2.2用纳米材料进行细胞内部染色?

比利时的demey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(haucl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3nm~40nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。?

2.3纳米材料在医药方面的应用?

2.3.1纳米粒子用作药物载体?

一般来说,血液中红血球的大小为6000nm~9000nm,一般细菌的长度为2000nm~3000nm[7],引起人体发病的病毒尺寸为80nm~100nm,而纳米包覆体尺寸约30nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。?

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(pla)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(nps)在基因治疗中的dna载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料?

ag?+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。?

2.3.3智能—靶向药物?

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。?

2.4纳米材料用于介入性诊疗?

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用?

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。?

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为dna导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。?

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的dna,或把正常的dna安装在基因中,使机体正常运行或使引起癌症的dna突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(rom)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。?

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献?

[1]philippep,nangzl?etal?.science,1999,283:1513?

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441?

[3]赖高惠编译.化工新型材料,2002,(5):40?

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214?

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24?

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133?

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336?

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510?

[9]刘新云.安徽化工,2002,(5):27-29?

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71?

[11]李沐纯等.中国现代医学杂志,2003,13:140-141?

纳米技术治疗篇6

载药纳米微粒的靶向性及控释作用

所谓纳米药物指的是纳米级别的用来防治或者辅助治疗的药物,纳米药物具有轻松通过体内生理屏障的显著优点,纳米级别药物与传统的宏观药物在其分布、吸收以及代谢和排泄等角度与传统的宏观药物截然不同。

1纳米级别的药物能够跨越体内各种屏障

如果我们选择合适的纳米材料来制备纳米药物,可以有效的穿透生物膜的并透过血脑屏障,可以将药物直接输送到大脑内部对疾病进行治疗。采用纳米技术制备的药物载体和抗体能够大幅度提高穿透人造膜和天然膜的能力,并蓄积在小肠,使药物的生物利用率显著改善。

2纳米药物的控释作用

所谓纳米药物的控释作用指的是载有药物的纳米微粒在其控释的过程中能够显现出特有的规律性,囊壁的溶解及酶和微生物的作用,均可使囊心物质向外扩散。鉴于上面所述,我们可以根据控释的目的选择合适的囊材使载药纳米微粒在局部滞留并达到有效浓度,这样做不仅仅大幅度提高了用药的疗效,还不会给全身带来不良毒性。对于需要长期进行治疗和监控的疾病,起作用和功效是十分显著的。因此,纳米控释给兽药系统带来了极大的方便。

3纳米药物的靶向性

目前,抗球虫药物以及抗菌药物在畜牧业的养殖中被普遍使用,泛滥和不合理使用的现象也尤为明显,从而直接导致目前很多禽畜的主流病原体大肠杆菌、金黄色葡萄球菌、沙门氏菌等等早已经对大多数的抗菌药物产生了耐受性,甚至有些病菌已经产生了多重的耐受性,这些问题都是可以通过纳米载药技术来进行有效解决的。一方面,我们可以先将兽药进行纳米处理,可以显著提高其溶解率、靶向作用同时得到控制其释放的效果。这样可以大幅度提高药物的治疗效果,减少对药物的使用剂量,能够在不换药的前提下就解决了药物残留问题;另一方面,采用纳米技术,可以研制出具有广谱、高效、无毒、无副作用的新型兽药,从根本上解决目前因大量使用兽药而带来的种种不良后果。

纳米技术在家畜遗传育种中的应用

人们对于健康家畜的定义,无外乎生长快、瘦肉率、耗料低、胴体品质好等要求,但是传统的育种方法需要少则几年,多则几十年的育种时间。如果我们在分子水平上进行相关的改变,即对Dna链上的碱基序列做相应改变,就可以大大缩短育种时间,而且可以获得我们需要新品种。Dna上的核苷酸序列是纳米级的,所以要用到纳米技术。例如我国科学家已经用Stm以及aFm等纳米技术,对Dna分子进行分离,并写出了“Dna”三个字母,标志着人类在纳米技术对生物分子操作方面取得了巨大成就。通过这一事实我们可以发现,人类可以通过纳米技术,对分子级别的事物进行操作,以探寻生命的奥秘,定向地对遗传物质进行改造,以获得所需性状的生物体。这在生物育种上是有极大的作用的,可以很好的对动物的品种进行改良,同时,通过分子探针,还可以在遗传物质上对生物的病情进行探测,以从根本上解决问题。所以,在遗传育种上,纳米技术的应用是至关重要的。

纳米技术与畜禽产品质量

药效的提高和用药量的减少,是添加纳米材料的药物的巨大作用,这样可以解决药物残留的问题.浙大饲料研究所研究出的一种纳米微粒,采用天然的硅酸盐材料,可以吸附黄曲霉素、重金属以及农药等有害物质,降低畜禽产品中有害物质的含量,大大提高了产品的安全性。

纳米技术治疗篇7

纳米,从未远离。它一直和其他技术相结合包装在层层“外衣”下,默默为人类提供着便利。未来,纳米科技有望在信息技术、生物医药、能源环境等领域,给人类带来更多福祉,甚至成为未来世界的改变者。

颠覆性变革印刷业

对于公众来说,纳米技术似乎远不如3D打印技术那么“看得见摸得着”,也不如智慧城市那样耳熟能详。它似乎被束之高阁,仅仅停留在实验室里。

事实真的如此吗?不久前,记者随同中科院北京综合研究中心工作人员到位于怀柔科教园区的中科纳新印刷技术有限公司,与印刷领域的纳米科技来了一次“面对面”接触。

“我们的核心技术是纳米材料绿色制版技术,这是一种非感光、无污染、低成本的新型印刷制版技术,”在中科纳新工作的中科院化学所博士纪艺琼介绍,“如果进一步推广,它必将引发整个印刷业颠覆性的变革。”

走进生产车间,几台看似不起眼的制版机躺在中间,几名工作人员正将一张铝板放进机器内,不多时,一张制好的版材就从机器尾端出口“跑”了出来。没有刺鼻的化学药水味,没有排污管道,甚至没有大的噪音,报纸、杂志制版过程轻而易举完成了。

“喷墨是手段,纳米是我们的核心技术,用纳米手段来实现亲水亲油区域的自由调控。”据纪艺琼介绍,纳米科技给印刷技术带来新的突破,不但环保,还可节约成本,“用这样的印刷设备,可节约30%左右的成本”。

据了解,该项技术的产业化正稳步推进,目前山东等地的报社已开始利用中科纳新的设备大规模印刷报纸。不产生废水,不造成重金属污染,印刷业革命已成为现实。

“纳米”就在我们生活中

除了印刷制版,纳米科技其实早已应用于人们的日常生活之中。只不过,它如同春雨一般,“随风潜入夜,润物细无声”,以至于公众都忽视了它的存在。

“拿纳米钢皂来说,其实技术早就成熟了,在很多地方也买得到。”据国家纳米科学技术指导协调委员会专家组秘书长、国家纳米科学中心科技管理部副主任任红轩介绍,纳米钢皂最早在德国生产出来,近年国内也出现同类产品。这种不锈钢肥皂,能有效去除鱼腥味等多种异味,但由于价格高昂并未进入超市销售,而主要在大商场贩卖。

“纳米科技早就无孔不入了。”在办公室里,任红轩拿起一部苹果手机向记者比画了一下,“这里面的芯片都是利用纳米技术制造出来的,但一般人谁知道?”

在芯片制造领域,纳米科技进步意义重大。每一台电脑、智能手机的生产都离不开芯片。目前,英特尔最先进的移动SoC(系统级芯片)采用22纳米工艺,高通的高端SoC采用28纳米工艺。采用纳米级较低的工艺生产芯片,可提高芯片的性能和能耗效率。最新消息是,英特尔将公布14纳米制造工艺,并表示将利用这项新工艺生产新一代智能手机和平板电脑芯片。毫无疑问,这将带来智能手机、平板电脑性能的新飞跃。

“前两年红火的纳米衣服,在技术上也有了新发展。”据任红轩介绍,国家纳米科学中心正在帮助一家企业研制一种耐高温、透气的纳米衣服,可用于高温下作业的特种行业,“我们提供材料和技术支持,他们生产”。

在医疗领域,纳米科技也早已应用多年。但相对于治疗,目前纳米科技主要在疾病检测领域发挥作用。科学家针对不同病情设计出不同试纸,“最简单的应用就是检查女性是否怀孕的试纸,用的也是纳米技术。”任红轩说。

据了解,2011年,国家纳米科学中心和检验检疫部门合作,研发了用于快速检测植物病毒的试剂盒,目前这种试剂盒已被海关部门投入使用。中科院生物物理所研究员阎锡蕴也向记者介绍,纳米科技在医学成像、农药检测等领域用途很广。她曾利用纳米模拟酶发展了肿瘤诊断新技术。该技术简便、快捷,突破了免疫组化法依赖于昂贵抗体的限制。

人们日常生活中必须用到的电池、手机显示屏等,也离不开纳米技术。“碳纳米管被用作导电材料,已经用于锂离子电池中,且实现了产业化;利用碳纳米管场发射性质制造的显示屏,在手机上的运用效果非常好,也已实现了产业化。”任红轩告诉记者,每当人们打开手机享受其带来的便利时,就已在不自觉地享受着纳米科技带给人类的福祉了。

下一次工业革命的核心?

1991年,碳纳米管为人类发现,此后被广泛用于超微导线、超微开关以及纳米级电子线路等研究中。1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达500亿美元……

如今,纳米技术与信息技术、生物技术共同构成当今世界高新技术三大支柱。包括美国、日本、欧盟、俄罗斯等50多个国家和地区都有各自明确的纳米科技发展战略,并投入巨资抢占战略制高点。美国甚至将纳米计划视为下一次工业革命的核心。

“从我国对纳米技术的支持力度看,纳米研究一直是热点。”据任红轩介绍,近年国家在这方面投入的经费基本上每年在10亿元以上。此外,地方政府也有相应投入。当前及未来纳米科技热点在哪里?任红轩称主要集中在以石墨烯为代表的纳米材料、生物医药、信息技术、能源环境几个方面。

“石墨烯是由单层碳原子组成的二维晶体,可是制备功耗更小、速率更高的新一代纳米电子元件的重要基础性材料。它的发现是纳米科技发展史上,距现在最近的一个里程碑事件。”任红轩表示。

在生物医药方面,尽管纳米科技用于新药研发成功的案例不多,但这并非纳米本身的原因,而是因为世界上对药品的研发、上市有着严格审定程序。实际上,科学家们已在实验室研发出很多种新药,在临床数据的表现都很好,但因为审批的原因,正式上市尚需时日。任红轩举例说,经过10多年努力,一种名为“富勒烯包钆”的药物被研发出来,可用于治疗各种肿瘤。它的原理是可在肿瘤组织形成一个包围圈,阻断肿瘤组织与外界物质交换,从而实现抑制其生长的目的。目前,研究人员通过实验发现,它在治疗乳腺癌、胰腺癌方面疗效显著,已申请了三个国际专利和20多个附属专利,并通过了动物实验阶段,未来如果能够走入市场,可能会改变目前现有的肿瘤治疗方式。

在信息技术方面,纳米科技对提高每平方英寸存储器的存储密度、提高中央处理器的计算速度有着至关重要的作用。目前,中科院上海微系统所在纳米相变存储器的产业化关键技术上已取得重大突破。“时下流行的可穿戴智能设备,其芯片、材料将来都离不开纳米技术。纳米技术的进步将推进这些智能设备的发展。”任红轩说。

纳米技术治疗篇8

噱头一:激光除眼袋

部分医疗机构宣称,他们采用新型高能脉冲激光,无需开刀,只要用激光照一下,眼袋就会消失。其实,该手术过程是,用激光在睑板内侧结膜处切一个0.3厘米的切口,取出脂肪团,再用激光气化、收紧皮肤。也就是说,激光的作用是切割和收紧皮肤,去眼袋用的还是常规的“内切法”。“激光双眼皮”同样如此,激光只是止血的工具,手术还是常规的切开法重睑术。

噱头二:激光除腋臭

激光治疗腋臭的宣传通常是这样的:“在腋部有异味的区域,用激光多点均匀烧灼皮肤,破坏有味道的汗腺。”实际上,整个腋部的汗腺有成百上千个,激光根本没有办法准确烧灼到每个汗腺,无法完全消除腋臭。同时,由于激光的热烧灼作用,腋部会留下多个白色的瘢痕。可以说,激光治疗腋臭完全是激光技术的滥用。

噱头三:纳米隆鼻、隆胸

某美容机构的广告词:“真正神奇隐形隆鼻,选用纳米材料,能与自身血管、神经长在一起。数月后,连X光都拍摄不出来。”实际上,他们用的并非纳米材料,而是聚四氟乙烯。该材料具有一定孔隙,部分细小的毛细血管可能可以长入到这些孔隙中,而毛细血管的直径比纳米要大106倍。

纳米隆胸的宣传是这样的:“采用Ct、数码相机建立胸部立体图像,利用计算机进行三维电脑数字模拟手术效果,在内窥镜下手术,采用高分子纳米材料隆胸。”实际上,他们使用的假体就是普通的“毛面”假体,因其表面有多个细小的犹如海绵的孔,就被冠以“纳米孔”的“美名”,手术也就摇身一变,成了“高分子纳米隆胸”了。

纳米是个长度单位,比厘米小了许多倍。将普通药物做成纳米级的颗粒,可以提高药物的渗透性,容易被人体吸收。该项技术在医药、化工方面得到了广泛应用。在美容领域,除纳米珍珠粉、纳米维生素从理论上讲有一定的可信度之外,其他的纳米美容技术都只是个幌子。特别是整形美容植入材料,目前还没有一个真正达到纳米级的,以“纳米”为重点的宣传均有欺诈嫌疑。

噱头四:干细胞美容

2005年,北京各大媒体都报道了这样一则消息:消费者王女士为了减肥,在看到某美容机构的“一日快速神瘦,安全专业,一针见效,一次能减8~30斤”的干细胞减肥广告后,注射了所谓的干细胞“瘦身针”。结果,人一点没瘦,双臂却明显肿胀,经正规医院诊断为“上臂化脓性感染”,不得不接受手臂的切开排脓手术。另一位女士在同一美容机构交了近10万元的相关费用后,开始注射干细胞美白、减肥针剂。自从打完第一针起,她就开始出现脱发、手脚颤抖、色素沉着、口腔溃疡、皮肤溃烂等症状。

所谓干细胞,是指那些未分化的、有可能分化成不同类型细胞的细胞。多年来,各国科学家都在致力于干细胞的研究,希望能用它来修复被破坏的细胞和组织,为治疗各种慢性疾病带来希望,但到目前为止,该项技术仍处于基础研究阶段,并没有应用到临床,更没有应用到美容领域。

噱头五:Spa美容

Spa是当下最时尚的休闲保健项目之一。部分美容机构因经济利益驱动,把一些原本和Spa没有任何关系的项目都牵强地联系在了一起,如Spa瘦身、Spa隆胸等,夸大疗效,收费昂贵,具有明显的欺诈性。

目前,我国对Spa没有严格的规定,行业缺乏规范,Spa概念被滥用。所谓Spa,就是水疗,对放松身心有一定益处,与瘦身、隆胸几乎“沾不上边”,消费者对其不能太迷信。

纳米技术治疗篇9

所谓“脑梗塞”,就是在脑的动脉血管内有了检塞或有血检形成,堵住了血流或使脑血流不足,使脑实质发生缺血、坏死。这种病可非同小可,轻者致残,使人偏瘫、失语、痴呆;重者丧生。据调查,我国每年新患脑梗塞的病人达156万例,而且随着社会人口老龄化,还有进一步增长的趋势。

既然这种病如此危急,一旦家里有人出现这种情况时,该如何处置呢?首先要抓紧时间设法将病人在发病4个小时内送到医院,以使医生在患者发病后6小时内完成治疗,治疗得越早,效果就越好。如果由于各种原因超过了6个小时,延误了治疗时机,其后果就极为严重了。

大家知道,脑是人体的中枢,是“司令部”。别看它仅仅有1200~1500克重,是体重的2%,但它的耗氧量却占全身供氧量的20%;每分钟需要动脉供血800~1200毫升,是全身血流量的15~20%;脑的耗糖量占全身供糖量的25%。所以时时刻刻都要有充足的氧和充分的糖等营养供它消耗。如查脑血流中断5~7秒,人就会丧失意识;中断5~7分钟,大脑就会受到严重的,甚至是不可逆转损伤。所以说,抓住发病后6小时内的治疗时机,是至关重要的。

介入疗法的特点是:在现代医学影像技术和材料科学的帮助下,将检查诊断与相应的治疗结合起来,从而做到在最短的时间内,施行创伤很小而疗效甚佳的治疗。脑梗塞的介入治疗是这样实施的:患者发病4小时内被送至医院,经接诊医生的初步检查,怀疑是脑梗塞后要立即做“Ct”。如果没有出血情况,应赶紧将病人送到导管室,由医生在病人的大腿根部股动脉上扎一个绿豆大小的针孔,再插入一根导管,在X线数家减影机下做脑血管造影,看看是否有脑血管阻塞以及阻塞的部位。如发现有栓塞,便将一支更细的微导管送到血栓的部位,微导管的端头与血栓接触或穿入血栓,再将事先备好的溶栓药通过微导管慢慢地注进去。这样每隔一刻钟,就做一次脑血管造影,以观察给药的效果。如果堵的轿管通了,即停止给药;若还不畅通,就加大药量,直到75~100万单位的最大剂量时停药。一般来说,只要能让医生在患者发病6小时内做治疗,通常效果还是比较满意的。

目前最细的微导管为04毫米,只可进入小动脉里,再细的血管可就进不去了。随着科学技术的不断进步,人们与疾病的抗争手段越来越选进。一种新出现的纳米技术,正在受人们的日益关注。所谓纳米,就是长度为10亿分之一米。纳米技术就是用01~100纳米长度范围内的微细小巧的材料和物件,制造具有特定功能的零部件或产品的技术。如今人们已开始研究能进入人体血管里走动的微型机器人,医生可以通过它来了解血管内的病变情况,并指令它清除沉积的脂肪或进行其它相应的治疗。这不是幻想,而是21世纪未来医学的一个真实场景。

纳米技术治疗篇10

关键词:粉体技术;药物制剂;应用

1降低粒径提高溶出度

药物的溶出度除与药物的溶解度有关外,还与物料的比表面积有关,一定温度下固体的溶解度和溶解速度与其比表面积成正比。而比表面积主要与药物粉末的粗细、粒子形态以及表面状态有关,对片剂和胶囊剂来说与崩解后的粒子状态有关。因此药物粒度大小可以直接影响药物溶解度、溶解速度,进而影响到临床疗效。例如,微粉化醋酸炔诺酮比未微粉化的溶出速率要快很多,在临床上微粉化的醋酸炔诺酮包衣片比未微粉化的包衣片活性几乎大5倍。

对难溶性药物或溶出速率很慢的药物来说,药物的溶出过程往往成为吸收的限速过程。药物的粒径降低时其比表面积增大,药物与介质的有效接触面积增加,将提高药物的溶出度和溶出速度,因此降低粒径是提高难溶性药物生物利用度的行之有效的方法。灰黄霉素是一种溶解度很小的药物,超微粉化与一般微粉化的灰黄霉素制剂相比较治疗真菌感染,其血药浓度高且用药剂量小。

很多药物是多晶型的,在粉体处理过程中可能会导致晶型改变,其溶解度、稳定性、疗效等都可能受到影响,应多加注意。

2减小粒度增强疗效

临床上,药物不论以何种形式给药,药物粒径的大小都会影响药物从剂型中的释放,进而影响到疗效。在改善药物崩解和溶出的同时,药物的吸收增加,生物利用度和疗效均可得到较好的提高。

对气雾剂而言,雾化后药物粒子的大小是药效的主要决定因素。气雾剂混悬液中粒径在微米以上的粒子存在时限很短,无法达到有效的局部治疗效果;但若粒子太小则不能沉积于呼吸道,易于通过呼气排出。所以一般认为,起局部作用的气雾剂粒子范围以3~10微米为宜;欲发挥全身作用,则粒子宜在1~45微米。国外学者研究了3种不同粒度的双香豆素胶囊抑制正常凝血酶原的活性作用时间面积和血药浓度-时间面积之间的关系,发现粒度、溶解速度与疗效三者之间有一定的关系:即粒度小,溶解速度快,疗效好。

有人研究了非甾体类抗炎药萘普生的不同粒径对大鼠胃肠道的刺激性及吸收的影响。结果表明,将萘普生的粒径从20微米减小到270纳米时,避免了大粒子在黏膜黏附而导致的局部药物浓度过高,可以显著地降低药物对胃肠道的刺激并能有效的提高药物的疗效。

3粉体新技术促进制剂现代化

近年来,随着粉体技术在制药工业上的应用日益广泛和制剂现代化的发展,粉体技术有了新的突破和应用,出现了一系列新的粉体技术如中药的超细粉体技术、纳米粉体技术等。

4超细粉体技术提高中药复方制剂疗效

超细粉体技术又称超微粉碎技术、细胞级微粉碎技术,是近年国际上发展起来的一项物料加工高新技术。该技术是一种纯物理过程,它能将动、植物药材从传统粉碎工艺得到的中位粒径150~200目的粉末(75微米以下),提高到中位粒径为5~10微米以下,已逐渐在中药制剂中得到广泛的应用。

通过超细粉体技术加工出的药材超细粉体,粒径<10微米,药材的细胞破壁率≥95%。因细度极细及均质情况,其体内吸收过程发生了改变,各组分会以均匀配比被人体吸收,有效成分的吸收速度加快,吸收时间延长,吸收率和吸收量均得到了充分的提高。而用常规粉碎方式由于粉碎粒度较大,混合均匀度偏低,不同性状的药物成分会因其细度、细胞溶胀速率、从细胞壁的迁出速度、b值及对肠壁吸附性的差异而在不同时间被人体吸收,其吸收量值也会不一,由此可能会影响复方药物的疗效。而且,由于在超细粉碎过程中存在"固体乳化"作用,复方中药药粉中含有的油性及挥发性成分可以在进入胃中不久即分散均匀,在小肠中与其他水溶性成分可达到同步吸收。这与以常规粉碎方式进行的未破壁药材的吸收和疗效会大相径庭。

5纳米粉体技术改善制剂多种性质

纳米技术是20世纪80年代末期刚刚诞生并正在崛起的新科技,它的基本涵义是在纳米尺寸(10-9~10-7米)范围内认识和改造自然,通过直接操作和安排原子、分子,创造新物质。

国际上公认0.1~100纳米为纳米尺度空间,在药剂学领域一般将纳米粒的尺寸界定在1~1000纳米。药剂学中的纳米药物基本可以分为两类:纳米载体系统和纳米晶体药物。纳米载体系统是指通过某些物理化学方法间接制得的药物-聚合物载体系统(即纳米粒),如纳米脂质体、聚合物纳米囊、纳米球等。纳米晶体药物则是指通过纳米粉体技术直接将原料药物加工成纳米级别(即纳米粉),这实际上是微粉化技术、超细粉技术的再发展。

将药物加工成纳米粒可以提高难溶性药物的溶出度和溶解度,还可以增加粘附性、形成亚稳晶型或无定形以及消除粒子大小差异产生的过饱和现象等,从而能够提高药物的生物利用度和临床疗效。在表面活性剂和水等存在的条件下可以直接将药物粉碎成纳米混悬剂,适合于口服、注射等途径给药以提高吸收或靶向性,特别适合于大剂量的难溶性药物的口服吸收和注射给药;也可以通过适宜的方法回收得到固体纳米药物,再加工成各种剂型,如活性钙的纳米化,可大大提高吸收率,我国已能大量生产。

随着现代科学的进步和gmp的广泛实施,粉体技术受到人们越来越多的重视,为现代给药系统的研究提供了新的方法和途径;同时,制药工业的不断发展也对粉体技术提出了更高、更新的要求。伴随着当前中药现代化和纳米技术的发展高潮,粉体技术也有了更广阔的发展空间,必将得到更完善的发展和提高,从而促进制药工业的发展。

参考文献:

[1]盖国胜.超细粉碎分级技术[m].北京:中国轻工业出版社,2000.