首页范文生物质燃料的前景十篇生物质燃料的前景十篇

生物质燃料的前景十篇

发布时间:2024-04-25 17:49:27

生物质燃料的前景篇1

生物燃料主要是指以生物质为原料制取的燃料乙醇和生物柴油。生物燃料的发展动因,一是源于国家石油安全的需求,即作为汽油和柴油的替代能源,以达到缓解石油过度依赖进口的危机;二是源于国家环境保护的需要,利用生物燃料的清洁性降低机动车污染物排放。燃料乙醇是指用玉米、木薯、甘蔗、甜高梁以及农作物秸秆等生物纤维制取的液体燃料;生物柴油是指用废食用油、油料植物(麻疯树、黄连木等)和油料水生植物(藻类)等为原料制取的液体燃料。生物燃料可直接与汽油或柴油按一定比例混合后作为汽车动力燃油使用,起到替代汽油和柴油的作用。而汽车用汽油和柴油在我国交通部门油品消费中占很大比例,因此,生物燃料替代潜力的分析和研究将主要围绕汽车用油展开。

燃料乙醇(俗称酒精),以玉米等农作物或秸秆为原料,经发酵、蒸馏而制成,生产工艺技术成熟。燃料乙醇以10%比例与汽油搀和作为汽车动力燃料(e10),在减少汽油消耗的同时,还能有效改善油品的使用性能和降低汽车尾气污染。国家汽车研究中心的实验结果表明,汽车使用燃料乙醇汽油,其动力性能基本不变。从机理上讲,汽油加入10%燃料乙醇后热值降低3%,但含氧量增加3.5%,可将原汽油不能完全燃烧的部分充分燃烧,从而保证其动力性能,使总体油耗持平。美国的研究结果表明,e85高比例燃料乙醇汽油与传统汽油相比,前者辛烷含量低28%,但能源利用率高于后者;前者每公里耗油量是后者的85%,温室效应排放量只是后者的75%,每升造价也低于后者近0.80美元。

生物柴油的生产方法有化学法、生物酶法和工程微藻法三种。我国生产普遍采用化学法,即利用酯交换反应,通过去掉植物或动物脂肪中的甘油分子制取生物柴油。一旦甘油分子从植物油或动物脂肪中除去后,生物柴油的分子成分与石油柴油相似,可以直接用于任何柴油发动机,而不需要对发动机作任何更改。江苏工业学院精细化工重点实验室研究了生物柴油与o#柴油的调和油性质,结果表明,生物柴油与我国僻柴油的主要性能指标相接近(除闪点外)。美国科学家的大量试验结果显示:生物柴油作为车用替代燃料,其排放指标可满足欧洲Ⅱ和Ⅲ排放标准。英国能源技术支持单位(etSU)还对生物柴油与柴油进行全生命周期的C02排放研究,结果表明,生物柴油的全生命周期Co2排放仅仅为柴油的1/5左右。燃料乙醇汽油与纯汽油的全生命周期排放比较结果是:燃料乙醇在Co、Co2的排放方面低于汽油,而nox、CH4排放相当于或略高于汽油。由此可看出生物燃料的清洁性。

二、国内外生物燃料开发利用的现状

生物燃料生产和应用在国际上已呈高速发展趋势,发展燃料乙醇产业已成为各国政府调控农产品供需矛盾、解决石油资源短缺以及保护城市大气环境质量的重要措施。巴西始终处于燃料乙醇发展的领先地位。目前巴西国内有400万辆汽车使用纯燃料乙醇,其他车辆使用25%的乙醇汽油。美国1/3汽油中掺100k的燃料乙醇,美国总统布什希望到2025年用燃料乙醇取代3/4的进口石油,2030年燃料乙醇将占美国运输燃油消费总量的20%。法国自2006年秋季开始使用B30乙醇汽油车辆,2007年e85高级乙醇汽油正式面市,目前生物燃料占所有燃料的比重只有1.25%。法国政府的目标是,2008年使生物燃料比重提高到5.75%,2010年达到7%,2015年达到10%。印度政府规划,2011-2012年间,实现生物柴油替代20%的石油柴油。美国每年销售20亿加仑的生物柴油,占普通柴油消耗量的8%。由于生物柴油更容易与柴油混合,因此随着柴油车的发展,生物柴油将有更大的应用规模。目前德国1/3的新增汽车为柴油车,几乎所有的出租车都是柴油车。奥地利则接近50%。欧洲每两部新增车辆中有一辆柴油车。目前德国大众和奔驰汽车等多家公司,已经在巴西和美国等国家推出多种利用生物燃料的车型,以迎合市场的需求。

我国目前已成为全球第三大燃料乙醇生产国,排名第一和第二的分别是巴西和美国。我国政府批准建设的四家以消化玉米陈化粮为主的燃料乙醇生产企业,2006年生产能力达163万吨。车用燃料乙醇汽油扩大试点工作在9个省的27个地市开展,车用燃料乙醇汽油销量达到1000万吨左右,占全国汽油消费量的20%左右。广东首条以木薯作原料的燃料乙醇生产线也在清远落户,而盛产糖蜜和木薯的广西也正计划在南宁和贵港兴建两个乙醇燃料生产基地。此外河南天冠集团年产3000吨的生物质纤维乙醇生产项目已在镇平县奠基,这是国内首条千吨级利用生物质纤维生产燃料乙醇的产业化试验生产线。但是要实现大规模的工业化生产,还有很长一段路要走。

此外,我国生物柴油也开始进入了准备推广阶段。海南正和公司在河北已开发了11万亩黄连木种植基地,每年可产果实2-3万吨,可获得生物柴油原料8000-12000吨。该公司计划在此基础上建立年产生物柴油5-20万吨的炼油化工厂。海南正和公司在河北邯郸建成年产l万吨的生物柴油工厂。四川古杉集团建成年产3万吨生物柴油工厂。福建源华公司建成年产3万吨的生物柴油工厂。北京等省市也已经建成一定规模的生产线。上述这些生产线目前均是利用垃圾油或植物油脚、餐饮废油等为原料生产生物柴油。2005年我国的生物柴油生产关键技术研究取得重大进展,产品各项指标达到美国aStm6751标准,使用性能良好,完全能够作为柴油内燃机燃料。在今后5年内,我国将建成年产2-5万吨规模的生物柴油产业化示范工程。

我国政府非常重视替代能源问题,《可再生能源法》中明确指出国家鼓励生产和利用生物质液体燃料。国家发展改革委、财政部关于加强生物燃料的通知中强调:发展生物燃料涉及原料供应、生产、混配、储运、销售以及相关配套政策、标准、法规的制定等各个方面,业务跨多个部门,是一项复杂的系统工程。因此,应按照系统工程的要求统筹规划。根据国情,政府要求积极稳妥地推进生物燃料产业的发展,走“非粮”路线,不与农业争地。生物燃料发展在我国不仅具有石油替代作用,而且对解决粮食深加工转化、稳定粮价和提高农民收入以及减少环境污染、保持生态平衡等诸多方面都具有十分重要的意义,还能创造许多新的就业机会。因此,推广使用生物燃料必将成为中国可持续发展的一项长期战略。

生物燃料作为替代燃油具有节能、环保的优势,但是要积极稳妥地发展生物燃料,许多问题仍值得深入研究和探讨。需要关注最多的问题是:未来我国生物燃料究竟有多大发展潜力,发展生物燃料的资源保障性如何,生产的技术经济性如何,以及汽车利用这种替代燃油的技术适应性和社会需求性如何。针对这些重要问题,本研究利用中国能源环境综合政策评价模型的

技术模型(ipaC-aim),从我国社会发展、能源需求以及环境制约条件下对生物燃料的需求端,以及从生物燃料生产的资源开发和制取技术的生产供应端,全面分析生物燃料作为车用替代燃油的发展潜力问题。

三、对生物燃料开发利用的评价

1、生物燃料开发的资源保障性评价

我国生物质资源非常丰富,可供生物燃料制取的资源种类将随着今后不同的生产阶段而改变。目前,我国燃料乙醇处于小规模生产阶段,主要利用玉米陈化粮为原料。若按10%乙醇汽油计,我国年燃料乙醇需求量在480万吨左右,根据1吨酒精消耗3.2吨玉米量估算,需用玉米量约1536万吨,可是我国每年大约只有400-600万吨玉米陈粮。由此看来,玉米燃料乙醇的发展因受玉米陈化粮资源的限制而不能持续。当陈化粮用完后,燃料乙醇生产将逐步转向利用其他经济作物,如甜高梁、木薯等作原料,并且作为调节粮食市场供求的一种手段,将燃料乙醇生产纳入到饲料生产中。因为燃料乙醇在生产过程中只消耗粮食中的淀粉,同时对蛋白质等其它营养物质是一个浓缩过程,也就是说,是优质高蛋白饲料(DDGS)的生产过程。国家可以通过宏观调控和市场机制,将部分饲料粮先生产燃料乙醇,然后将其副产品(优质高蛋白饲料)放回饲料市场。

粗略估算,我国每年饲料用玉米大约有8000-10000万吨,其中加工成现代混合饲料的玉米用量占50%(周立三,2000)。如有计划地从饲料粮中拿出15%,先生产500万吨燃料乙醇,同时联产500万吨DDGS饲料投放饲料市场,它的饲养价值(优质蛋白质总量)与1500万吨粮食相比,不但不会减少,反而得以增加。这种将燃料乙醇生产与饲料生产综合利用的协调发展形式,扩大了燃料乙醇的资源潜力。另外,积极种植不与口粮争地、争水的高产、耐旱、耐盐碱的经济作物,如甜高粱、木薯、甘蔗等,也可为生产燃料乙醇开发更多的原料资源。有专家估计,利用易改造的盐碱地种植甜高梁,可以提供年产4000万吨燃料乙醇的原料。在不远的将来,通过生物质纤维(秸秆和薪柴等)生产燃料乙醇技术,可以为大规模燃料乙醇生产提供取之不尽的生物质资源。根据粗略估算,我国每年来自农业废弃物的秸秆可利用量约6亿吨,如果利用其中的50%制取燃料乙醇,按照7-8吨秸秆生产1吨燃料乙醇计,可以提供年产3700万吨燃料乙醇的原料。

从我国生产生物柴油的资源情况看,由于受原材料价格的影响,现阶段较适合作为制取生物柴油的原料主要有酸化油、地沟油和泔水油。有关资料显示,我国每年消耗植物油1200万吨,直接产生油脚酸化油250万吨,大中城市餐饮业产生地沟油200多万吨,这些油品的价格基本在2000-3000元/吨左右,是目前我国生物柴油生产的主要原料。价格高于4500元/吨的原料油如菜籽油、棉籽油、大豆油基本不在现阶段考虑之内。木本油脂植物如麻疯树、黄连木、文冠果等,尚处于试点培育阶段,只能作为未来几年后的生物柴油原料。粗略估计,如果利用非农业和林业规划用地的无林地和退耕还林地(约6700万公顷)种植油脂植物,按种植黄连木或麻疯树计算,以每公顷油料林出油1-5吨计,则可生产生物柴油近亿吨。此外,我国约有5000万亩可开垦的海岸滩涂和大量的内陆水域可以发展工程藻类资源。按照美国可再生能源实验室运用基因工程等现代生物技术开发出含油量超过60%的工程藻类,若按每亩生产2吨以上生物柴油计算,我国未来的工程藻类也可提供制取数千万吨的生物柴油原料。

综上所述,我国未来的资源潜力可提供5000-8000万吨左右的燃料乙醇。燃料乙醇原料的利用路线为:近期利用玉米陈化粮,之后开发经济作物,中远期则利用农林生物质资源。生物柴油原料的利用路线为:近期利用废油,中期开发油料植物,远期则发展工程藻类。总体看,我国生物燃料资源可以满足未来大规模开发利用生物燃料的需求。

2、生物燃料生产的技术经济性评价

从以玉米为原料制取燃料乙醇的技术经济性看,由于玉米原料价格偏高,生产1吨燃料乙醇需3.3吨玉米,仅原料成本就达4620元(1吨玉米价格1400元左右),企业在国家每吨补贴1600元基础上可保本获微利。需要提及的是,国家对燃料乙醇的补贴是一种多赢之举。因为,加入wYo后,我国政府将粮食出口补贴改为对粮食加工生产企业的补贴,因此,对燃料乙醇的补贴不但是国家对燃料乙醇产业的支持,也是国家带动粮食生产和农民增收,同时创造大量就业机会的措施。有专家估算,按我国每年生产400万吨燃料乙醇推算,可拉动160亿元以上的直接消费,创造约50万个就业岗位,在生产、流通、就业等相关环节都可以给国家创造收入。以木薯等代粮作物为原料制取燃料乙醇技术正在研发阶段,其经济性好于玉米燃料乙醇,直接成本可控制在2500元/吨范围内。从长远看,燃料乙醇生产应以农林废弃物纤维质为原料。从上海奉贤2005年的“纤维素废弃物制取燃料乙醇技术”项目看,已完成的年产600吨乙醇中试示范生产线,按每7-8吨秸秆生产1吨燃料乙醇计,每吨燃料乙醇的生产成本在4300-5500元左右。从安徽丰原已经运行的秸秆燃料乙醇项目看,生产规模为5万吨/年,秸秆原料成本2100元/吨(约6吨玉米秸秆生产1吨乙醇,秸秆按350元/吨计);其他成本3800元/吨(包括酶制剂、耗水电和蒸汽及其他加工费等),总生产成本约5900元/吨。虽然目前利用秸秆纤维素制取燃料乙醇的成本高于玉米燃料乙醇,但随着技术的逐步成熟,其生产成本将会降低。另外,由于燃料乙醇具有与mtBe汽油添加剂同样的作用,所以,如果考虑到燃料乙醇的这一作用,对燃料乙醇的定位和定价来说都还有较大空间。

生物柴油的生产方法有化学法、生物酶法和工程微藻法三种,化学法是我国目前的常用方法。据不完全统计,我国万吨以下生物柴油产业化制备技术大部分采用酸碱催化间歇式化学法。由于投资少、上马快,投资回收期短,普遍为我国中小企业所接受。化学法生产中使用碱性催化剂,要求原料必须是毛油,比如未经提炼的菜籽油和豆油,原料成本将占总成本的75%。因此,采用廉价原料降低成本是生物柴油能否市场化的关键。正和公司以食用油废渣为原料制取生物柴油的经济性表明,每1.2吨食用油废渣生产1吨生物柴油,同时获得甘油50-80公斤,按当时的生物柴油售价为2300-2500元/吨估算,每生产1吨生物柴油获利为300-500元,现在,柴油价格涨到4900元/吨,更显现出生物柴油的市场竞争力。贵州省利用麻疯树果实生产的生物柴油,通过自有核心技术建设的首条年产300吨麻疯树生物柴油中试生产线,通过国家质检部门和国外大型汽车公司的指标检测,其关键指标均优于国内零号柴油,达到欧Ⅱ排放标准。

但是,上述的这些利用化学法合成生物柴油技术

还存在能耗高、生产过程产生大量废水和废碱(酸)等污染问题。为解决上述问题,人们开始研究用生物酶合成法制取生物柴油。2005年清华大学用生物酶法制取生物柴油中试成功,生物柴油产率达90%以上。生物酶法的无污染排放优点已日益受到重视,但是如何降低反应成分对酶的毒性是亟待解决的问题。工程微藻法是以富油的工程藻类为原料的生产方法。藻类的高脂肪含量可降低生物柴油的生产成本,生产的生物柴油不含硫,燃烧时不排放有毒害气体,排入环境中也可被微生物降解,不污染环境。专家评价,利用工程微藻生产生物柴油是未来发展技术的一大趋势。

由此可见,在一些具有经济性的生物燃料制取技术得到广泛应用的同时,更多的正在孕育发展的高新技术层出不穷,这种发展势头预示着我国生物燃料生产技术和产业将迎来更好的发展前景。

3、现代汽车技术利用生物燃料的可能性评价

目前,我国汽车利用燃料乙醇多采用混合燃料方式,即在不改动汽车发动机情况下以小比例与汽油混合,如燃料乙醇汽油e10(90%汽油,10%燃料乙醇)。其他利用方式有在线混合方式和双燃料方式,在线混合方式可以根据汽车发动机的工况调节燃料乙醇的比例,但需要改造汽车发动机;双燃料方式具有突出的高替代率、高热效率和高净化碳烟效果,但目前尚有问题需要解决。生物柴油与燃料乙醇一起混入车用柴油的方法,可以形成更理想的高比例含氧燃料,大幅度降低汽车的碳烟和微粒排放。由此可知,生物燃料作为替代燃料应用于汽车的关键问题,还在于混合动力汽车技术和先进柴油汽车技术的发展。

目前,采用生物混合燃料技术、具备较高燃油经济性以及低排放特性的混合动力新车型有若干多种,目前全球使用生物燃料的主要车型有:FordFocusBioflex型;FordFocusC-maxBioflex型;Saab9/5berline2.0tBio-power型;Saab9/5break2.0tBio-power型;VolvoC30Flexifuel型;VolvoS40Flexifuel型;VolvoS50Flexifuel型。主要包括e85燃油混合动力车、燃料乙醇与电力混合动力车、纯燃料乙醇e100的运动概念车、满足欧4排放标准的现代柴油车技术以及在降低排放和降低油耗上有高效率的均质压燃混合动力车发动机技术,等等。虽然这些汽车技术目前在我国以及外国仍处于研发和示范阶段,但在不久的将来都将成为交通行业高效、经济、有益环保、面向未来的新型汽车技术。混合动力汽车和先进柴油车技术与生物燃料结合,是我国未来公路交通满足节能、环保需求的最佳技术选择。

四、生物燃料作为替代燃料的发展情景

1、社会经济发展对生物替代燃料的需求

伴随着国民经济的持续快速发展和居民收入水平的稳步提高,我国已进入汽车大众消费的成长期。在未来较长的成长期阶段,汽车保有量的持续快速增长,使车用燃油消耗成为我国石油消费中增长最快的部分。相比石油消费的快速增长趋势,我国的石油供应,在探明储量没有重大突破的情况下,仅能保持低速增长,无法满足国内需求的状态已成定局,并且依赖国际石油供应的比例将逐步加大,对我国石油供应和石油安全造成极大的挑战。解决这一严峻问题的战略措施是加强节能和发展替代能源,在众多车用替代能源中,生物燃料以其清洁、可再生以及低污染的优势具有很好的发展前景。

影响我国未来公路交通油品需求的主要因素包括人口发展趋势、经济发展趋势、汽车车辆和周转量增长趋势、公路交通的发展模式等等,这些因素之间的相互关系在模型中被一一构建,主要参数的设置简单叙述如下。

GDp和人口是交通运输需求的主要驱动因素。按照目前我国经济发展势头估计,将2010-2020年GDp的增长速度设置为8%。人口数2010年为13.93亿人,2020年为14.72亿人(社科院人口所)。

车辆周转量是反映公路交通需求的重要基础参数。伴随着我国经济的持续快速发展、人均收入水平的提高以及城市化的快速推进,预计在2010-2020年间,我国汽车保有量将以12%-15%的增长速度转向10%的增长速度发展,汽车保有量将比现在增长4倍。其中轿车的发展速度将高于汽车平均发展速度,估计2020年,我国人均轿车保有量约每千人75辆(接近目前世界人均水平)。依据国家交通发展规划和经济建设对公路交通服务量的需求,对公路交通周转量的预测主要考虑了车辆拥有量、车辆负荷率以及每年的运行距离等因素。预计2010年、2020年和2030年的公路交通周转量分别比2005年增长3倍、6倍和9倍。如此大的周转量增长,将导致巨大的交通油品需求量。

未来公路交通发展模式是预测未来交通油品需求量的重要参数。关于未来交通模式的设置,本研究选择了25种汽车技术,除一些正在应用的普通汽柴油客货车外,充分考虑了新型汽车技术如混合动力车、清洁燃料车、先进柴油车、电动车和地铁等技术的广泛推广应用。通过在不同情景中,对未来各种类型车辆在公路交通中所占份额以及这些车辆所消耗油品比例等重要参数的设置,作为预测未来公路交通油品需求量的重要参数。由于篇幅所限,25种公路汽车技术的市场份额设置就不一一列出。其结果是,在常规燃油发展情景中,先进的汽油车,特别是先进柴油车得到大力发展,其保有量比例将由目前的4%提高到17%;在生物燃料替代情景中,除先进的汽油车和柴油车得到大力发展外(保有量比例提高到27%),混合动力车也得到快速发展,在我国汽车保有量比例将由目前的7%增加到52%,其中,生物燃料的混合动力车将占很大比例。

2、展望生物燃料未来的发展情景

为分析我国未来社会发展中汽车对油品的需求,研究中设定了两个发展情景,即常规燃油发展情景和生物燃料替代情景,通过比较两个情景中油品的消费状况,展望未来生物燃料的发展情景。两种发展情景的定义如下。

(1)常规燃油发展情景。在此发展情景中主要考虑目前国家已有的交通节能和环境政策,如发展清洁车辆,施行欧洲汽车排放标准;发展公共交通,2020年公共交通将占公路机动车客运周转量的40%;促进柴油车发展,满足未来交通运输中客运和货运大容量的需求等;执行国家现有的生物液体燃料鼓励政策,参照车用燃料乙醇e10在我国的推广历程以及生物燃油制取技术的常规发展速度,估计生物燃料开发应用的发展趋势。即2010年燃料乙醇汽车仍处于区域化推广应用阶段,从目前的9个省市推广应用到15个省市,即全国有50%的车辆使用e10燃料;生物柴油处于技术准备阶段。2020年,继续推广e10车用燃料,车辆使用e10燃料的比例达到80%。生物柴油进入小规模应用阶段。

(2)生物燃料替代情景。此情景是在常规燃油发展

情景基础上,为满足我国能源供应安全需求、环保和气候变化需求以及可持续社会经济发展需求,在国家采取节能降耗和发展替代燃料的战略举措指导下,达到降低汽车油品需求量的目的。一方面,在发展汽车工业的同时,要降低能耗和保护环境,尽快引进新一代先进汽车;加速推广低能耗汽油汽车、低能耗柴油小汽车、混合动力汽车、清洁燃料汽车;扩大公共交通的承载比例,在轨道交通和公共交通体系完善的情况下,提高车辆运行效率,减少交通需求。另一方面,要强化推行车用生物燃料替代的扶持政策,考虑了国家可再生能源发展规划以及相关政策对车用替代燃料所产生的影响,加大投资力度,大幅度提高生物燃料的开发利用进程。对于燃料乙醇,2010年e10车用燃料在全国范围推广使用,即全国有90%-100%的车辆使用e10燃料。2020年,在使用e10燃料比例达100%基础上,进一步在使用e10燃料条件较好的省市推广使用e25车用燃料,使e25燃料车占汽油车的比例达到30%,在东北三省以及北京、天津、河北、河南、山东、江苏等连接而成的大区域内推广使用。对于生物柴油,2010年按照国家鼓励发展节能型轿车和柴油车的政策,在上海等省市示范推广使用柴油出租车和公共汽车,并要求新增的车辆也使用现代柴油车;2020年在上海、北京、广州等大城市推广使用柴油出租车、公共汽车和小轿车,并且这些车的车用燃料均使用搀和10%-20%的生物柴油的混合燃料。基于我国社会发展预测,特别是公路交通发展预测基础之上,根据对上述情景量化为模型参数的设置,应用ipaC模型对汽车油品需求量得到以下预测结果(见下表)。

在常规燃料发展情景中,未来20年,我国汽车的油品需求总量分别是2010年1.2亿吨,2020年2.2亿吨和2030年2.9亿吨。汽车以汽油和柴油为主要燃料将一直持续下去,到2030年,汽车消耗的汽、柴油占交通油品需求总量的比例仍在95%以上。因此,提高传统汽油和柴油车辆的效率和环保性能,以及提高油品质量是公路交通能源问题的重点。在2010-2020年期间,先进柴油车从早期发展阶段到推广示范阶段,柴油车辆将不断增加,柴油需求量快速增长,柴油占公路交通油品消费的比例将从45%提高到59%,需求量将达到1.7亿吨。另一方面,在国家对生物燃料的鼓励政策支持下,生物燃料在资源丰富地区得到示范和推广应用。从生物燃料总体的替代能力看,2010年至2030年在我国公路交通的油品消耗中,生物燃料的替代能力将从3%提高到5%,替代作用不十分明显。

在生物燃料替代情景中,未来20年,我国汽车的燃油需求总量分别是2010年1.1亿吨,2020年2.1亿吨,2030年2.7亿吨。在国家鼓励发展节能型轿车和柴油车政策支持下,燃油经济性高的先进汽车技术被广泛推广使用,预计2010-2020年的汽车平均百公里油耗将比2000年降低20%-40%,2010年我国乘用车的油耗量将比目前水平降低15%左右,从而使汽车油品需求总量减少。虽然汽车仍以汽油和柴油为主要燃料;但是,汽柴油的比例在逐步减小,由2010年的93%降低到2020年的89%和2030年的85%。特别是低能耗的混合动力车(包括生物燃料)的广泛推广和使用,其车辆的市场份额从2005年的7%提高到2020年的30%和2030年的52%,使石油油品消耗量逐步降低,而生物燃料比重逐步增加。由于国家鼓励开发利用可再生能源液体燃料的政策得以充分实施,2010年在全国范围内100%推广使用e10车用燃料,燃料乙醇的需求量达到670万吨;2020年,使用e25燃料车比例占汽油车的30%,燃料乙醇的需求量达到1670万吨。随着先进柴油车和柴油小轿车的推广使用,这些柴油车的车用燃料均使用搀和10%-20%的生物柴油,届时生物柴油在公路交通中替代柴油的比例将从2010年的2%增加到2020年的6%和2030年的11%。从生物燃料总体的替代能力看,2010年至2030年,在我国公路交通的油品消耗中,生物燃料所占份额将从7%提高到17%,具有相当明显的替代作用。

3、生物燃料具有相当明显的车用燃料替代潜力

综上所述,本研究利用能源研究所构建的中国能源环境综合政策评价模型中的技术模型,重点对我国未来公路交通行业的生物燃料替代问题进行了分析。在今后的10-20年中,我国快速的经济建设,对公路交通汽车拥有量以及客货运周转量有巨大的需求,从而导致成倍增长的汽车油品消耗量,对我国本已薄弱的石油供应问题造成更严重的威胁。因此,节能降耗和发展替代燃料是降低我国公路交通油品消耗量的重要战略选择。生物燃料替代情景的研究结果表明,生物燃料在我国未来公路交通中将逐步展现出很强的燃料替代能力。这种替代能力,一方面来自于完全满足大规模生物燃料生产的资源潜力,以及层出不穷的生物燃料制取的高新技术潜力;另一方面来自于先进的混合动力汽车技术,特别是生物燃料混合动力技术在我国的推广应用前景。除此之外,更重要的是,这种替代能力源于国家能源战略和可持续发展的需要。展望未来,国家鼓励开发和利用生物液体燃料的政策得以充分实施,新型生物燃料混合动力技术逐步成熟,成为高效、经济、有益环保的普遍应用汽车技术。届时,在我国公路交通中,生物燃料将发挥非常显著的燃料替代作用。本研究表明,从生物燃料总体的替代能力看,2010-2030年,在我国公路交通的油品消耗中,生物燃料所占份额将从7%提高到17%,替代车用油品的数量为700万吨(2010年)、2300万吨(2020年)和4000万吨(2030年),具有相当明显的替代能力。

五、我国生物燃料未来发展有明确的政策支持

我国政府十分重视生物替代燃料的发展,针对我国生物燃料初期发展所面临的问题,国家发改委组织相关部门研究和制定专项发展规划和一系列指导性政策,如《生物燃料乙醇产业发展政策》和《生物燃料乙醇及车用乙醇汽油“十一五”发展专项规划》,财政部也在制定生物燃料的财税扶持政策。这些政策对我国生物燃料未来的发展将产生有力的支持。

生物质燃料的前景篇2

关键词:能源战略生物航煤展望

一、非化石能源面临结构调整

“十一五”期间,我国把节能减排作为经济社会发展的约束性指标,单位GDp能耗下降19.1%,二氧化硫排放量下降14.29%,化学需氧量排放量下降12.45%,折算为二氧化碳,相当于减少二氧化碳排放14.6亿吨。进入“十二五”,我国制定了更为全面的节能减排指标,而要实现总量控制的目标,最重要的举措就是“调整能源结构,大力发展非化石能源”并加以量化:“争取到2020年非化石能源占一次能源消费比重达到百分之十五左右”。

目前我国对非化石能源的定义主要分为水电、太阳能、风能、核电和生物质能,其中非粮液体燃料和替代石油基的生物基产品构成了发展生物质能的战略重点。除了被大家所熟知的生物柴油、燃料乙醇外,生物航空煤油作为另外一种重要的替代能源也逐渐进入人们的视野。

二、中国生物航煤的发展现状

2011年,中国民航局出台了《关于加快节能减排工作的指导意见》,对行业的节能减排工作提出了目标,主要可以归纳为两条:一是全行业能耗和Co2的增速低于行业发展速度;二是到2020年民航单位产出能耗和排放比2005年下降22%。在国家和行业能源政策的大背景下,生物航煤的研发、应用被提上日程。

生物航煤是指由生物质加工生产的、可替代传统航空煤油的液体烃基燃料,具有原料可再生、调和性好、杂质含量低的特点。生物航煤原料来源广泛,动植物油脂、农林废弃物和微藻都可作为其原料,通过加氢技术生产得出。(见下图)

为了应对传统航煤价、量双升以及航空业应对气候变化压力的增加(特别是2012年围绕欧盟征收航空业碳排放税的斗争),很多发达国家和发展中国家都在大力发展生物航煤,中国也不例外。2008年以来,中国石油与中国石化相继开展了生物航煤的研发工作,从原材料种植基地的建设、炼制设备的改造、试加工生产都投入大量的人力物力。中国石油建立了小桐子能源林基地并着手筹建年产6万吨的航空生物燃料炼油厂,中国石化将杭州炼油厂的加氢装置改造用于生产生物航煤并已经开始了以微藻为原料的技术开发。2011年,中国石油与民航局在北京进行了首次航空生物燃料验证飞行。2012年2月,民航局受理了中国石化的1号生物航空煤油适航审定。目前,国内生物航煤从原料的采收、加工和储运直至油品炼制和加注使用的产业链已基本勾勒完成。

三、生物航煤的应用前景

1、前景广阔

从全球来看,美国计划到2020年生物燃料将占其能源总消费量的25%,2050年达到50%;欧盟计划到2020年用生物燃料替代20%的化石燃料。国际航空运输协会(iata)预测,2030年生物燃料占航空燃料比例达30%。

就我国而言,航煤消费量目前保持每年13%左右的增长速度,远高于国际5%的增长水平,2010年国内航煤消费已达到1800万吨以上。预计2020年中国航空煤油消费量将超过4000万吨,届时生物航煤有可能占到航油总量的30%,生物航煤市场容量将达到1200亿元。

2、制约因素

(1)生产能力不足。按照中石化从2012年开始年产6000吨、中石油从2013年开始年产6万吨来计算,到2020年两家企业的生产能力总共还不到60万吨。这与消费需求相差甚大。况且,一套炼油装置从建设、调试到正常生产,至少需要三到五年的时间。

(2)成本问题是我国发展生物航煤的最大阻碍。我国尚未建立起成熟生物燃料供应体系,包括燃料乙醇、生物煤油在内的研发和生产建设都需要大量的资金投入。现阶段生物航煤成本达到传统航空煤油的2到3倍,真正实现产业化和商业化需要政府、企业共同来努力。比如,政府投资引导各种生物燃料的商业化,同时在政策上对新能源开发予以倾斜。又如,对可作为多种生物燃料原料的“地沟油”如何加以控制,使其不回流餐桌而流向再生利用环节,实现其价值的最大化,都值得我们深思。

参考文献:

[1]国家能源局.国家能源科技“十二五”规划.2011,12.

生物质燃料的前景篇3

专家表示,在目前国际油价高企、国内减排压力剧增的背景下,加快生物质燃料乙醇产业的发展势在必行,而推进纤维素燃料乙醇技术将为燃料乙醇产业摘掉“与民争粮”的帽子。

一、“高油价”时代的新秀

4月15日纽约原油期货价格报收于每桶108.11美元,上涨0.9%。“高油价”时代迫切呼唤燃料替代品的出现。同时,我国提出在“十二五”期间要将我国非化石能源占一次能源消费比重提高到11.4%,主要污染物排放总量减少8%至10%,在核电大规模开发面临安全性质疑的今天,包括燃料乙醇在内的生物质能的开发提速存在必要性。

燃料乙醇产业是当前可行性最高的液体燃料替代方案,在普通汽油中添加10%的燃料乙醇,所形成的乙醇汽油具有的能量利用效率高、尾气排放污染少等优点。截至目前,中国十个省区正在施行这种方式,年消耗乙醇汽油1700万吨,占中国汽油消耗总量的20%以上。

相比较电动汽车,在车用汽油中添加燃料乙醇的方式要容易操作的多,不需要对汽车的动力系统做大规模的改装升级,就能降低对化石能源的依赖,这也决定了燃料乙醇利用在环保领域存在着巨大的市场空间

燃料乙醇产业曾因可能影响粮食安全而引发争议,对此,中粮集团生化能源事业部总经理岳国君表示,目前我国燃料乙醇产业消耗粮食所占比例仅为0.8%,远没有白酒企业消耗得多。

据了解,中粮生化事业部探索发展“非粮”燃料乙醇生产技术取得进展,广西中粮生物质能源有限公司已成为以木薯为原料、年产20万吨燃料乙醇的“非粮”燃料乙醇工厂。数据显示,2010年我国的燃料乙醇产量约为173万吨,其中20万吨为木薯制成。

二、有望消除“与民争粮”

专家分析:提取燃料乙醇的原料正在由最早的玉米、小麦等富含糖分的粮食作物逐渐向玉米秸秆等富含纤维素的农林废弃物过度,一旦从纤维素转化为乙醇的技术成熟,我国燃料乙醇产业将进入发展快轨,“与民争粮”的问题将彻底解决。

目前,中粮集团与国内外知名大学和科研机构合作,正在攻克将纤维素转化为2代燃料乙醇的新技术。技术一旦成熟,各种农作物秸秆都可以用来生产燃料乙醇,这对于我国能源结构调整和农业产业化的推动都会产生巨大影响。据估算,中国每年产生大约6亿吨农业废弃物(主要是秸秆),除了用于饲料和还田之外,还有2亿吨可以被用来生产4000―5000万吨纤维素乙醇,这几乎等于目前中国汽油总消耗量的60%~70%。

生物质燃料的前景篇4

【关键词】生物质能;农村;发展

一、我国农村现有生物质能源利用的现状

我国耕地面积为18.37亿亩,盐碱地约14.87亿亩。农民是土地真正意义上的主人和耕种者,多年来我国农村多实行自由式耕种方法,种什么,种多少,都取决于农民。对于耕种非粮生物质能源的原材料如:蓖麻、甜高粱、木薯、麻疯树、棕榈、苏子等,缺乏统筹安排,农业产业化格局还没有形成,一部分未耕土地还没有得到合理的利用,在农村发展生物质能有很大的潜力;多年来我国政府大力倡导在满足城镇居民口粮的基础上,挖掘闲散地,规模化种植非粮生物质可燃原料,针对农村具体情况,合理安排土地资源,走可持续发展的高效、低碳、环保之路,经过努力目前已经初见成效;我国从南到北建立了很多非粮生物质燃料的原材料生产示范基地,加快了农业结构调整的进度;我国农村传统的能源转换形式是直接燃烧秸秆类农作物,用于取暖、烧饭,这种极为落后的高污染、低热量的能源利用方式,造成资源浪费和严重的环境污染。目前适合我国农村生物质能发展的非粮物质有很多,按照生物质的特点及转化方式可分为固体燃料、液体燃料、气体燃料三种。

二、固体生物质燃料

固体生物质燃料是指农作物秸秆、薪柴、乔木、谷壳等可燃性物质。我国农作物仅秸秆一项年产量就可达到7亿吨,稻壳、蔗渣等农业加工残余物0.84亿吨,薪柴及林业加工废料1.58亿吨。在可开发的生物质资源中,能源作物的种植和开发潜力很大,农作物秸秆有40%作为饲料、肥料和工业原料,尚有60%可用于能源开发利用,约相当2.1亿吨的标准煤;薪柴也是重要生物质资源,有40%林业剩余物可以利用,约相当0.3亿吨的标准煤;大量的农业副产品的剩余物、废弃物,蕴藏着巨大的生物质能源,为生物质能的利用开辟了一条重要途径。

目前我们采取一种新技术,将秸秆、稻壳去湿、去杂土,在一定温度和压力下压缩成块状、棒状、颗粒状等成型燃料。提高了其运输和储存能力,改善秸秆燃烧性能,提高利用效益。在我国农村,对生物质资源比较集中的地区,可以就地取材,减少成本。利用小型生物质发电设施,通过燃烧秸秆和灌木屑发电,既可做到废物利用,又可以降低发电过程对环境的污染。另外,现有农村电厂利用木材屑和农作物的残余物与煤的混合燃烧是比较现实的一项技术,这样提高了农林废弃物的利用率,也降低了纯燃煤对大气的污染,缓解人们对化石能源的依赖。我国在秸秆固体成型的生产和应用方面已经初步形成了一定的规模,主要以锯末和秸秆、稻壳、灌木为原料,满足农村居民的生活用能、农机具用能和发电用能等。近些年来国家出台一系列政策,采取综合性补助的方式,支持从事秸秆成型燃料的农村加工企业,尤其鼓励农村小型生物质电厂的建设。目前开展的一般生物质直接燃烧发电,这项技术相对较为简单很容易掌握,适合在农村发展。我国技术人员开发出适合村镇使用的小型生物质发电设备,利用稻壳、秸秆作原料,因地制宜地走适合村镇发展电力(villagepowerplant)的道路,在农村节能减排中做出了贡献。

三、液体生物质燃料

生物液体燃料是指生物乙醇、生物柴油,它作为化石能源石油的替代品,是液体燃料中理想的选择。液体生物燃料来源于可再生能源,温室气体净排放几乎是零,是理想的朝阳产业。我们研制的以玉米、甘蔗、甜菜、豆类、食用油为第一代生物燃料原料的生产技术已经被淘汰。以秸秆类、谷壳类、甘薯、蓖麻等为原料的非粮生物燃料生产技术已经形成,而这类原料取于农村、用于农村,成本低廉,可以形成规模化生产。产品如有剩余还可以作为商品燃油的形式卖给城市居民,增加农民收入。以秸秆、谷壳、麻疯树、甘薯、苏子、亚麻等农业废弃物、非粮植物为原料的第二代生物燃料被公认为具有巨大的替代石油的潜力,据有广阔的市场发展前景。

生物质燃料的前景篇5

[关键词]生物质电厂;燃料;皇竹草;组织模式

[作者简介]刘毅,中国能源建设集团广东省电力设计研究院工程师,研究方向:热能与动力,广东广州,510663

[中图分类号]S216[文献标识码]a[文章编号]1007-7723(2013)06-0019-0003

生物质发电主要利用在农林业生产中产生的废弃物作为发电燃料,是一项具有广阔发展前景的可再生能源产业。根据2005年国家颁布实施的《中华人民共和国可再生能源法》,可再生能源被列为能源发展的优先领域,是国家大力推动的能源产业。同时,在《国家中长期科学和技术发展规划纲要(2006~2020年)》中,生物质发电也被列为能源领域中重点开发利用的技术,并作为国家能源战略的重要组成部分。随着石油、煤、天然气等资源日益枯竭,生物质发电将越来越受到重视,在未来的应用将越来越广泛。

从目前国内已建成的生物质电厂运行情况来看,多数电厂在燃料的收集、运输和储存过程中均存在难题。特别是50mw的大型机组,燃料组织环节的问题已成为制约电厂生存与发展的关键因素。针对这种情况,本文提出一种新型的燃料组织模式:种植皇竹草作为原料。通过对这种新型燃料组织模式的探讨,笔者希望能为以后的生物质电厂燃料系统的设计提供一种新思路。

一、传统的燃料组织模式

生物质电厂的燃料一般采用在农林业生产中产生的废弃物,如秸秆、锯末等。这些燃料具有密度小、热值低、分布范围广等特点,且具有季节性。一个容量为2×50mw的生物质电厂每年所需燃料量大约为60×104t,燃料收集半径大约为30~60km,根据各地资源分布情况不同而有所差异。

目前最常见的燃料组织模式大致分为以下几个步骤:a)从农户处收集燃料;b)在厂外收储站对收集到的燃料进行切碎、打包等再处理;c)将处理好的燃料运输至场内储料场储存。

而为了降低电厂的初始投资及管理难度,减少电厂的人员,并兼顾燃料供应安全性,降低风险,大多数电厂的燃料组织都是采用电厂自主组织完成和由当地的农户或经纪人组织完成相结合的方式,只是在各自完成的比例上有所差异。

二、燃料组织过程中的常见问题

(一)燃料收集困难

首先,农林业生产具有很强的季节性,在农林作物未收获的时段,将会产生燃料供应不足的问题。其次,生产过程中产生的废弃物的所有权分属千家万户,在收集过程中电厂要与收集半径内的多个农户个体或经纪人打交道,工作量非常大。再次,电厂作为需方,缺乏对供方的约束力,有时甚至还会出现农户单方面涨价或突然停止提供燃料的情况。最后,农户对燃料的收集主要是以人力为主,效率低下,导致其积极性不高。上述因素都会导致燃料收集困难。

(二)燃料运输成本高

我国农村地区实行土地承包责任制,少有机械化集中生产,人均耕地面积少,导致燃料分布零散,运输工作量大,成本高。无论是电厂挨家挨户去收取,还是由农户各自送货上门,运输成本最终都会反映到燃料成本上。即使设置厂外收储站,也只能使运输成本高的问题有所缓解,而无法得到根本改观。

(三)燃料质量难以保证

目前生物质电厂普遍采用炉排炉和循环流化床锅炉。锅炉对燃料含水率的设计值一般在20~30%。但农户均采用自然风干的办法对燃料进行处理,最终含水率一般在30%以上。有时由于风干时间不够长,含水率甚至会远超30%。同时,在燃料收集过程中,由于不可能做到每户每次都详细检测,农户往燃料中掺水掺石块的事情时有发生。

含水率过高会导致燃料在储存时易发酵、自燃,从而产生安全隐患,而且在进入炉膛燃烧时会增加锅炉排烟损失,使锅炉效率下降。往燃料中掺石块则可能会损坏解包机、给料机等上料设备。

(四)燃料供应的安全性难以保证

生物质燃料具有密度小、体积大的特点,因此储存设施占地大,储量却很少。而出于成本控制方面考虑,储存设施的容积也会受到一定的限制。

但是在燃料的组织过程中,存在诸多经常遇到且难以回避的困难。例如,燃料供应的季节性影响、燃料收购的价格上涨、电厂与农户之间产生纠纷、恶劣的气候因素影响等。当这些因素的影响超过厂内和厂外储存设施的缓冲承受能力时,电厂将不可避免地遭遇“无米下锅”的尴尬情景。

据笔者了解,国内的生物质电厂曾出现过多例因燃料供应紧张,燃料收购价格在短时内大幅上涨的事件,甚至还曾有电厂因为缺少燃料而被迫停机。

三、新型燃料组织模式

为了电厂长期安全稳定运行,避免出现以上问题,国内某生物质电厂工程正在尝试采用一种新型的燃料组织模式。该电厂主要采用在电厂周边50km范围内种植的皇竹草作为燃料,同时也可以收集该半径内的各类农林业废弃物作为燃料。

电厂规模为2×50mw机组,年利用小时按6000h计,年消耗燃料量折合成含水率10%的皇竹草约为48×104t。

(一)皇竹草的特性

皇竹草是我国从南美洲哥伦比亚引进的高产量优质牧草,其植株高大,根系发达,为多年生植物,主要繁殖方式为无性繁殖,适宜种值于各种类型的土壤,并具有很强的耐酸性和抗干旱能力。皇竹草性状介于荻苇与高粱之间,其外形和生长形态类似甘蔗,但中空,节间较脆嫩,属于软质秸秆。

皇竹草最适宜在热带和亚热带气候条件下生长,而且对气温条件的适应性较强,在靠近北方的地区也可以种植,但是温度较低会抑制其生长。在我国南方地区种植皇竹草生长周期短,收获期长,春季栽植后2~3个月即可收割,每年可收割4~6次,栽植一次可连续收割6~7年,每亩每年可产鲜草达25t。

皇竹草鲜草含水量为75%左右,除去水分,主要成分为纤维素、木质素和半纤维素,占固体物料总重量的80%以上。除此之外,还含有蛋白质、脂类、灰分、果胶、低分子的碳水化合物等。对含水率10%的皇竹草进行元素分析,结果表明,在同等含水率基础上,其热值低于树枝、锯末的热值,而与水稻、玉米秸秆等大多数生物质的热值相当。

(二)种植模式及规模

该电厂所在地区为经济欠发达的山区,有大量山坡地可用来种植皇竹草。项目公司计划利用山坡荒地共约15×104亩,由当地政府引导农户种植,项目公司负责技术支持和技术服务,并回购收获的皇竹草作为电厂的燃料。

依靠种植,这些荒地年产皇竹草鲜草最高可达375×104t,折合含水率10%的干草约为105×104t,作为电厂的主要燃料。同时在周边地区收集当地的农林废弃物,每年约26×104t,可作为补充,满足电厂需要。

(三)燃料组织模式

该电厂的燃料组织模式策划为:项目公司+政府+燃料公司+经纪人+农户。首先,项目公司和当地政府签订项目合作协议书,政府在政策上给予大力支持,对当地农户的种植予以科学引导。然后,由项目公司组建燃料公司,同时发动并培育一批当地的经纪人,并在每一个种植乡镇为电厂配套建设燃料收储站(约20个)。

农户种植皇竹草可以采用两种模式,一种是自己承包土地种植,将收获的产品卖给燃料公司;另一种则由经纪人承包土地,农户受其雇佣进行种植。

皇竹草收获后,就地进行晾晒,然后由农户自行送至电厂或厂外收储站,或者由燃料公司或经纪人上门收取。收集到燃料后,合格的直接入库储存,需要再处理的则经过切碎、脱水等处理之后再入库储存。

电厂设置20个厂外收储站和1个厂内储料场,共可满足2台机组65天的燃料量。

(四)优点及缺点

这种新型的燃料组织模式有自己独特的优点:a)农户或经纪人可以承包大面积的土地进行种植,燃料的分布变得比较集中,收集工作比较容易;b)燃料产地集中,使运输工作量和成本大大降低;c)电厂收购燃料需面对的对象较少,可以建立起规模较大的长期、稳定的合作关系,而且可以在收购时进行抽检,都有助于保证燃料的质量;d)皇竹草的种植有当地政府和项目公司组织和引导,有利于维持燃料市场的稳定、有序。皇竹草的生长受季节的影响要比其它农作物小得多,通过合理调配收割时间,燃料供应可以做到全年无间断。这些都是电厂燃料供应安全性的有力保障。

以上是新型燃料组织模式的优点,但任何事物都具有两面性,这种模式也有一些缺点:a)皇竹草的种植需要大面积的土地,同时农户的利益也需要担保,这些都需要政府部门的积极参与和大力支持,而且项目实施的初始阶段难度较大;b)该模式具有一定的地域性限制,较适合在南方地区进行。因为皇竹草虽然对气温条件的适应性较强,但是越靠近北方其产量越低,该模式的经济性越差;c)该模式尚未经过工程实际检验,拟采用该模式的生物质电厂尚处于可行性研究报告审查通过的阶段,在以后的项目实施阶段是否会遇到新的困难尚未可知。

四、结语

因为篇幅的关系,本文仅在技术层面对新型燃料组织模式和传统燃料组织模式进行对比分析,未再在经济性方面进行探讨。

本文提出的这种新型的生物质电厂燃料组织模式从技术上来说完全可行,而且可以明显改善甚至解决一些在传统的燃料组织过程中无法回避的难题。但是它也有自己不可忽视的缺点,希望能有后来者继续这个课题,找到能够改善的办法。

[参考文献]

[1]GB50762-2012,秸秆发电厂设计规范[S].

[2]徐晓云.生物质电厂燃料运输、贮存及输送系统的设计研究[J].电力技术,2010,19(6).

[3]文科.大型生物质电厂燃料收储运系统工程应用分析[J].广西电力,2011,34(6).

[4]陆涛.生物质电站收储运系统在农垦环境下的应用[J].可再生能源,2011,29(5).

生物质燃料的前景篇6

关键词:循环流化床;锅炉技术;发展现状

Doi:10.16640/ki.37-1222/t.2016.13.071

1概念阐述

流化床燃烧技术是一种固体燃料颗粒在炉床内经气体硫化后再进行燃烧的一种技术。当气流经过固体燃料颗粒床层时,如气流的流动曳力与固体燃料颗粒所受的浮力等于颗粒重力时,固体颗粒会出现悬浮现象。若进一步加大气流速度则会使颗粒层的高度不断增加,加快颗粒运动速度,出现沸腾现象,这时固体床料已被流态化,固体颗粒在该状态下燃烧称为流化燃烧。当气流速度较低时,在稀相区会出现高浓度的颗粒,造成炉膛出口处烟气的物料浓度过高,需要利用分离器进行物料捕集再通过回料装置送到炉膛。物料在炉膛、分离器、回料器之间进行反复循环的燃烧,即循环流化床燃烧技术。

2流化床锅炉技术的发展现状和特点

2.1循环流化床锅炉技术的发展现状

从1960年我国在第一次应用流化床锅炉技术开始,经过50多年的发展我国流化床锅炉技术发展突飞猛进。其发展过程主要经历了旧锅炉改造、新型锅炉开发、循环流化床锅炉的研制等三个阶段。刚应用流化床锅炉阶段由于经济条件的不足,所选用的燃料质量较差,在第一阶段的改造主要针对一些工厂所用的块状锅炉及链条锅炉进行改造,形成了鼓泡流化床锅炉。鼓泡流化床锅炉在实际的应用中弊端很多,最主要的弊端是煤炭燃烧利用率极低,且燃烧过程中会产生碳含量超标的飞灰,对生态环境造成了严重的危害。

第二阶段改造是在鼓泡流化床基础上进行升级,使得鼓泡流化床热效率提升了25%~30%,继而研发出新型锅炉褐煤流化床锅炉,进一步将热效率提升至80%以上。第三阶段主要是创新研制新型循环流化床锅炉,主要结合第一阶段和第二阶段两种锅炉的联合应用,这样中应用方式可以有效减低飞灰中的碳含量起到净化空气的目的,经过相关科研人员的不断改进研究,目前一些大型循环流化床锅炉被广泛应用到锅炉厂中,可以看出循环床锅炉技术的应用前景极为广泛。

2.2流化床锅炉技术的特点

2.2.1燃料的实用性较广

循环流化床锅炉采用的是循环燃烧技术,在锅炉炉膛中存有大量受炽热固体颗粒形成的床料,热容量相当大,而新加入的燃料所占比重仅是整个循环床料的5%-7%左右,新燃料加入后会随着循环迅速的被加热到着火温度达到燃烧释放热量。煤质变化对锅炉燃烧及带负荷影响较小,有助于电网的安全运行。

2.2.2燃料的应用效率较高

新型循环流化床锅炉热效率可达87%以上,能够在运行变化范围内保持较高的燃烧效率。循环硫化床锅炉使得进入炉膛内的固体燃料颗粒得以均匀充分的燃烧,对未燃烧尽的燃料颗粒会通过分离器和回料装置返回炉膛内进行燃烧,这大大降低了机械不完全燃烧造成的损失。多次燃烧的方式保证燃料充分燃尽,提高燃烧效率。

2.2.3污染物的排放量较少

基于循环流化床锅炉的低温燃烧特性,有效降低了烟气中So2的排放量,提高了脱硫效率。其中采用石灰石脱硫与煤粉炉烟气干湿法脱硫相比效果要好,还能节约脱硫成本和运行费用,循环流化床低温燃烧的性质可有效控制nox的生产,降低对Co、HCi、HF等污染物的排放。

2.2.4循环流化床锅炉调节能力较强

炉膛内大料炽热的床料使循环流化床锅炉具有良好的负荷调节能力,在25%负荷下仍能稳定燃烧,受截面风速高、易控制吸热等特点,循环流化床锅炉也具有较高的负荷调节速率,每分钟可达4%,而且当压火12小时后重新启动则在1小时内达到满负荷状态。

3循环流化床锅炉技术的发展前景

3.1超临界大型化发展

循环流化床超临界的发展方向与其独特的燃烧特点有密切的关系,循环流化床锅炉煤粉热量比常规循环流化床锅炉煤粉热量要低,因此,在这种情况之下,对水冷壁的要求就相对较高。在循环流化床锅炉的使用过程中,其所产生的固体传热系数与锅炉温度及固定浓度之间都呈反比的关系,即固体传热系数随锅炉温度或固定浓度的降低变得越来越高,然而这种关系可以对水冷壁的温度起到一定的调节和控制作用,有利于确保流化床锅炉的使用效果,推动超临界大型化流化床锅炉的发展。

3.2深度脱硝与脱硫

周所周知,循环流化床锅炉具有空气分级供给燃烧及低温燃烧的特性,该特性有助于氧氮化物的形成,相对于同期的一些锅炉可以降低氮氧含量的浓度,使得no浓度低于300mg/m3.,随着国家对锅炉污染物排放标准的要求逐渐提高,因此锅炉深度脱硝是循环流化床的重点发展方向.CFB锅炉在我国分布很广,虽然CFB锅炉数量众多但是脱硫技术却不以为然。在日益严峻的环境污染下锅炉技术的重点研发方向是解决煤炭的深度脱硫问题,根据我国公布的电厂污染排放相关标准对So2的排放标准降低到400mg/m3,为解决污染排放问题通过在循环流化床中添加石灰石进行脱硫,该方式比传统湿脱硫方式相比效果更好。但这种方法需要对灰渣进行处理,在实际应用中降低竞争力,使得对循环流化床锅炉进行深度脱硫成为主要发展目标。

3.3综合利用能源

能源综合利用是未来循环流化床锅炉技术发展的另一重要方向。主要有三点:一是以循环流化床锅炉技术为平台对一些低级能源做整合及优化利用,二是使循环流化床锅炉与其他原料及能源进行加工整合提高能源高效利用,三是对大型循环流化床锅炉燃烧后产生的灰渣进行加工利用,这是循环流化床锅炉技术发展过程中的难点问题,主要是因为采用石灰石脱硫技术不仅增加了灰渣的数量,还使得它与其他物质化学性质存在差异,难以利用常规的方法对于灰渣做统一处理。如何研究出适合循环流化床锅炉脱硫灰渣的处理方式成为目前国内外循环流化床锅炉技术研究的热点问题。

参考文献:

[1]李云飞.循环流化床锅炉技术的现状及发展前景[J].民营科技,2015(12).

生物质燃料的前景篇7

关键词:生物质,成型燃料,热水锅炉,节能研究,经济评价

概述

能源是推动经济增长的基本动力[1],能源节约则是促进能源发展的重点。生物质能源具有来源广泛,成本低廉、用能清洁等特点,特别适合于拥有丰富生物质资源的中国,通过发展生物质能源打造节能新亮点前景可观。

我国从20世纪80年代引进螺旋推进式秸秆成型机以后[2],生物质压缩成型技术已经发展得比较成熟,但是,相应的专用生物质成型燃料燃烧设备的发展相对滞后。为燃用生物质成型燃料,出现盲目将原有的燃煤燃烧设备改为生物质成型燃料燃烧设备的现象,致使锅炉燃烧效率及热效率较低,污染物排放超标。燃烧设备成为生物质能源发展链的薄弱环节。因此,根据生物质成型燃料燃烧特性设计合理的生物质成型燃料燃烧专用设备,对能源节约有着重要的意义。

生物质成型燃料热水锅炉作为燃用生物质燃料的主要设备之一,直接燃烧固体生物质颗粒燃料,主要用于家庭、宾馆、酒店、学校、医院等场所的热水、洗浴和取暖。由于燃料为生物质燃料且结构合理,此类锅炉基本达到无烟化完全燃烧的效果,排放达到环保要求,具有较好的经济、社会和环境效益。

1、生物质成型燃料

1.1生物质成型燃料的元素特性

生物质成型燃料是指通过生物质压缩成型技术将秸秆、稻壳、锯末、木屑等农作物废弃物加工成具有一定形状、密度较大的固体成型燃料。

生物质原料经挤压成型后,密度可达1.1~1.4吨/立方米,能量密度与中质煤相当,而且便于运输和贮存。在压缩过程中以物理变化为主,其元素组成及微观结构与原生物质基本相同。各种生物质成型燃料中碳含量集中在35%~42%,氢含量较低,为3.82%~5%,而氮含量不到1%,硫的含量不到0.2%,因此,造成的污染程度极低。生物质成型燃料的挥发分均在60%~70%,因此在设计燃烧设备时应重点考虑挥发分的问题[3]。

1.2生物质成型燃料的燃烧特性

生物质成型燃料经高压形成后,密度远大于原生物质,燃烧相对稳定。虽然点火温度有所升高,点火性能变差,但比煤的点火性能好。由于生物质成型燃料是经过高压而形成的块状燃料,其结构与组织特征就决定了挥发分的逸出速度与传热速度都大大降低,但与煤相比显得更为容易[4,5]。因此,生物质成型燃料的挥发分特性指数大于煤的,其燃烧特性指数较煤的大。燃烧速度适中,能够使挥发分放出的热量及时传递给受热面,使排烟热损失降低;同时挥发分燃烧所需的氧与外界扩散的氧很好的匹配,燃烧波浪较小,减少了固体与排烟热损失[6]。

2、生物质成型燃料热水炉

2.1生物质成型燃料热水炉的结构

目前我国拥有多种型号生物质成型燃料热水锅炉,按燃料品种可分为木质颗粒锅炉和秸秆颗粒锅炉,按应用场合可分为家用型和商用型。下吸式固定双层炉排热水炉是应用较广的一种结构形式,其充分考虑生物质燃料燃烧特性,由炉门、炉排、炉膛、受热面、风室、降尘室、炉墙、排汽管、烟道、烟囱等主要部分组成,结构布置如图1所示[7]。

1.水冷炉排2.上炉门3.出灰口4.炉膛5.风室6.高温气流出口7.降尘室8.后置锅筒

9.排污口10.进水口11.引风机12.烟囱13.排气管14.对流受热面15.出水口

图1下吸式固定双层炉排热水炉示意图

2.2生物质成型燃料热水炉的工作过程

一定粒径生物质成型燃料经上炉门加在炉排上,根据生物质容易着火的燃料特性,片刻就会燃烧起来,在引风机引导下进行下吸式燃烧;上炉排漏下的燃料屑和灰渣到下炉膛底部继续燃烧并燃烬,然后经出灰口排出;燃料在上炉排上燃烧后形成的烟气和部分可燃气体透过燃料层、灰渣层进入下炉膛继续燃烧,并与下炉排上燃料产生的烟气一起经出高温气流出口流向后面的降尘室和对流受热面,在充分热交换后进入烟囱排向外界。

3、节能原理

由有关燃烧理论可知,保持燃料充分燃烧的必要条件为保持足够的炉膛温度,合适的空气量及与燃料良好的混合、足够的燃烧时间和空间。因此,本文将依据生物质成型燃料本身的特性,结合燃烧理论,针对锅炉结构进行节能分析。

3.1炉排及炉膛

生物质成型燃料热水锅炉采用双层炉排结构,即在手烧炉排一定高度另加一道水冷却的钢管式炉排,其成弯管直接插入上方锅筒中,这种设计一方面增大了水冷炉排吸热面积,另一方面加快了炉排与锅筒内回水的热传递。

燃料燃烧采用下吸式燃烧方式。成型燃料由上炉门加在上炉排上进行预热、燃烧,由于风机的引导,新燃料不会直接遇到高温过热烟气,延缓了挥发分的集中析出,从而避免了炉膛温度的波动,使燃烧趋于稳定;同时,挥发分必须通过高温氧化层,与空气充分混合,在焦炭颗粒间隙中进行着火燃烧;在完成一段燃烧过程后,上炉排形成的燃料屑和灰渣漏至下炉膛并继续燃烧,直到燃烬。

采用双层炉排,实现了秸秆成型燃料的分步燃烧,缓解秸秆燃烧速度,达到燃烧需氧与供氧的匹配,使秸秆成型燃料稳定持续完全燃烧,在提高燃料利用率的同时起到了消烟除尘作用。

3.2辐射受热面

早期的部分生物质成型燃料热水锅炉设计布置不够合理,水冷炉排直接与水箱相连,使得炉膛温度过高,特别是上炉膛,致使上炉门附近炉墙墙体过热,增加了锅炉的散热损失。在不断优化设计中,水箱被上下两个锅筒所代替,上锅筒部分置于上炉膛上方,利用锅筒里的水吸收燃料燃烧在上炉膛的热量,从而增加辐射受热面积,起到降低上炉膛温度的目的,从而减少锅炉的散热损失,提高热效率。

3.3对流受热面

生物质成型燃料热水锅炉的对流受热面分为两个部分:降尘对流受热面和降温受热面。对流受热面极易发生以下现象:高温烟气与锅筒中的水换热不均,从而引起热水部分出现沸腾,增加锅炉运行的不稳定因素;受整体外形约束,烟道长度设计偏短,导致烟气与锅筒里的水换热不够充分,使得排烟温度过高,增加了锅炉的排烟热损失。为避免上述问题出现,降温对流受热面与降尘对流受热面常常采取分开布置;降温换热面置于上锅筒内,采用烟管并联设计,增加烟气与锅筒中水的热交换,降低排烟温度,提高燃烧效率;降尘则利用锅炉后部的下锅筒及管路引起的烟气通道面积的变化达到效果。

3.4炉门设计

目前应用较多的炉门设计为双炉门。上炉门常开,作为投燃料与供应空气之用;下炉门用于清除灰渣及供给少量空气,正常运行时微开,在清渣时打开;一方面保证了燃烧所需条件,另一方面减少了由于炉门多而造成的散热损失。

4、技术经济评价

4.1技术评价

研究对象为生物质成型燃料热水锅炉,本文采用与目前应用最广的燃煤锅炉相比较的方法,来分析它们各自的优劣。评价针对锅炉的节能环保性能,主要指标有热效率、燃烧效率、出水量和污染物的排放量(主要是排烟处的nox、Co、So2和灰尘的含量),并与国家相关标准比较。

生物质成型燃料热水锅炉与燃煤锅炉的性能指标比较如表1所示[8,9]。

从表1中的数据对比可知,生物质成型燃料热水锅炉在性能上具有一定优势。节能方面,锅炉热效率和燃烧效率均高于传统燃煤锅炉,远远超过国家标准;废气排放方面,烟中nox、Co、So2及烟尘含量均低于燃煤锅炉,符合使用清洁能源的要求。

4.2经济评价

经济性评价以设备运行费用为指标,将生物质成型燃料热水锅炉与燃煤锅炉、燃油锅炉、天燃气锅炉、电锅炉、空气源热水器进行比较。各热水设备的效率及相应热源(燃料)热值、单价详见表2。

运行费用计算公式如下:

(1)

以加热1t水为基准,温度从20℃升至90℃(温升70℃),此时需要热量70000kcal。根据式(1)求得各设备在此负荷下的运行费用列于表2,可知生物质成型燃料热水锅炉在运行费用上相对较低,但是就目前而言,其固定资产投入费较同类型的其它锅炉设备要高。不过随着化石能源价格的上涨和国家对环保的要求的提高,生物质成型燃料热水锅炉在经济效益上将会越来越具有优势。

通过技术经济评价,生物质成型燃料热水锅炉在技术上是可行的,经济上是合理的。该锅炉用生物质成型块做燃料,一方面为生物质废料找到了有效的利用途径,节约化石能源,另一方面染物排放量低于同类型的燃煤锅炉,因此该锅炉具有良好的社会和环保效益。

5、结论

(1)生物质成型燃料热水锅炉依据生物质成型燃料本身的特性,结合燃烧理论,在炉排及炉膛、辐射与对流受热面、炉门等结构设计上充分挖掘节能潜力。锅炉燃烧效率可达94.84%,热效率为78.2%~81.25%。

(2)生物质成型燃料热水锅炉在技术性能上具有一定优势。节能方面,锅炉热效率和燃烧效率均高于传统燃煤锅炉,远远超过国家标准;废气排放方面,烟中nox、Co、So2及烟尘含量均低于燃煤锅炉,符合清洁能源的要求。

(3)生物质成型燃料热水锅炉在运行费用上较其它类型设备要低,尽管目前其固定资产投入费相对较高。随着节能环保要求的提高,此类锅炉在经济效益上将会越来越具有优势。

参考文献:

[1]V.斯密尔,w.e.诺兰德.发展中国家的能源问题[m].北京:农业出版社,1983

[2]刘胜勇,赵迎芳,张百良.生物质成型燃料燃烧理论分析[J].能源研究与利用,2002(6):26-28

[3]阴秀丽,吴创之,徐冰娥等.生物质气化对减少Co2排放的作用[J].太阳能学报,2000,21(1):40-44

[4]马孝琴.生物质(秸秆)成型燃料燃烧动力特性及液压秸秆成型及改进设计研究[D].郑州:河南农业大学,2002

[5]马孝琴.秸秆着火及燃烧特性的实验研究[J].河南职业技术师范学院学报,2002,16(2):69-73

[6]孙学信.燃煤锅炉燃烧试验技术与方法[m].北京:中国电力出版社,2002

[7]刘胜勇.生物质(秸秆)成型燃料燃烧设备研制及实验研究[D].郑州:河南农业大学,2003:94-99

生物质燃料的前景篇8

非粮作物作为农产品加工原料开发取得成功,玉米籽粒不再是赖氨酸、化工醇的唯一原料,秸秆、糖蜜等废弃物都可作为原料,不仅增加了原料渠道,探索了破解未来粮食安全对玉米加工业发展制约难题的途径。大成集团经过3年多的科研攻关,自主研制用玉米秸秆和非粮作物生产化工醇的新技术。采用这项技术,两吨玉米秸秆即可生产1吨多糖,只要是糖就可作为制造化工醇的原料。凡是含糖的生物质如木薯以及甘蔗、甜菜榨糖剩下的残渣,都可制造化工醇。目前大成集团已掌握了用多样化的植物原料,生产植物化工醇工艺技术的全部专利,实现了农产品加工原料的多样化。

2.秸秆发电成效明显

农作物秸秆是一种重要的生物质能源,具有资源量大、可再生、含硫量低和作为能源利用时二氧化碳零排放等优点,其平均含硫量只有3.8‰,远低于燃煤的1%平均含硫量,对缓解国家能源紧张、保障国家能源安全并实现清洁环保都具有重要的战略意义。我省辽源、梅河口等市秸秆发电项目均已启动投产。

数据表明,如果推动1000万吨玉米秸秆转为固体燃料,涉及秸秆资源收集、加工、燃具制造和储运服务四大领域,经济效益上,每年创造70亿元产值,拉动直接投资240亿元,间接投资700亿元,实现500万吨标煤的化石燃料替代,通过CDm项目按目前的价格可以获得大约1.5亿欧元的减排效益。社会效益上,可带动就业数百万人,为农村剩余劳动力提供了就业机会。环境效益上,可减排二氧化碳1800万吨。而我省可用于加工转化的玉米秸秆近2000万吨,可以说资源极其丰富,效益潜力巨大。

3.稻壳提炼碳棒前景广阔

利用水稻加工废弃物(稻壳)生产稻壳碳棒,是将一定粒度和含水率的生物质原料,通过压块成型机挤压成块状燃料。燃烧过程中,基本不排渣,无烟尘和二氧化硫等有害气体,不污染环境。吉林市永昌米业有限责任公司稻米加工年销售收入可达5950万元,带动基地绿色水稻订单种植面积2000公顷,直接带动农户2576户,直接增加农民收入241万元。年可加工生产稻壳5000吨,可替代同等发热量燃煤4000吨(按4000大卡计算),增加收入350万元,增加净利润120万元。从发展低碳经济、节约能源的角度,做到了废弃资源的合理再利用,对增加税收和促进地方经济的发展起到了积极的作用。

4.米糠炼油利润丰厚

水稻加工过程中产生8%~10%的米糠,一般企业都是用作饲料,通过对米糠深加工,生产出米糠油(16%~18%)和米糠粕(80%~83%),米糠油是世界上最好的保健油品之一,目前精炼成品油价格2万元/吨左右。益海嘉里(白城)粮油食品加工业有限公司,于2008年落户白城工业园区,占地面积23万平方米,目前累计已经完成投资2.5亿元,在加工稻米的基础上,建设米糠油生产线1条,日加工米糠300吨,年加工米糠总量10万吨。该公司年产米糠2.1万吨,可生产出米糠油0.34万吨,可增加收入2000万元。

5.生物质颗粒燃料开发前景广阔

以木材加工剩余物“锯末”为主要原料生产颗粒燃料,其排尘浓度小于20mg/m3、So2排放为零,是附加值较高的新型洁净生物质燃料。抚松县泉阳永财木业有限公司针对木材储积量逐年减少、原料短缺而导致开工不足的问题,及时调整优化产业结构,与吉林省华光生态工程技术研究所共同研制开发生物质颗粒燃料,启动建设在常温常压下软化的木质素、提高单位产品热值为主要技术的林木剩余物资源转化项目。项目达产后可年产1.25万吨生物质颗粒燃料。该项目的实施可充分利用当地的林业资源,实现资源深度转换,促进环境建设与经济建设的协调发展,具有良好的经济效益、生态效益和社会效益。

生物质燃料的前景篇9

1.能源农业的任务

能源农业就是以生产生物质能源为目的的农业。生物质能源燃烧对环境造成的污染比矿物能源少,比核能安全,比风能、地热使用广泛,被誉为“绿色能源”。开发生物质能源,可有效延长地球上石油资源的使用时间。在未来世界里,沼气可能是天然气的替代物,酒精可能是汽油的替代物。我国非常重视生物质能源的发展,制定了明确的发展目标,预计未来几年,乙醇的生产能力将达到年产1000万吨。由于生物质能源需要大量的农作物为原料,因此生物能源的前端是能源农业。生物能源的大发展,必将改变中国农业的发展方向。因此,能源农业的任务是以生物质能源为主要开发对象,以生化转化、物化转换等方式利用生物能源,从而达到从“黑色能源”向“绿色能源”转变的目的。

2.能源农业的发展方向

2.1大力发展能源作物能源作物是指以提供燃料油为目的而栽培的植物,可通过生化转化等方法制造酒精和生物柴油。如以生产酒精为目的的玉米、甘蔗、甜高粱、甘薯、木薯等;以生产生物柴油为目的的油料作物,如小桐子、油菜、棉花等。据测算,每吨以玉米、甘蔗等能源作物制造的燃料乙醇可以替代1吨燃料油,同时还能提高燃料的燃烧和动力性能。但是我国地少人多,用玉米作为原料大量生产燃料乙醇在我国还不现实。因此,培育具有高光合作用转化率、综合利用价值大的高产能源作物,是我国发展能源农业的最佳途径。

2.2充分发展利用转基因技术转基因技术应用在食物方面要求标识受到很大限制,而在能源作物上则不受基因标识的限制,具有很大的发展空间。因此,转基因技术在培育能源作物、发展能源农业方面将大有作为。针对我国人多地少的特点,只能在不与粮食争地的前提下发展能源农业。因此,利用转基因技术培育新品种,开发耐盐、抗旱、高产、高蓄能的能源植物是能源农业的发展方向。目前我国的转基因技术研究已日趋成熟,具备了在能源农业上大显身手的能力。

3.我国发展能源农业的意义

大自然通过光合作用产生大量生物质,但是目前世界上生物质的利用率还不到7%,要真正取代石化能源还需要改进技术,降低生产成本,大力发展能源农业。生物质液化燃料对于欧洲许多国家来说,多局限于国土面积的狭小,发展前景有限。而对于中国这样幅员辽阔的大国来说,只要充分利用现有农林业用地和宜耕土地后备资源,合理开发宜林荒山荒地和易改造的盐碱化耕地,就有发展能源农业的广阔前景。

生物质燃料的前景篇10

关键词:环保型pCB无卤素pCB无铅表面处理

在大力提倡环保的时代,pCB材料及pCB表面处理是否符合环保要求,是电子制造产业重视的问题了。事实上pCB行业正在开发推广环保pCB材料的使用及pCB表面无铅处理工艺。下面我对环保pCB材料及pCB表面无铅处理谈谈看法。

一、环保型pCB材料

pCB行业应重视对环保材料的开发应用,对三废处理的控制,以及环保支撑的研究。目前的研究主要集中在以下三个方面:1.环保基材和半固化片面性的研究;2.环保化进程和表面处理的研究;3.针对无铅要求而进行耐高温材料和表面处理的研究。

出于安全的考虑,传统的pCB材料在制造时必须在环氧树脂中加入阻燃剂,加入的方式有掺合型与反应型两种。加入掺合型阻燃剂的材料虽然加工容易、成本较低,但因其主要由金属氧化物或氢氧化物等组成,其化合物具有低发烟及低毒性的特点。因此,掺合型的方式对材料本身性质的影响较大且会污染pCB的后制程。反应型的阻燃材料利用化学反应将阻燃剂与环氧树脂以化学键的方式组合起来,具有较持久的耐热和较佳的阻燃效果。一般采用卤素系阻燃剂,其具有较好的阻燃性能和较低的成本,以及较成熟制造工艺,但其在500―700度环境中焚烧时会产生对环境有害的物质,近来随着对环保的考虑,对pCB提出了无卤化要求。

目前,无卤素材料的开发仍属反应型阻燃材料,以磷系和氮系为主。氮磷系以聚磷酸脂胺为主,主要通过捕捉氢自由基和氢氧自由基,形成不燃性或安全性气体,从而延迟或阻止燃烧的进一步进行,达到阻燃的目的。

与常规材料相比,无卤素提高了pCB的热稳定性和可靠性,提高了介电常数,以及绝缘性能,同时也降低了材料的流动性和结合力,压合后刚性高、硬度大、脆性强,其特性更加适合环保要求、适合阻抗板的制作,但从加工性能上讲,由于其基板铜箔剥离强度低,易在蚀刻过程产生蚀刻不净的现象,需采取相关改善工艺应对。

无卤素pCB制作流程与常规pCB制作流程的主要差异有以下四个方面:1.图形转移中工作底片的调整;2.层压操作视窗的范围和控制方法;3.钻孔工艺参数的调整;4.阻焊制作中阻焊剂的调整与印制参数的调整。

无卤素材料将有助于减少有害物质对人类的危害,有利于环保和人们生命财产安全,对于其缺点可随着制造技术的日益完善和成熟在制造工艺上加以调整和革新,在环保时代,无卤材料将在电子制造业迅速得到推广应用。

二、pCB无铅表面处理

传统的表面处理HaSL(热风整平即喷锡铅)已经逐步被无铅表面处理取代,以适应环保的要求。无铅表面处理主要有oSp、eniG、化ag、化Sn,等等。

opS是organicSolderabilitypreservativives的简称,为有机保焊膜,又称为护铜剂。它的原理是有机物与铜面形成一种有机鳌合物,从而防止焊接前铜面被氧化。这种方式由于存放时间短和难重工而少被推广应用。

eniG就是化镍金,是通过置换反应在铜的表面置换成化学镍层后再在镍层表面置换一层薄金,从而防止镍层及铜层被氧化,并增加可焊性。此工艺已较成熟。其流程为:清洁微蚀酸洗酸浸活化化镍化金金回收后处理。其优点是存放时间长、可焊性高,缺点是成本较高。

化ag也是通过在有机添加剂下的银铜置换反应形成保护膜的,由于沉镀层在空气中容易出现变黄、发黑氧化等变色问题制约了化银的利用。可在化银层增加一道抗氧化工序加以改善。虽然银也是贵重金属,但由于膜厚较低,成本相对也较低。

化Sn由于使用的高温槽液只能维持一周的使用时间,虽然加入硫脲可延长使用寿命,但硫脲是一种致癌物,所以此法不佳。

从成本考虑eniG>化Sn>化ag>opS。

从可焊性和存放时间考虑eniG>化ag>化Sn>opS。综合因素考虑以化ag方案较好,化ag大有前景。

展望pCB行业前景,只有符合环保要求的材料和制造工艺才有生存发展的空间。我们期待更多的既环保又先进的pCB材料和制作工艺的诞生,推动电子制造业的不断完善发展,使电子产品都打上环保的标志。

参考文献:

[1]何坚明.2006中国pCB产业新景象[J].印制电路资讯,2006,(1).

[2]杨宏强.常见pCB表面处理工艺的特点、用途和发展趋势[J].印制电路资讯,2006,(6).

[3]杨维生.06年印制电路板标准及质量保障技术[m].深圳:国家电子学会生产技术出版,2006.3.