首页范文量子力学基本概念十篇量子力学基本概念十篇

量子力学基本概念十篇

发布时间:2024-04-25 19:43:47

量子力学基本概念篇1

关键词:化学概念教学质量

一、明确概念的涵义,抓住概念的本质的思维方法

明确概念的涵义,就是要特别注意它的准确性,例如分子的概念:“分子是保持物质化学性质的一种微粒。”如说成“组成物质的一种微粒”等就不准确。教学时应多设问,多向为什么,让学生多动脑筋,才能把概念弄清楚,准确把握概念的涵义。

抓住概念的本质,就是要讲清这个概念区别于其它概念而独立存在的内在特征,即概念本身的特殊性,如元素和单质,元素是核电荷数相同的一类原子的总称,基本微粒是原子;单质是物质,微观上看是同种元素的原子构成的纯净物,宏观上看是由同种元素组成的纯净物,教学中必须抓住概念的这种本质区别。[1]

二、从宏观表象深入微观实质的认识方法

初中学生对“摸不着,看不见”的微观粒子感到很难理解,更难将微观粒子的运动与物质的宏观现象联系起来。教师应引导学生观察、分析实验现象,使学生在感知化学知识的基础上,经过思维加工建立化学概念。例如,为了引出原子概念,证明分子的可分性,可在教学中增加电解水的演示实验。在实验中,学生看到两电极上产生气泡,用带火星的木条检验正极产生的气体,看到其复燃,点燃负极产生的气体,看到气体燃烧时产生淡蓝色火焰。然后引导学生思考:这些现象说明了什么问题?教师结合图像进行直观分析:水分子可以再分,水分子是由更小的微粒子构成的,这些微粒在化学变化中不能再分,是化学变化中的最小微粒,我们称这些微粒为原子。最后进行总结:水电解得到氧气和氢气两种物质,氧分子由氧原子构成,氢分子由氢原子构成,所以水分子是由氧原子和氢原子构成的。这样可以使学生把宏观物质和微观粒子――分子、原子联系起来,在脑子里形成微观粒子的概念。

三、要注意分析概念间的相互联系

初中化学虽然基本概念较多,又分散在不同章节,给教学带来一定困难,但这些概念并不是孤立的,它们之间有着内在的联系,在教学中要善于总结、归纳各部分概念的体系和结构,使之系统化、条理化。这样不但有利于学生对概念的理解和掌握,而且有利于提高学生灵活运用化学基本概念和化学基础知识的能力。[2]

例如:有关物质结构的概念系统

系统中包含着丰富的知识内容:

(1)分子、原子、离子都可以构成物质(共同点),但由分子构成的物质有单质和化合物;由原子直接构成的物质有单质,由离子构成的物质只有化合物(不同点)。

(2)分子、原子、离子之间可以相互转变(联系)。

(3)原子是由原子核和核外电子构成的,原子核是由质子和中子构成的……

四、从不同角度去分析理解同一个概念

分别从宏观、微观的不同角度去分析、理解同一个概念,往往能使学生获得一种“立体感觉”。比如,对物理变化和化学变化两个概念的理解:从宏观角度看,有新物质生成的变化就是化学变化,而没有生成其他物质的变化是物理变化;从微观角度理解,分子本身发生改变的是化学变化,而分子本身并没有变化,只是分子间的间隔发生变化的是物理变化。这样就能更好地区分物理变化和化学变化两个概念。又如,对质量守恒的理解:从宏观角度看,参加化学反应的各物质的质量总和等于反应后生成的各物质的质量总和;从微观角度看,化学变化前后原子的种类、原子数目、原子质量都没有改变。由此而获得质量守恒概念的“立体感觉”,能使学生更深刻、更全面地理解质量守恒定律。

五、要注意区分概念

在化学基本概念中,相似而又有区别的概念很多,要加以比较区分。有比较才有鉴别,不同的概念也正是由于相互比较而存在的。对概念的应用范围和条件,在教学中也应予以重视,学习中许多错误往往发生在概念的应用范围不清和条件掌握不准确上。

例如:为帮助学生区分原子和分子的概念,比较如下。

(1)原子与分子相同点:

一同种微粒(原子或分子)大小、质量都相同,微粒间有一定的间隔,微粒都在不停

地运动。

(2)原子与分子间区别:

原子:(a)化学变化中的最小微粒;(b)在化学反应中不可再分。

分子:(a)是保持物质化学性质的一种微粒;(b)在化学反应中可分。

(3)原子与分子的联系

分子由原子构成,原子由原子核和核外电子构成。分子比构成它的原子大。4要抓好重点概念的教学

化学基本概念和原理是学习化学知识的基础,它对学习元素化合物的知识、化学基本实验和化学基本计算具有重要的指导作用。为了使学生能准确、系统地掌握好化学基本概念,在教学中必须注意突出重点,在重点概念的理解和掌握上多下功夫。如:分子、原子、元素、单质、化合物、氧化物、酸、碱、盐、化学变化、四种反应类型、金属活动顺序的应用、质量守恒定律、溶液、饱和溶液、溶解度、溶质的质量分数等概念,在教学中必须下大力气,从不同角度交待清楚,以利学生准确、全面掌握知识。[3]

六、在教学中要逐步培养学生运用化学基本概念和原理的能力

学习和掌握基本概念的目的,在于运用概念和原理解释及说明一些重要的化学事实、现象和变化。学生运用概念的过程,就是加深理解和掌握概念的过程,也是对所学知识进一步强化和记忆的过程,理解和运用二者相结合,使知识和能力提高到新水平。

实践证明,抓住以上六点进行教学,可使学生感到化学是“有血有肉”的,而不是由枯燥、抽象、空洞的理论堆砌而成的,从而能激发学生学习化学的兴趣和主动性,故能大大提高化学教学质量。

参考文献:

[1]宋国荣.如何采取多种措施,提稿初中化学课堂效率[J]。中国校外教育2013(S2)

量子力学基本概念篇2

近年来,许多人著书立说,认为当代物理学与东方哲学(包括中国与印度)之间存在着某种相似性。在本文中,作者将着重讨论它与中国哲学,特别是易哲学的共同点。易哲学主要源出于《易传》,该书是约在公元前3世纪编成的,传统的看法是由儒家编纂的,但从它的内容来看应该推测是由道家编纂的。

简单地把量子力学与易哲学做直接的类比,只能给出它们之间相同性的肤浅描述。为了把这种无定形的直觉变成为一种有价值的、具有透彻性的思想,必须要在本体论的层面上对二者进行深入的分析比较。本文作者试图在这一工作的基础上,融合量子力学与易哲学这两方面的思想成果,建立起一个崭新的哲学观,这一哲学观将会较好地对量子力学做出哲学上的诠释,同时也包含对易经哲学中的主要哲学思想进行科学化与形式化的转变。

2量子力学的本体论表述

2.1玻尔的哲学观

从经典物理学到量子力学,这一过渡对物理学观念产生了深远的影响。现在人们已清楚地认识到,经典物理学的原理仅适用于有限的范围,而且只是一种近似。经典力学的标准哲学诠释混淆了物理的现象与本体论的概念,并且与量子力学是不相容的。

尼尔斯·玻尔是在量子论出现时期的一位偏好哲学的著名物理学家。他对量子理论引起的哲学问题进行过深刻思考。玻尔关于量子力学的哲学观既深刻又有局限性,这源于他的方法学。他的方法学的中心部分是关于物理学概念体系的分析。他尖锐地指出,西方本体论的概念是对经验现象产生的概念体系的不适当的外推。玻尔的哲学观的局限在于,他的方法学过份强调了物理学中的经验基础而忽视了他分析中暴露出的量子力学含有的思想体系的内涵。

在他著名的科莫演讲中,玻尔陈述了量子论的基础:或许可以用所谓“量子假设”来表述,即一个基本的不连续性或更确切地说是分立性,存在于任何原子过程中。这对经典理论来说是完全陌生的,这一分界以普朗克的量子运动为标志。据此,他做出以下结论:量子假设表明,有关原子现象的任何观察,都不可避免地包含观察者与观察媒介的相互作用。

2.2相互作用原理

当然,玻尔自己很小心地避开了本体论的话题,也拒绝提出任何本体的假设,因为这样的假设违背了他的方法论的原则。虽然如此,因为上面说过量子力学包涵着新的思想材料,我们可以看见他的立场很含蓄地赞成了本体实体的存在。这是因为他的立场既要把观察描述成一种相互作用又要把在不同实验条件下对同一被观察物得出的现象的描述,作为对这一被观察物的互补性的信息。

需要一种新的本体论的原则,来描述本体与现象之间的关系。这个原则可取之于两个来源,一个是玻尔对观察与相互作用的观念;另一个是假设现象是本体与观测仪器相互作用的结果。这导致了相互作用原理:

现象是由于本体与观测媒介相互作用的结果。

相互作用原理将全面的现实分为两个领域:一个领域是本体现实,它与实验媒介相互作用,这一现实是独立存在于相互作用之外的;另一领域是指相互作用的结果,这是被称为现象的现实,相互作用使得这一现实可以被实验所感觉到。从这一理解出发,本体论的中心问题是探索这一本体现实的性质。

2.3通向本体论的三个步骤

建立量子力学的本体论哲学体系可以分为三个步骤。第一个步骤是给出这一概念的形式化的数学结构。薛定谔方程中的波函数概念是量子力学的中心形式化概念。玻恩的几率诠释符合了使波包与实验统一起来的需求,但是创造一个本体论的独立实在的概念需要完全不同的方法。由于薛定谔方程可以用来描述观测之间的真实变化过程,而符合薛氏方程的波包的量子力学的干涉有物质的结果,所以本文作者认为,薛氏方程所描述的波包概念是一个比较合适的用以建立本体论概念的形式化概念。

第二步,我们必须考虑,假如有实体满足该描述,为了真正的存在,它们还要满足什么样的其他条件。在目前情形下,我们必须考虑波包应具有怎样的本体性的性质才能得以存在,这即是说一个单独的波包不能做一个本体实体,我们必须考虑要加上怎样更多的性质去构成一个完备的本体实体。这一考虑的结果将会给波包一个实在性的诠释。具有波包的数学结构的真实存在,将与我们通常所认为的自然实体有着截然的不同。这一诠释需要一个全新的概念体系的框架。因此,诠释的问题,便是在波包的数学结构基础上,创造一个全新的范畴体系,来表达一个合适的本体实体概念。这一概念必须承认,实体在孤立时是非局域性的,而当与一个实验媒介发生系列相互作用后,便会成为局域的。根据这一要求,本文作者提出一个新的概念就是“双波包”的概念。双波包由正弦元波包与相调节子波包构成。这些概念将在下一章节里加以阐明。

第三步,是要建立一个普遍的哲学体系,使我们能够理解现实的一切,它将包含而又超出我们一开始所讨论的所有科学问题。这将导致对精神一类性质的问题的哲学探索,以及对双波包体系的哲学上的思考。后一问题是本文的主要重点,并将在“3”讨论,出于适当的动机,将在“2.5”对精神和意识问题做出一个粗略的描述。

2.4双波包

本体实体必须是某种真实波包,从而波包的形式体系可以用来描述它。构成这一波包的波可以认为是一组单色正弦元波。这样的波包是量子力学的群包的本体论的诠释。它所组成的各个单色正弦波不是真正的本体实体,但是为了构成真实的波包,它们必须具有一种似实非实的存在性质。它们没有现象上的存在,是因为它们自己本身不能有量子力学的干涉从而产生局域化而被观测到。可以说本体实体的原料不是正弦波而是正弦波之间的量子力学的干涉。

构成这波包的波,必然有很复杂的相互关联,这样波与波之间的干涉才能建立并保持下来。进一步,它们还必须具有一些特别的性质来造成它们的粒子现象。如果粒子现象是由于波包里的波之间的干涉被重新调节而形成的一个极限小结构,那么,这就可以用相关联的重新调节来解释群包的塌缩,就是粒子的出现。所以,在波包形成与塌缩时,便会通过相关联来建立或调节构成波之间的干涉。

在量子力学中,没有任何力可以在波包中调节一个单独的元波。所有的量子力学的力都表现于不可分割的基本粒子之间,不表现于一个基本粒子之内。因此,本文作者认为本体性的干涉实际上是通过一种比量子力学的力更复杂精巧的调节来实现。借鉴电磁相互作用与强相互作用中的光子与胶子概念,可以把这些干涉相应地解释为一种本体性的实体,即所谓的相调节子,因为它调节正弦元波的相位。

为构成一个波包,一大群的相调节子必须一齐配合起作用。所以,我们提出这大群调制子构成一个调节波包。没有相调节子来调节一群正弦元波,这群正弦元波就不能构成一个波包。因此正弦波包的存在依靠着相调节子波包的作用。所以本文作者认为,一个基本的本体实体,是由一对双波包构成的,它包含密切相关的正弦元波包与相调节子波包。双波包概念是建立在形式化量子理论基础上的本体论的中心概念。

2.5精神与意识

相互作用原理和双波包的本体论提供了一个基础,可以用来建立一个关于意识的解释性体系,而这一点用其他的量子论诠释是无法达到的。首先,我们利用相互作用原理把意识经验解释为本体现实与经验媒介、我们的感官相互作用的结果。这样的相互作用的概念是由相调制波包的相互作用的概念扩展而来的。其次,双波包的本体论让我们可以假定相互作用是相调节子波包,而非量子力学的群波包。因此,意识是本体实体的相调节子与人类的器官的相互作用结果。意识现象与它的相应本体现实分子的关系,与物质实体与它的相应本体现实分子的关系类似。当然,在进入相互作用中的本体现实分子的性质必须被诠释为如下两种不同的情形:进入物理作用的是正弦元波包,它是量子力学的群波包,可用薛定谔方程描述;有意识现象做结果的是相调节子波包,它不能用量子力学来描述。但是只是通过量子力学概念体系就能够发挥这个概念。在这两个范围内相互作用必然有性质上的不同。在物质的方面相互作用是波包的塌缩。在意识的方面,可以类似地称之为相调节子波包的塌缩。可是由于我们没有一个关于相调节子波包的决定性概念,这样说必然依旧相对地不明朗。无论怎样,这种概念在区分相互作用的来源与结果上有着重要的用处,正像在量子力学中一样。正如物质实体是现象,意识也是现象。它是本体实体与人类的器官的相互作用的结果,就像量子力学的粒子是本体实体与观察媒介的相互作用的结果一样。

现在,我们有了一个关于精神哲学的全新的概念体系。我们可以称其最高范畴为相调节子领域中的“心”或“灵”,它相应于传统上西方哲学对心与灵的理解。但我们必须注意,传统的解释有严重缺陷,因为人们把关于心和灵的本体的因素与意识的现象的因素混淆在一块了。现象的因素必须从本体论概念中抽出来,归到现象性的自我,即意识。心或灵概念中剩下的本体论的内容应该被诠释为一个相调节子波包系统。进一步地,相调节子除在解释量子力学的现实诠释上有重要作用外,它既给心以自然诠释也使心的概念自然化,并将它扩大到整个自然界。

总之,量子力学的双波包本体论使本体实体与现象实体之间有了本质上的区分。现象实体是本体实体与经验媒介相互作用的结果。本体实体与现象实体,都各有两个领域。现象实体的两个领域是意识和物质实体。本体实体的两个领域是物质的正弦元波包和非物质的相调节子波包。

3中国的本体论与量子力学

3.1双波包的本体论与西方本体论概念

现在我们必须把我们的注意力转向建立一个解释现实的普遍的哲学概念体系。纵观西方哲学概念,没有类似双波包理论的。西方哲学有二元论的传统,其中以笛卡尔为最。但是二元论与这里提到的双波包的二元性有根本上的不同。在二元论中,物质与精神两个领域是截然隔离的。这就是说,物质与精神这两个领域中的每一个别的实体,都有着独立的本体的存在。但是在双波包理论中,正弦元波包与相调节子波包只能互相关联地存在以构成独立存在的真实波包。在这里要强调,由逻辑观点来说正弦元波包与调节子波包是先于存在的,但它们本身不是这一本体论的真实存在,仅仅是构成真实存在的某种前提性的东西。

3.2双波包本体论与阴阳

笛卡尔的二元论深刻地影响了现代西方哲学和科学,但双波包本体论与它在结构上是完全不相同的。与双波包类似的本体论却主导了中国哲学近2000年,这就是易哲学。这种哲学根源于阴阳的原理;阴阳是《易经》中有关变化过程的东西。在阴阳及其变化的观念基础上形成了《易传》的宇宙论体系,这是此后所有哲学的基础,也是此后大多数儒家的本体论的基础。

阴阳的概念,来源于对自然现象中呈现的对立两方面的观察,并认为这是自然界存在与运行的基本动力。例如,男人与女人的对立被认为是产生生命与维系自然物种的力量。光与暗、热与冷代表循环变化的动力。当《易经》演变成为一个哲学体系时,阴与阳便成为本体论上的二元性的宇宙的原则。

这就是双波包与阴阳之间的类同之处。纯的阴与阳可以被认为是正弦元波与相调节子波。正弦元波与相调节子波单独地并不构成真实的存在,只有它们的混合交织才能构成波包,波包又构成双波包,就是构成真实实体。这十分近似于对阴阳的本体论解释的原理。阴和阳并不单独构成真实世界。自然中没有任何东西是纯阴或纯阳的。所有存在之物都是阴与阳相互交织的杂交体。本体现实是由两个不同的似实非实的领域组成,这两个领域的成分本身又不是真实的实体。这一命题是两者比拟的核心;但这抽象命题在两种不同的体系中却有着两种不同的具体内容。

3.3复杂性的两个层次

在《易经》体系里,八卦(经卦)有三爻,六十四卦(别卦)有六爻,别卦由两经卦组成,这是另外一项类比的根据。在双波包本体论与《易经》哲学中,真实存在的基本成分都是由两个部分组成:一个双波包包含了正弦元波包和相调节子波包,而一个有六爻的别卦是由二个有三爻的经卦组成的。这便产生了两个层次上的现象的复杂性,在《易经》中这一点被十分清楚地阐明了。把这一点应用到双波包情形上,对于一个深刻的哲学问题会产生十分有趣的观点。

《易经》把现实组成描述为两个阶段,其中基本的具体物象是由有三爻的经卦结构揭示出的,而事件以及关于变化运动的规律是由有六爻的别卦的结构揭示出的。《易传·系辞传(下)》说:“八卦成列,象在其中矣。因而重之,爻在其中矣。”

从双波包实在论的观点看,不同程度的复杂性的区分是十分有意义的。但是把这种区分看成是现象与变化之间的不同是错误的。最好是区分两个不同层次的复杂性的现象的领域,每一个层次又包含了相应的变化规则。

在20世纪,好多西方哲学家试图将意识现象归并到物质现象,两个层次的复杂性对这个归并方案导致了一个既新颖又深刻的观点。这一方案对西方的唯物论哲学家们一直是一个难于应付的问题。“现象”这个概念,在普通语言中,比在经典物理学中,是丰富多了。现象的本质在物理上处理为位置与动量这些东西,但是对某种层次的现象的彻底性的分析,并不适合去解释有目的的行为与主观经验这类现象。

使复杂性的层次性原理适应双波包理论的概念体系便会产生以下的解释。正弦元波包与物理中的物质联系在一起,相调节子波包与意识联系在一起。物理学的原理仅仅是作用在整个现象范围的一部分;而作用在这个有限的物理范围的原理比之作用在整个现象现实的原理要有限得多。任何包含人在内的变化必须包含相调节子对正弦元波的影响。这表明,物理只是现象现实的一部分的描述,在目的性可以被概括进描述之前需要引伸到相调节子范围。

双波包理论与易哲学的两种复杂性的二层次的原理有两个重要不同的地方。第一,组成《易经》的六爻别卦与两个三爻的经卦的性质是一样的,但是,组成双波包的两个成分是不同的,互补性的。第二,在《易经》的体系中阴阳的互相交织组成三爻经卦,经卦是独立的真正的现象,阴阳是现象界的原始原料,可是,在双波包理论中,正弦元波包与相调节子波包不是真正现象,只是现象界的原始原料,现象界是由它们的交织构成的。

3.4关于自然概念的含义

自然的含义在西方科学中与在易哲学中是不同的,在西方物理学中,自然是与能测量的自然属性联系在一起的,例如位置与动量,所以意识与目的的范畴被完全排斥在外。西方方法学的优点在于分离测量过程,这使得科学得以诞生。它的缺点是丢弃了现实中的一个十分重要的部分。

孕育了科学的哲学背景现在却成了它的绊脚石,因为它使科学与一个包括意识在内的全面世界不能相容。量子力学把经典物理的物质的本体论粉碎了。我们应当更进一步,希望能在量子力学的体系中发掘出能包含目的性在内的关于自然的观念。《易经》的一种方法做到了这一点,难以为西方的想象力所接受。双波包的本体论也做到了这一点,它是以科学哲学的理论方式来叙述的。

基于这一观点,可以得出结论:自然的概念应该包含目的性。物理学不包含它的原因在于它是限制于双波包的正弦波包的范围。双波包的哲学体系的相调节子波包却潜在的蕴涵了目的性的因素。这样自然化目的性的结果相似于《易经》的自然概念。可是在易经的体系中,三爻的经卦跟六爻的别卦都有目的性,不过是两个层次的。物理学的伟大成就证明自然界有一个非目的性的层次。这表明,在这个方面双波包理论的二层次的结构比《易经》优越。

3.5道的三个层面

关于自然的广义概念中,易经哲学强调一种整体性的原理,其中一个抽象的单一的自然的规则“道”可以在自然界中不同的实体与结构中有不同的表现。《易传·说卦》中说:“是以立天之道,曰阴与阳。立地之道,曰柔与刚。立人之道,曰仁与义。”道的三个自然层面可以解释为,一个统一的规则概括了物理、生命和目的性过程。这一点与西方的观念截然不同。西方哲学家对此进退两难:要么把目的性现象看成是物理过程(唯物主义);要么把物理过程看成是目的性现象(唯心主义);要么认为二者是完全地不相容(二元论)。为了把这一统一的原理引进现代的西方科学框架中,需要对非决定论与目的性做出新的解释,这将给予它们一个共同的基础核心。

3.6非决定论

双波包的本体理论既可以把自然的概念由物质现象扩大到意识现象,也可以对非决定论提出新的解释。在量子力学中,从决定论转换到非决定论,不会给出更深的哲学意义。

这是因为,量子力学不过是简单的而已。如果能给出一个物理上的解释,一个选择可以怎样从一些可能性中做出,那么在量子力学观念上这将不是非决定论了。可是相调节子的假设提出选择过程在量子力学描述的领域之外受到影响。

在双波包中,正弦元波包领域与相调节子波包领域在本体论上是截然分开的。相调节子波包对一个事件的影响,从本体论上而言,是在量子力学描述范围之外的。所以,这样讲并不矛盾:在物理上是非决定论的,但在更广的整个现实范围里却遵从某一选择。在这一意义上,物理现实只是本体的现实的一个部分而量子力学是它的完全性描述。这意味着,量子力学在玻尔与爱因斯坦争论的意义上是完全的,因为在它的范围内它是完整的;但在一个本体论的意义上说,它又是不完全的,因为它只是描述了本体现实的一个部分而已。

在单个粒子的量子体系中,选择由相调节子波包所决定,它从由波函数塌缩而致的可能性中做出选择,而这一塌缩过程在标准的量子力学看来是纯随机的。在两个粒子的情形中,例如在贝尔实验中所描述的那样,两个粒子的量子力学的干涉纠缠在一起以至两个事件的结果是相干的。这两个粒子的相调节波包也纠缠在一起了,这是一些相调节波包构成复杂组织的根据。在更复杂的系统中,相调节子波包之间的相互关联变得更强,逐渐地导致了生命、行为、意识和目的性。在更复杂的系统中,选择变得更复杂,更有效。量子力学的可能的观察结果的选择变为完全目的性的自由意志过程。这需要建立一系列的新概念,量子力学的选择是其中一个极端,自由意志是另一极端。这一系列新生的概念可以延伸至

包括意识与目的性,覆盖所有层次,而且必须在双波包的基础上给它们自然的诠释。

3.7目的性概念的广义化

在这一诠释下,相调节子在十分复杂的物理体系中于不同层次上发生作用。第一,它们有着纯物理的功能,用以调节正弦元波构成真实实在,也作为最基本的选择。第二,在包含生命在内的十分复杂的物理体系中,从无生命物质到生物体的构成过程,是一个更高级的规则;这是由相互关联的相调节子所构成的(关于所有的有关的物理粒子)。最后,考虑到人类行为的适应性和意识以及目的性的出现,更高级的相调节子过程必须构造出来。

在现代科学思想体系中,关于现象过程的三个层面的特性可以概括为一个单一的普遍的规则,它实现并应用在不同的形式中:物质实体的存在与稳定;生命从物质中演化出来;目的从生命中产生出来。除了语言上的不同外,这一规则与道的三个层面的特性有共同之处,它们都给出了自然的一个图景,并且都强调一个单一的规则作用在不同的体系中,体现出不同的特性。

量子力学基本概念篇3

初中化学基本概念教学

初中化学的基本概念是化学学习的基础,然而许多初三学生认为化学概念多,难记忆,不好理解,因此将化学概念从抽象中剥离出来,让学生从感性认识出发,通过动手实践,使学生深刻的理解化学物质的变化规律,并且通过化学的基本概念掌握化学公式、定论的推理过程和提高逻辑思维能力显得尤为重要。本文仅对如何提高初中化学基本概念的教学,提出几点看法。

一、从实验中引出概念

初中学生的形象思维多于抽象思维,因此学生在学习化学概念时最大的阻碍就是觉得抽象,所以在课堂上,通过对化学实验的演示,吸引学生注意力,老师将化学现象进行分析,引导学生对化学概念的正确推理,从而有助于化学概念的形成。

例如,在学习“质量守恒定律”时,通过白磷燃烧和稀硫酸铜溶液与铁反应时的质量变化得出,参加反应的化学质量总和,等于反应生成后的各物质的质量总和,并且质量守恒定律只适用于化学变化,而不是物理变化。化学变化与物理变化的区别在于是否生成新物质。例如,物理变化是玻璃破碎,小麦磨成面粉,石蜡融化等,从学生的实际生活中举例,让学生更容易理解。

在化学基本概念的学习中,关键是让学生从感性的认知中获得抽象的概念思维。实验结果并不会自动生成化学概念,这需要教师对实验进行分析、概括、归纳、总结,从而引导学生从实验中理解化学概念的本质,培养学生从化学实验的事实、现象中进行逻辑推理,通过思想加工,实现化学实验从抽象思维到感性认知的升华。

二、从问题中引出概念

例如,在讲解化合价的概念时,让学生通过化合物形成的实例,了解离子化合物和共价化合物,并用板书书写形成过程。在理解的基础上,让学生画出原子结构示意图,分析电子得失情况,引导学生用原子结构写出氯化钠、氯化氢的化学式,并提出为什么要一个氯原子与钠原子结合,一个氢原子与氯原子结合,让学生通过原子结构示意图,根据原子结构最外层必须为稳定结构的理论,导出化合物形成的道理。观察原子或原子团得失电子所带的电荷数,分析得失电子情况,指出化合价有正价、负价、零价之分。通过教师引导,让学生在问题中理解化合价的概念。

三、突出概念中的关键词,准确把握概念

初中化学的基本概念主要是以定义的形式存在的,定义具有很高的准确性、严密性。因此,教师在讲述概念时应该注意关键词的准确、严谨,纠正对于用词不当对概念造成的误解,培养学生严谨的逻辑推理能力。

例如,在学习单质和化合物的概念时,一定要突出纯净物这个词。因为无论是单质还是化合物都要是纯净物,即组成它们的物质是单一的,再根据组成它们的元素多少划分它们是单质还是化合物,否则学生很容易将带有金刚石和石墨的混合物混淆成单质。

又如,在学习酸的化学概念时,概念中明确讲述:在电解质被电离的阳离子中全部都是氢离子的,称为酸。这个概念中的关键字是全部,然而有些物质,如硫酸氢钠被电离时产生H+和na+离子,并没有全部生成H+离子,所以不算酸性物质。所以,在讲述酸和碱的化学概念时,都要重点突出“全部”两个字,用来区分酸与酸式盐,碱与碱式盐。

四、通过概念的比较,进行教学

中学生在学习概念时,因为对概念理解不深刻、记忆模糊,容易造成对概念混淆,做题出现差错。因此,在教学过程中通过多对比几组实验,让学生明确它们之间存在的本质区别,从而加深对概念的记忆、理解,培养学生认识事物的抽象思维能力。

例如,教学过程中,要注意对“元素”和“原子”这两个概念的区分和内在联系,特别是在两者的概念教学阶段,使学生形成良好的概念基础,明确元素是宏观的讲述物质组成,对物质组成的种类没有约束,只对个数有要求;原子是微观的讲述物质组成,对物质组成的种类和个数都有要求,然而他们之间又有着紧密联系,即元素是具有相同质子数的一类原子总称。

五、加强对概念的巩固和运用

教师在讲述完概念之后,通过对概念的反复运用让学生巩固概念,坚决不让学生依靠死记硬背记住概念。在课堂上,为了让学生更好的理解、掌握概念,教师应按照教学内容多设立习题,通过学生反复实践,增强学生理解概念的能力,对于学生在实践中出现的错误,及时点拨,纠正。同时,多角度、全方位地考察学生掌握概念的情况,及时发现问题,并采取补救措施。

六、亲自动手归纳和总结概念

初三学生普遍感觉初中化学概念多、乱、杂,需要记忆和理解的东西太多,这就需要学生对所学习的概念经常整理归类,化学概念体系的建立可以从物质的不同种类和物质的微观结构上划分,找出各概念之间存在的区别和内在联系,按照自己的学习特点,整理出一套符合自己学习方式的概念体系,从而实现灵活运用概念解决化学问题的目的。所以让化学概念系统化,是学生学好概念的重要工作。

七、用概念解决生活中的实际问题

学生对概念的学习,不能止步于对概念的表面理解和给概念下批注上,而是应该运用到解决生活中的实际问题上来。增强概念与实际生活联系,有目的的引导学生用化学概念解决生活问题,不仅有利于学生对概念更深刻的理解,还能提高学生的学习兴趣,为更牢固地掌握化学概念奠定基础。

总之,在素质化教学过程中,锻炼学生的自学意识是提高概念化教学的关键。在培养初中生化学概念的研究中,教师应根据教学大纲和教学要求,以学生为主体,在实验举例中多联系学生的实际生活,尽量做到贴近学生生活,让学生从感知认识出发,理解化学抽象概念,并且多角度、全方位地培养学生严谨的逻辑思维能力。

参考文献:

\[1\]王立荣.初中化学基本概念的教学\[J\].邢台师范高专学报,2002,17(02).

\[2\]胡亚巧.关于初中化学概念教学的几点建议\[J\].学周刊B版,2010,(04).

量子力学基本概念篇4

关键词:量子力学;教学改革;物理思想

作者简介:王永强(1980-),男,山西河曲人,郑州轻工业学院技术物理系,讲师。(河南?郑州?450002)

基金项目:本文系郑州轻工业学院第九批教学改革项目“《量子力学》课程体系与教学内容的综合改革和实践”资助的研究成果。

中图分类号:G642.0?????文献标识码:a?????文章编号:1007-0079(2012)20-0070-02

“量子力学”是20世纪物理学对科学研究和人类文明进步的两大标志性贡献之一,已经成为物理学专业及部分工科专业最重要的基础课程之一,是学习“固体物理”、“材料科学”、“材料物理与化学”和“激光原理”等课程的重要基础。通过这门课程的学习,学生能熟练掌握量子力学的基本概念和基本理论,具备利用量子力学理论分析问题和解决问题的能力。同时,这门课程对培养学生的探索精神和创新意识及科学素养亦具有十分重要的意义。然而,“量子力学”本身是一门非常抽象的课程,众多学生谈“量子”色变,教学效果可想而知。如何激发学生学习本课程的热情,充分调动学生的积极性和主动性,提高量子力学的教学水平和教学质量,已经成为摆在教师面前的重要课题。近年来,笔者在借鉴前人经验的基础上,结合郑州轻工业学院(以下简称“我校”)教学实际,在“量子力学”的教学内容和教学方法方面做了一些有益的改革尝试,取得了较好的效果。

一、“量子力学”教学内容的改革

量子力学理论与学生长期以来接触到的经典物理体系相去甚远,尤其是处理问题的思路和手段与经典物理截然不同,但它们之间又不无关联,许多量子力学中的基本概念和基本理论是类比经典物理中的相关内容得出的。因此,在“量子力学”教学中,一方面需要学生摒弃在经典物理学习中形成的固有观念和认识,另一方面在学习某些基本概念和基本理论时又要求学生建立起与经典物理之间的联系以形成较为直观的物理图像,这种思维上的冲突导致学生在学习这门课程时困惑不堪。此外,这门课程理论性较强,众多学生陷于烦琐的数学推导之中,导致学习兴趣缺失。针对以上教学中发现的问题,笔者对“量子力学”课程的教学内容作了一些有益的调整。

1.理清脉络,强化知识背景

从经典物理所面临的困难出发,到半经典半量子理论的形成,最终到量子理论的建立,对量子力学的发展脉络进行细致的、实事求是的分析,特别是对量子理论早期的概念发展有一个准确清晰的理解,弄清楚到底哪些概念和原理是已经证明为正确并得到公认的,还存在哪些不完善的地方。这样一方面可使学生对量子力学中基本概念和基本理论的形成和建立的科学历史背景有一深刻了解,有助于学生理清经典物理与量子理论之间的界限和区别,加深他们对这些基本概念和基本理论的理解;另一方面,可使学生对蕴藏在这一历程中的智慧火花和科学思维方法有一全面的了解,有助于培养学生的创新意识及科学素养。比如:对于玻尔理论,由于对量子化假设很难用已经成形的经典理论来解释,学生往往会觉得不可思议,难以理解。为此,在讲解这部分内容时,很有必要介绍一下玻尔理论产生的历史背景,告诉学生在玻尔的量子化假设之前就已经出现了普朗克的量子论和爱因斯坦的光量子概念,且大量关于原子光谱的实验数据也已经被掌握,之前卢瑟福提出的简单行星模型却与经典物理理论及实验事实存在严重背离。为了解决这些问题,玻尔理论才应运而生。在用量子力学求解氢原子定态波函数时,还可以通过定态波函数的概率分布图,向学生介绍所谓的玻尔轨道并不是真实存在的,只是电子出现几率比较大的区域。通过这样讲述,学生可以清晰地体会到玻尔理论的承上启下的作用,而又不至于将其与量子力学中的概念混为一谈。

2.重在物理思想,压缩数学推导

在物理学研究中,数学只是用来表述物理思想并在此基础上进行逻辑演算的工具,教师不能将深刻的物理思想淹没在复杂的数学形式之中。因此,在教学过程中,教师要着重于加强基本概念和基本理论的讲授,把握这些概念和理论中所蕴含的物理实质。对一些涉及繁难数学推导的内容,在教学中刻意忽略具体数学推导过程,着重于使学生掌握其中的思想方法。例如:在一维线性谐振子问题的教学中,对于数学方面的问题,只要求学生能正确写出薛定谔方程、记住其结论即可,重点放在该类问题所蕴含的物理意义及对现成结论的应用上。这样,学生就不会感到枯燥无味,而能始终保持较高的学习热情。

二、教学方法改革

传统的“填鸭式”教学法把课堂变成了教师的“一言堂”,使得学生在教学活动中始终处于被动接受地位,极大地压制了学生学习的主观能动性,十分不利于知识的获取以及对学生创新能力及科学思维的培养。而且,“量子力学”这门课程本身实验基础薄弱、理论性较强,物理图像不够直观,一味采取灌输式教学,学生势必感到枯燥,甚至厌烦。长期以往,学习积极性必然受挫,学习效果自然大打折扣。为了提高学生学习兴趣,激发其学习的积极性,培养其科学探索精神及创新能力,笔者在教学方法上进行了一些有益的探索。

1.发挥学生主体作用

除却必要的教学内容讲解外,每节课都留出一定的师生互动时间。教师通过创设问题情景,引导学生进行研究讨论,或者针对已讲授内容,使学生对已学内容进行复习、总结、辨析,以加深理解;或者针对未讲授内容,激发学生学习新知识的兴趣(比如,在讲授完一维无限深方势阱和一维线性谐振子这两个典型的束缚态问题后就可引导学生思考“非束缚态下微观粒子又将表现出什么样的行为”),[1]这样学生就会积极地预习下节内容;或者选择一些有代表性的习题,让学生提出不同的解决办法,培养学生的创新能力。对于在课堂上不能解决的问题,积极鼓励学生利用图书馆及网络资源等寻求解决,培养学生的科学探索精神。此外,还可使学生自由组合,挑选他们感兴趣的与课程有关的题目进行讨论、调研并完成小组论文,这一方面激发学生的自主学习积极性,另一方面使其接受初步的科研训练,一举两得。

2.注重构建物理图像

在实际教学中着重注意物理图像的构建,使学生对一些难以理解的概念和理论形成较为直观的印象,从而形成深刻的记忆和理解。例如:借助电子束衍射实验,通过三个不同的实验过程(强电子束、弱电子束及弱电子束长时间曝光),即可为实物粒子的波粒二象性构建出一幅清晰的物理图像;借助电子束衍射实验图像,再以光波类比电子波,即可凝练出波函数的统计解释;[2]借助电子双缝衍射实验图像,可使学生更易接受和理解态叠加原理;借助解析几何中的坐标系,可很好地为学生建立起表象的物理图像。尽管这其中光波和电子波、坐标系和表象这些概念之间有本质上的区别,但借助这些学生已经熟知和深刻理解的概念,可使学生非常容易地接受和理解量子力学中难以言明的概念和理论,同时,也可使学生掌握这种物理图像的构建能力,对培养学生的创新思维具有非常积极地作用。

三、教学手段和考核方式改革

1.课程教学采用多种先进的教学方式

如安排小组讨论课,对难于理解的概念和规律进行讨论。先是各小组内讨论,再是小组间辩论,最后老师对各小组讨论和辩论的观点进行评述和指正。例如,在讲到微观粒子的波函数时,有的学生认为是全部粒子组成波函数,有的学生认为是经典物理学的波。这些问题的讨论激发了学生的求知欲望,从而进一步激发了学生对一些不易理解的概念和量子原理进行深入理解,直至最后充分理解这些内容。另外课程作业布置小论文,邀请国内外专家开展系列量子力学讲座等都是不错的方式。

2.坚持研究型教学方式[3]

把课程教学和科研相结合,在教学过程中针对教学内容,吸取科研中的研究成果,通过结合最新的科研动态,向学生讲授在相关领域的应用以培养学生学习兴趣。在量子力学诞生后,作为现代物理学的两大支柱之一的现代物理学的每一个分支及相关的边缘学科都离不开量子力学这个基础,量子理论与其他学科的交叉越来越多。例如:基本粒子、原子核、原子、分子、凝聚态物理到中子星、黑洞各个层次的研究以量子力学为基础;量子力学在通信和纳米技术中的应用;量子理论在生物学中的应用;量子力学与正在研究的量子计算机的关系等,在教学中适当地穿插这些知识,扩大学生的知识面,消除学生对量子力学的片面认识,提高学生学习兴趣和主动性。

3.利用量子力学课程将人文教育与专业教学相结合

量子力学从诞生到发展的物理学史所包含的创新思维是迄今为止哪一门学科都难以比拟的。在19世纪末至20世纪初,经典物理学晴空万里,然而黑体辐射、光电效应、原子光谱等物理现象的实验结果严重冲击经典物理学理论,让经典物理学陷入危机四伏的境地。1900年,德国物理学家普朗克创造性地引入了能量子的概念,成功地解释了黑体辐射现象,量子概念诞生。1905年,爱因斯坦进一步完善了量子化观念,指出能量不仅在吸收和辐射时是不连续的(普朗克假设),而且在物质相互作用中也是不连续的。1913年,玻尔将量子化概念引入到原子中,成功解释了有近30年历史的巴尔末经验光谱公式。泡利突破玻尔半经典、半量子论的局限,给予了令玻尔理论不安的反常塞曼效应以合理解释。1924年,德布罗意突破普朗克能量子观念提出微观粒子具有波粒二象性,开始与经典理论分庭抗礼。[4]和学生一起重温量子力学史的发展之路,在教学过程中展现量子力学数学形式之美,使学生在科学海洋中得到美的享受,从精神上熏陶他们的创新精神。

4.考试方式改革

在本课程的教学中采用了教考分离,通过小考题的形式复习章节内容,根据学生的实际水平适当辅导答疑,注重学生对量子力学基础知识理解的考核。对于评价系统的建立,其中平时成绩(包括作业、讨论、综合表现等)占30%,期末考试占70%。从实施的效果来看,督促了学生的学习,收到了较好的效果,受到学生的欢迎。

四、结论

通过近年来的改革尝试,我校的“量子力学”教学水平稳步提高,加速了专业建设。2009年,我校“量子力学”被评为校级精品课程,教学改革成果初现。然而,关于这门课程的教学仍存在不少问题,如教学手段单一、与生产实践结合不够紧密等等,这些都需要教师在今后教学中进一步改进。

参考文献:

[1]周世勋.量子力学教程(第二版)[m].北京:高等教育出版社,2009.

[2]吕增建.从量子力学的建立看类比思维的创新作用[J].力学与实践,

2009,(4).

量子力学基本概念篇5

概念是最基础的化学知识,也是化学知识的重要组成部分,它是学生认识物质属性极其规律的起点。也许有人会说,新课程强调教学方式的转变,提倡对学生创新能力、探索能力、实践能力等素质的培养,并不重视双基础教学,其实,这是对素质教学的误解。试想一下,没有任何化学基础知识的学生,它们如何胜任对未知的探究,又如何能在各种实际问题面前,找到解决问题的方法呢?显然是不可能的。因此,化学概念教学是任何时候都应该重视的。本文就新课程教学改革中,如何做好初中化学概念教学进行阐述,仅供大家参考。

一、认识化学概念教学的重要性

学生学好化学概念,对他们以后进行化学原理、实验、计算等方面的学习会起到很大的帮助,如果在教学中忽视学生对基本概念的掌握,那么,让学生真正学好化学是很难的。在新课程教学中,很多老师能在课堂教学中,广泛的开展探究学习、合作学习等活动,但重视概念教学的确不多。难道新课程教学真的不需要重视化学概念教学了?笔者认为,化学基本概念在中学化学教学中,有着极其重要的地位,重视化学概念教学是提高化学教学质量的关键。

二、做好化学概念教学的策略

1、加强直观教学

初中学生由于年龄特征原因,他们的思维主要以直观为主。因此,在进行化学概念教学时,要尽量利用直观的手段。比如,原子、分子的结构,它们是微观粒子,看不见,摸不着,学生想象不出来。这时候,老师可以用模型来帮助学生的认识原子、分子等微观粒子的结构,从而形成原子、分子等概念。

多媒体技术也是很好的直观教学,因此在具体的化学教学中,我们应该重视它、用好它。比如,学生对“原子是化学变化中的最小微粒”这一概念总是不理解,很多学生根据这个概念,还错误的认为分子比原子大。利用多媒体动画,可以让化学反应过程清楚的展示出来,让学生清晰的看到:在化学反应时,分子分为原子,原子重新组合成新的分子。

2、帮助学生理解化学概念的本质

对化学概念的理解不能是支离破碎的,而应该是全面的,只有这样才能使学生深刻的理解,并能利用化学概念解决实际问题。如果学生不能深刻的理解化学概念,他们只能死记硬背的学习概念了。学生死记化学概念,就不会灵活运用,那就等于没有掌握化学概念。因此,在实际的教学中,老师要帮助学生理解化学概念的本质。比如,对物理变化与化学变化的学习,要强调判断的标准是看有无新物质的生成,有新物质生成的就是化学变化。比如,水变成水蒸气,很多学生错误的认为它是化学变化,那就要向学生讲清楚:水蒸气的本质仍然是水,只是状态发生了变化,不是新的物质,因此它属于物理变化。同样,水结成冰、电灯发光等变化,都没有新的物质生成,它们都属于物理变化。

在具体教学中,老师要对某些化学概念需要进行剖析,才能帮助学生透彻的理解。尤其,要帮助学生领会其本质意义。比如,催化剂这个概念,一定要让学生理解其中的“改变”的含义,它可以是加快,也可以是减慢;“不变”的含义是指质量与化学性质,很多学生将“改变”理解为只有加快,讲“化学性质”误认为是性质。事实上,物质的性质包括化学性质与物理性质,因此,概念中的化学性质不能随便的理解为性质。又如,氧化反应概念中的氧,很多学生错误的理解为氧气,事实上,概念中的氧不只是指氧气,它还包括含氧化合物中氧的意思。

由上可知,在初中化学教学中,利于剖析的方法对概念进行教学,可以有效的帮助学生准确理解概念的内在含义。

3、利于对比方法帮助学生正确的形成概念

化学上很多概念具有对立性,如果在教学中采用对比的方式进行,可以帮助学生更好的领会概念的含义,从而收到良好的教学效果。比如,物理性质与化学性质;物理变化与化学变化;分解反应与化合反应;纯净物与混合物;单质与化合物等等,在教学中应该加强对比就能有效的帮助学生理解、掌握它们。

量子力学基本概念篇6

一、通过实验让学生形成概念

初三化学绪言部分的演示实验,既是激发学生学习化学兴趣,又是使学生形成“物理变化”、“化学变化”概念的好例子。如水的沸腾,引导学生观察水由静态转化为水蒸汽再冷凝成液态水,师生总结出变化特点,仅仅是物质状态上变化,无其他物质生成。演示“镁带燃烧”实验,引导学生观察发出耀眼白光及生成白色固体。这个变化特点是镁带转变为不同于镁的白色物质——氧化镁。最后师生共同总结:“没有生成其它物质的变化叫物理变化”,如水的沸腾,硫酸铜晶体的研磨等。“生成了其它物质的变化叫化学变化”,如镁带燃烧,碱式碳酸铜受热分解,二氧化碳使澄清石灰水变浑浊等。再如“催化剂”、“饱和溶液”、“不饱和溶液”等概念的形成,都可以由实验现象分析、引导、归纳得出其概念。

二、通过计算推理,帮助学生理解概念

如在“原子量”概念的教学中,教师首先讲述原子是化学变化中的最小微粒,其质量极小,运用起来很不方便,指出“原子量”使用的重要性。指导学生阅读原子量概念,然后提出问题,依据课本中定义进行推算。

(1)原子量的标准是什么?(学生计算):一种碳原子质量的1/121.993X10-26千克X1/12≈1.66X10-27千克(2)氧的原子量是如何求得的?

(学生计算):

氧原子绝对量(千克)

氧的原子量:-------------------

原子量标准

如果学生只注意背原子量概念,尽管多次记忆仍一知半解。通过这样计算,学生便能直观地准确地理解“原子量”的概念,而且还较容易地把握原子量只是一个比值,一个没有单位的相对量。

三、通过反例,加深学生对概念的理解

为了使学生更好地理解和掌握概念,教学中指导学生在正面认识概念的基础上,引导学生从反面或侧面去剖析,使学生从不同层次去加深对概念的理解。

例如酸的定义:“电离时生成的阳离子全部是氢离子的化合物叫酸”。然后提问,硫酸氢钠电离生成H十,它也是一种酸吗?学生容易看出其阳离子除H十外,还有na十,所以它不是酸。这样,从侧面理解定义中“全部”的含义,更能准确地掌握酸的概念。

四、找概念之间的联系和区别

对概念进行对比在新课教学或阶段性复习的过程中,对有关概念进行有目的地比较,让学生辨别其区别与联系很有必要。例如分子和原子,元素与原子,还有物理变化与化学变化,化合反应和分解反应,溶解度与百分比浓度等。通过对比,既有益于学生准确、深刻地理解基本概念,又能启发学生积极地抽象思维活动。

五、多角度地对概念进行练习巩固

例如:质量百分比浓度的概念“用溶质的质量占全部溶液质量的百分比表示的溶液的浓度叫做质量百分比浓度。”数量表达式为:质量百分比浓度溶质浓度=------------------------------X100%溶液质量(或溶剂质量+溶质质量)这个概念的引入和建立并不难,难的是质量百分比浓度的具体运用。所以在建立这个概念之后,通过下列练习,讨论:

(1)10克食盐溶解于90克水中,它的百分比浓度是多少?

(2)20克食盐溶解于80克水中,它的百分比浓度是多少?

(3)100克水溶解20克食盐,它的百分比浓度为20%,对不对,为什么?

(4)20%的食盐溶液100克,倒去50克食盐水后,剩下溶液的浓度变成10%,对不对,为什么?

(5)Kno3在20℃时溶解度为31.6克,则20℃Kno3的饱和溶液的百分比浓度为31.6%,对不对,为什么?

量子力学基本概念篇7

一、选择场景和方法加强对概念的建构

在概念教学过程中,教师如果忽略学生概念形成的认知过程,只是讲授概念的定义,学生就不能理解概念的本质,只是学习了一些词语,会背诵概念的词句,虽然可以解答习题,但实际上只是用概念的规律对习题做出判断,而不是真正有意义地构建了概念。因此,在化学基本概念教学中,教师应注重学生概念学习的过程,帮助学生发展思维能力,充分利用演示实验,分析归纳,提供基本概念适宜的条件,使学生自主建构概念。教师精心设置情境,并引导学生从一定的方向对情境进行分析,发现问题。若能提出有价值的问题,则说明学生明确了学习的任务,有了明确的思维方向,也就为学生自主建构概念打下了坚实的基础。如学习“氧化还原反应”概念时,可列出几个在四大反应范围内的和不在四大反应范围的氧化还原反应的例子,学生在按以前的经验给这些反应分类遇到困难时,则必然会产生用新的方式理解这些反应的动机。教师要适时引导学生发现问题、提出问题,并从化合价变化的角度观察。如果发现这些反应其实只有两类,学生基本上就形成了对氧化还原反应实质内容的认识。此时学生应对所选择的信息加以概括,应用自己的语言概述或接受前人的描述语言,从而完成对概念的建构。

二、利用实验对基本概念解析

学生初次接触化学课,往往对概念理解不深,习惯用死记硬背的方法学习,教师要尽可能地加强直观教学,增加课堂实验,让每个学生都能直接观察实验现象,加强直观性,增强学生对概念的信度。学生的感性认识有助于形成概念、理解和巩固概念。强调学生理解这一概念时,要注意“一定”“两不变”的涵义,加深学生对概念的理解,强化记忆,从而得到“催化剂”这一概念的内涵是:(1)化学反应速度;(2)这类物质的质量和化学性质在化学反应前后都未变化。外延是:(1)在化学反应里。(2)具有内涵特征的这一类物质的隐含因素:①对“变化”二字的理解。催化剂即可加快化学反应速度,又可减慢化学反应速度。②一种反应可以有一种或几种物质作为催化剂。③一种物质在这一反应中是催化剂,但在别的反应中就不一定是催化剂。④不是任何化学反应都需要催化剂。⑤不同的化学反应所需的催化剂一般是不同的。

三、强化形象思维,使抽象概念直观化

在没有条件或无法采用直观教学手段的情况下,应适当地指导学生自学获取知识。强化形象思维,是加强直观概念教学的手段之一。让学生从宏观的感觉中体会微观粒子的性质,理解分子论概念。在建立元素概念时,可以利用学生已有的知识,先让学生回忆原子与原子核的组成,然后用生动的语言抽象出元素的概念。也可以采用先阅读教材再讨论的方法使学生自己得出正确概念。这样,学生既能消除对抽象概念的厌烦情绪,又能对比较抽象的概念理解得较准确和深入,避免教师把概念硬灌给学生,学生死记硬背记不住、难应用的现象。

四、对相关概念进行比较教学

初学化学的学生往往对概念理解不深,形成的概念模糊,似懂非懂,因此做题时经常出现差错。在教学中可列举几组实例进行比较教学,在对比中明确它们的本质区别和联系,加深对概念的理解,锻炼学生的抽象能力。如在“元素”和“原子”概念形成之后,比较分析它们的区别和联系:元素是宏观概念,是描述物质的宏观组成,只论种类,不论个数。原子是微观概念,是描述物质的微观结构,既讲种类,又讲个数。元素是具有相同核电荷数(即质子数)的一类原子的总称。

五、突出对概念的关键字句的理解,加强学生记忆

一些化学概念层次较多,给学生记忆带来了一定的难度。在教学中我对组成定义的关键词句重点讲解,促进学生对概念的理解,强化记忆效果,例如,在“催化剂”概念中强调“变”和“不变”,在酸碱定义中强调“全部”这两个字,等等。只有理解这些字句的意义,才能深刻理解基本概念。

六、注意分析概念间的相互联系

初中化学基本概念较多,分散在不同章节,给教学带来了一定的困难,但这些概念并不是孤立的,它们之间有内在的联系。在教学中要善于总结,归纳各部分概念的体系和结构,使之系统化、条理化。这样不但有利于学生对概念的理解和掌握,而且有利于提高学生灵活运用化学基本概念和化学基础知识的能力。

七、多角度训练使学生巩固并应用化学基本概念

学习的目的最终在于应用,只有适当地练习,才能达到巩固、深化概念的目的。对于一些重点、难点、弱点的概念,教师要针对性地设计一些练习题,先让学生自行分析或分组讨论,教师再讲评,以求落实。应用所学知识分析、解释一些实际问题,是强化对所学知识的理解和记忆,提高分析与解决问题的能力的重要环节。让学生在习题训练中应用化学基本概念,从而真正地理解、掌握。比如,在学完“绪言”中的“物理变化和化学变化”的概念后,可以列举一些生活中的现象让学生判断属于何种变化,并说出理由。

八、注意概念的巩固、深化和发展

概念形成之后,一定要使学生通过复习和反复运用掌握和巩固,绝不能满足于死记硬背和一般性理解。在教学过程中一要注意组织练习。当学生学过有关概念后,教师应有目的、有针对性地布置一些练习题,使学生通过习题实践,巩固和增强应用概念的能力。二要分析错误,及时改正。采用多种形式对学生掌握情况考查了解,根据反馈发现的问题,及时有针对性地采取补救措施。

量子力学基本概念篇8

关键词:概念教学物理概念学习兴趣

新课程实施以来,关于新课程的话题层出不穷,对比新、旧教材,不难看出新教材在课堂引入和实验部分增加了大量篇幅。高中物理教学的重点是培养学生对基本的物理概念、物理规律的形成和掌握。物理概念和物理规律是高中物理基础知识最重要的内容。概念是反映客观事物本质属性的一种抽象。某一物理概念,就是某一类物理事物、现象的本质属性在人的头脑中的反映,它是在大量观察、实验,获得感觉、知觉,形成观念的基础上,通过分析、比较、综合、归纳、想像,区别出个别与一般、现象与本质,把一些事物的本质的、共同的特征集中起来加以概括而建立的。本文就新课程教学中概念教学,结合自己的教学过程,谈谈个人的看法

一、演示实验法

物理是一门以实验为基础的学科,在实施概念教学时,演示实验法往往是一种行之有效的教学方法,一个生动的演示实验,可创设一种良好的物理环境,提供给学生鲜明具体的感性认识,再通过引导学生对现象特征的概括形成自己的概念。如“弹力”概念的教学,用弹簧,钢片等演示,让学生体会到弹力的产生本质是物体发生了弹性形变。高中物理中有很多的概念教学,都可以通过演示实验的方法达到变抽象为形象,从而理解并掌握概念的目的。如“压强”“电场”“电阻”“磁场”等概念的教学。

二、有趣现象法

兴趣是最好的老师,实际生活,生产实践及现代高科技中一些有趣的物理现象会吸引学生的注意力,激发学生的学习兴趣,活跃学生的思维,提高学生的理解能力,有利于知识的掌握。如对“超重”,“失重”概念的认识,先以电梯上升或下降的整个过程中感受到的现象说明和分析什么是“超重”、“失重”现象;再以我国“神州五号”载人飞船发射上天、在太空飞行、返回地面三个过程为例,分析杨利伟感受到的“超重”、“失重”现象,达到加深理解“超重”、“失重”概念的目的。再如,“向心力”这一概念比较抽象,但学生们都有骑自行车转弯这一经历,通过帮助学生分析自行车转弯时的向心力来源,以及车身为什么向内倾斜,通过学生对“向心力”切身的体会来理解掌握这一概念。

三、以旧引新法

通过复习旧知识引入新知识是实际教学中常用的一种教学方法。在概念教学中可通过复习已掌握的物理概念,并对此概念加以扩展、延伸,或使其内涵、外延发生变化从而得到新的概念。如:要讲授“瞬时速度”可从复习“平均速度”人手。在某点附近取一小段位移,可求出这段位移内的平均速度,当位移足够小,或者说时间足够短时,所得的平均速度就是该点的瞬时速度。

四、图像电教法

有些高中物理概念,无法实验演示也无法从生活中体验。如分子的相互作用力与分子间距离的关系;布朗运动;电子绕原子核运动等。可以用图象、电教手段(如FLaSH动画)展示给学生观看。物理图象通过培养学生的直觉,从而培养学生的高层次的形象思维能力,建立起物理概念的情景;电教手段能以生动、形象、鲜明的动画效果,模拟再现一些物理过程,学生通过观看、思考,就会自觉地在头脑中形成建立物理概念的情景。这种方法符合“从生动的直观,到抽象的思维”的基本认识规律,是现代教学中提高概念教学效果的一种重要手段。

五、典型例题法

有时也可以用定量计算的方式,通过对一些数据的处理并比较,分析,帮助学生形成清晰的概念。如:对“加速度”概念的形成,通过计算比较铅球运动员掷出的铅球在0.2秒内速度可由零增加到17m/s,迫击炮弹在炮筒中的速度在0.005秒内可以由零增加到250m/s的速度改变快慢,从而引入“加速度”概念。这种方式直接明了,针对性强,学生容易接受。

六、类比法

类似的概念可以提供给学生理解新概念的思维方式,降低思维的难度。通过比较也可以让学生找到类似概念的联系与区别。加深对类似概念的理解。通过类比,建立新概念。这是认知结构同化作用的体现。讲电场时,教师可以用已学过的重力场、引力场来进行类比教学;通过体会质量是物体惯性大小的量度,温度是大量分子平均平动动能的量度,功是能量转化的量度,引导学生从这三种量度的类比中去理解量度的意义。如果教师能对一些相近类似的概念进行异中求同找联系,同中求异抓类比,这样就能掌握这些概念之间的联系和区别,从而达到深化理解概念的目的。

七、设喻法

设喻是帮助学生降低对概念理解难度的一个重要手段,它可以使抽象变得具体。如把气体分子撞击容器壁形成恒定的气体压强,可比喻成像雨滴落在雨伞上,伞受到了恒力作用一样;用水流的高度差来形容电势高低等,都有效地降低了原概念的抽象程度。

八、设疑法

量子力学基本概念篇9

【关键词】初中化学教学对策化学概念方法

化学作为一门自然科学,其引人入胜之处就在于当认知这一充满感性的科学世界时,需要认知者丰富而抽象的理性智慧。而化学概念是根据化学变化的现象、实质和事实高度概括出来的知识,是学好化学的基础,是培养学生能力的一种重要手段。概念的讲解过程常表现在新旧观念相互作用的集中体现,是新经验对已有经验的影响和改造,它在中学化学教学中占有相当重要的地位。但是,初中学生学习化学概念往往存在着很大的困难,需要我们认真研究解决。

一、造成学生化学概念学习困难的原因

1.学生个体之间经验的习得方式与认知能力存在着差异,九年级学生的思维能力正处于从具体运算到形式运算的关键发展阶段,个体之间的思维发展并不平衡,不少学生由于缺乏科学学习的具体经验积累,难以直接接受抽象概念并运用概念进行思考和高级的认知建构。

2.化学概念繁多,又相互关联,这样就造成了学生记忆的困难。

3.化学概念抽象,难理解。在初中化学教学中,比如分子、原子、元素这样一些概念非常抽象,往往造成学生学习上的困难。

4.由于化学学科的特点,宏观、微观、符号三重表征造成学生认知的障碍,往往使学生感觉到难以接受。

5.从学生学习的认知基础看化学概念学习的困难。

此外还有教师的不合理教学,对学生学习的影响是很大的。

二、初中化学概念的教学方法

如何解决上述学生化学概念学习的困难,高效地进行化学概念教学?下面笔者谈谈初中化学概念的教学方法:

1.解剖概念内容,帮助学生理解

化学概念不仅用词严密,而且非常精炼,教师在教学过程中要对一些含义比较深刻,内容又比较复杂的概念进行剖析、讲解,以帮助学生加深对概念的理解和掌握。如“溶解度”概念一直是初中化学的一大难点,不仅定义的句子比较长,而且涉及的知识也较多,学生往往难以理解。因此在讲解过程中,若将组成溶解度的四句话剖析开来,效果就大不一样了。其一,强调要在一定温度的条件下;其二,指明溶剂的量为100g;其三,一定要达到饱和状态;其四,指出在满足上述各条件时,溶质所溶解的克数。这四个限制性句式构成了溶解度的定义,缺一不可。

2.分清概念中的层次和要点

概念教学,要指导学生全面地认清概念的本质属性和应用范畴,分清概念中的层次和要点。如讲解质量守恒定律时,可将概念分为以下层次进行理解:①“质量总和”是指反应物,且指完全反应的那部分物质;②生成物是指反应后生成的所有物质;③“质量守恒”的实质是化学反应前后,原子的种类没有改变,原子的数目没有增减,原子的质量没有变化。再如,剖析“固体物质的溶解度”这个概念时,可抓住以下几个要点分层理解:①定义的对象是固体物质。②定义的前提条件是:温度一定;溶剂为100克;溶液是饱和状态(注:三个前提条件缺一不可)。③定义中规定的单位是克。④影响溶解度的因素是溶质、溶剂的性质及温度。

3.注重概念的形成发展过程

比如说相对原子质量,1803年道尔顿首先提出,以氢原子质量为1作为原子量的标准,用比较方法测定其他元素原子的相对质量。后来鉴于氢的化合物不如氧的化合物多,为了测定原子量的方便起见,改用氧元素的一个原子的质量为16作标准,来测定其他元素的原子量。后来发现自然界中的氧含有三种同位素,物理界改用氧16等于16作为标准,但化学界仍采用天然氧等于16作标准。物理学和化学学科有着密切的联系,原子量标准不同很容易引起混乱。1959年国际化学联合会、物理联合会一致同意,以碳12质量的1/12作为原子量的标准。

4.抓变式,巧变形

有些概念若死记硬背,是很难理解和应用的,但若结合概念的内容改写成公式或其它形式来表示,可收到事半功倍之效。如,“化学反应基本类型”可用下列形式表示:

a.化合反应:a+B=aB

b.分解反应:aB=a+B

c.置换反应:a+BC=aC+B

d.复分解反应:aB+CD=aD+CB

通过如此的变式或变形,则比文字叙述更简明、清晰,给学生一种深刻的印象。

5.新旧知识连缀成有机的整体

化学概念中,有些概念之间虽有本质的不同,但也有相互联系的一面。教师在教学中讲解新概念时,可提出与已学过的有联系的概念作类比,寻求它们的内在联系和本质差异,避免概念混淆。如“物理变化”和“化学变化”的本质区别在于能否生成其它的物质;“混合物”和“纯净物”的区别在于是否同分;“分子”和“原子”的区别在于化学反应中能否再分;“单质”和“化合物”的区别在于是否同元。列表比较也是一种比较好的类比方法。

6.学生要充分理解概念之内涵,明确概念之外延

例如,讲解质量守恒定律时,内涵是化学反应前后原子种类没有变,原子个数没有增减,原子质量没有变。即参加反应各物质质量和等于生成各物质质量和。外延是一切化学变化都满足质量守恒定律并能用它解释。讲解燃烧时,内涵是可燃物与氧气发生的一种发光、放热的剧烈的氧化反应。外延是一切发光、放热的剧烈的氧化反应。例如氢气在氯气中燃烧等。

总之,在进行化学概念的教学中,要抓住每个概念中反映事物本质属性的词、句子以及相关特征,把概念讲清楚、讲透彻、搞清概念的内涵和外延。只要我们从实际出发,抓住学生学习概念的特点,重视思维能力的培养,不断改进教法和学法,寻找其规律和技巧,概念教学的难点就一定会突破。

【参考文献】

[1]韦俊谋,创新设计初中化学实验二则[J],民风(科学教育),2012(12).

[2]杨军峰.认知同化论在初中化学概念教学中的应用[J].甘肃科技纵横,2004(5).

量子力学基本概念篇10

此乃特殊重要文稿,几乎涉及物理世界全部问题。文中全部用8位数字有效精度并与实验完全相符的计算结果表明下述原理成立:

〖测得准原理〗:世间万物,无例外,都是测得准的(准确程度最终都将取决于普朗克常数h=2π?的准确度),绝非测不准的;世间只存在测不准的学者,并不存在【测不准原理】--《量子力学》的基本原理。

文中用大量无可否认的事实,全面、系统、严格地证明了量子力学--世界权威理论,纯系伪科学。其基本原理--【测不准原理】系反科学的理论,由此量子力学已把科学引入歧途,并使之陷于恶性循环不解之中!

由于量子力学已修成了诡辩内禀属性,任何单方面对其论说全然无效,必须给量子力学以全面充分曝光,所以篇幅显得较长。实乃:

有道僧是愚氓忧可训,

奈何量子愚氓胜和尚!

第一章.世界是测得准的,并非测不准的

乍看,题目好象哲学的。不屑哲学,只谈物理。

大量研究表明,目前为止的实验已经给出物质世界准确信息,物理学重要任务之一就在于找出这信息并揭示其内在规律。遗憾的是,目前为止的理论(无例外)均未能如此。然而国内外学界却一致认为理论物理大厦框架--《量子力学》已经建成,剩下只是装修和美化了。

但经本文研究表明,《量子力学》对一些基本物理学问题的实质并不清楚,往往似是而非。然而《量子力学》却娓娓动听、夸夸其谈,实则以其昏昏使人昭昭!请看事实:

.关于"量子化"根源问题。

微观世界"量子化"已被证实,人们已经公认。但接踵而来的就是"量子化"根源问题,又机制怎样?这本是物理学根本任务之一。已有的理论包括爱因斯坦、玻尔、量子力学都未能回答。然而量子力学家们却置这本职任务于不顾,翩翩起舞与数学喧宾夺主、相互玩弄!

就是说,《量子力学》是在未有弄清量子化根源前提下侈谈"量子"的"科学"。其结果只能使原子结构凭空量子化,量子化则成为无源之水,无本之木。这就是目前物理科学之现状!

可有人,例如一位量子力学教授辩论时说:"量子化是电子自身固有属性,阴极射线中的电子能量也是量子化的"。

虽然,这量子力学家利用了"微小量子"数学"极限"概念进行诡辩,显得很聪明,但却误了人类物理学前程!

不可否认的事实是:阴极射线中的电子、X射线韧致辐射电子、高能加速器中电子或其它自由电子能量都连续可变,决不表现量子化!这无疑表明量子化不是电子自身固有属性。那末,原子结构中能量量子化必有其它原因。显然这是基本物理学问题,作为理论物理又是非弄清不可的问题。其它科学例如数学,由于任务不同尚可不必关心量子化根源问题。然,作为理论物理决不可以!本文如下将准确具体讨论量子化根源问题以及物质世界又怎样量子化的,并给出8位数字有效精度与实验完全相符的计算结果。

.理论与实践关系问题

既然凭空将电子能量量子化,就难免臆造之嫌,所以《量子力学》就下意识往实验上靠??"符合"试验。然而,既下意识就难免拙劣,请看事实:

世界著名理论物理第六册--《量子力学》(文献)中著:"量子力学,可建立于数个基本假定上,大体上这些基本假定分属两大项……,两项的假定便构成一量子力学完整系统"。

这明确表明,量子力学就是建立在基本假定上的(种种猜测)。"科学学"研究还表明:任何建立在基本假定上的东西都不可能是科学!然而量子力学家们却娓娓动听说:"量子力学是建立在实验基础上的科学"。这不是弥天大谎么?!

文献在建立对易关系:

pq-qp=(?/i)e?????????(1)

时说:"这是一基本假定"。并告诫人们:"不可懂"!就是说()式不能用任何数学--物理方法导出,即:不否认这是一种猜测。然而,()式就是昭著世界的"波动方程"的基础,也就是量子力学的理论基础。

所以确切地说,量子力学就是建立在基本假定上的种种猜测。这分明表现的是量子力学家们主观意识!

研究表明,量子力学所谓实验基础,首先在于德布罗意"物质波"理论。认真研究表明,物质波究竟是什么?德布罗意本人未有弄清,后人至今仍未弄清,又怎能说"建立在实验基础上"呢?!

研究表明,量子力学的实际过程是:德布罗意对自然现象进行一次连他自己也弄不清的抽象(猜测)(以下证明),提出"物质波"概念。量子力学对这不清的概念又进行一次抽象(猜测)(以下证明),提出"波函数"(Ψ)概念,并且通过一种算符将其作用到一个基本假定即()式上,便铸成了著名的"波动方程"--量子力学的理论基础:

(h/m)?2Ψ(e-V)Ψ=0?????(2)

由于量子力学凭空引进"波函数Ψ",实际上就赋予了电子神奇性质。正是这种神奇性质使得量子力学具备了非凡诡辩能力。

.量子力学诡辩伦理

..关于理论基础诡辩

以上及以下讨论都证明,量子力学是,由于缺乏了解,错误地估计了试验(以下严格证明),用了错误的基本假定(不能由任何合理方法导出)而形成的,错误理论。然而量子力学家们却口口声声:"量子力学是建立在实验基础上地科学"。这分明是在诡辩,再加上社会意识,量子力学又具备了狡辩能力。

..关于物质波的狡辩

对于"物质波"概念,量子力学应用了三个基本假定:其一假定"对易关系"即()式,由此构成量子力学骨架;其二假定"测不准原理",由此编造了电子"几率云"图像;其三假定"波粒互补原理",这种原理本身就是一种诡辩,因为"波粒二象性"问题目前仍属困难不解的世界性难题。于是量子力学精心泡制出"波函数Ψ"并强加给电子。经如此之假定,电子便具备了神奇性质--量子力学家们的主观意识。

然而"波函数"的物理意义究竟是什么?量子力学家们着实应向人们交代清楚,遗憾的是任何学家都未能如愿。实际上对波函数Ψ的真实物理意义,量子力学家们也只是:你知、我知、天知、地知,凡人不可知。这分明是狡辩理论!

如果需要,量子力学(文献)首先拿出:

2πa=n??????????????(3)

很明显式中πa是粒子中心轨迹。于是说,物质波是粒子轨迹波动。此说极易征服初学者,但此说问题也易败露。量子力学立即改变说法,言()式系近代物理概念,对此不能用经典概念理解。于是又出现:

..关于"经典"与"近代"狡辩

量子力学经常炫耀是近代科学理论,已经超脱经典,又不时贬低经典理论。

然而,以下讨论完全证明:量子力学除了主观臆造因素外,完全没有离开经典物理一步,也未超出经典物理一点,就连波函数Ψ的表达式(无例外)也完全是经典数学和经典力学关系式,并且以下用不可否认的事实--量子力学所犯经典错误,表明量子力学连经典理论也不通。所以,量子力学所谓超脱经典,正在于一些基本假定连同主观臆造。在此种意义上说,量子力学不仅超脱经典,而且也超脱科学!..量子力学方法论狡辩

确切说,量子力学不能给波函数

        

Ψ做出完整的真实物理学定义,但在理论中却轮番使用:①波函数Ψ表示粒子中心轨迹波动;②波函数Ψ表示粒子出现几率;③波函数Ψ表示弥撒物质波包三种概念。有了三种概念,又可各取所需,自然一切物理问题都"迎刃而解"了。

然而,量子力学同时又"有权"轮番否定这三种概念。但却不是自我否定,而是另一种需要--否定其它理论,其中包括真理。要指出的是,量子力学轮番使用三种概念,又轮番否定这三种概念,并不是在同一时间同一地点进行的。因为应用一种概念的同时又否定这种概念,这是卖矛又卖盾的故事,连儿童都知道是蠢事。显然量子力学家比儿童高明得多,这叫认识方法狡辩。

似这样,在哲学面前,用"建立在实验基础上"量子力学可以蒙混过关;其它科学由于研究任务不同,不会关心"量子化"根源,又由"领地"限制也无权过问波函数的真实意义;量子力学又可各取所需轮番应用和轮番否定①、②、③三种概念。于是,量子力学便以狡辩赢得了世界理论权威!

.关于"符合"试验问题

以下将证明,量子力学所谓符合实验,实际上系对实验的猜测。量子力学很善于做貌似合理实则谬误的猜测(以下揭示),并美其名曰"符合"试验。其实,对实验的真实物理过程并不清楚,又何谈相符呢?请看事实:

基于玻尔理论的成功,量子力学作两项重要推广。心理学原因,人们对这种推广又愿意接受。然而却出现本质性原则错误,请看:

..量子力学推广(一)

由于氢原子的试验电离能与玻尔理论真实能级相近,于是量子力学推广为:

试验电离能=原子真实能级??????????(4)

将该式推广到多电子原子中显然很省力气,但这是严重错误。请看氦原子事实:

试验(文献[])测得氦原子两个电离能,这里分别用e1,e2表示为:

e1=.(Rhc)=.(ev)????????(5)

e2=.(Rhc)=.(ev)????????(6)

量子力学[]认为这就是氦原子的两个真实能级。

若用e玻表示类氢氦离子基态能玻尔理论值,则

e玻=.(ev)?????????????(7)

显然下式成立:

e2=e1+e玻??????????????(8)

该式明确表明e2不是氦原子的真实能级,因为其中包含有e1,即第一电离能。

那么,实验值e2即(8)式表示什么物理内容呢?

研究表明:要使氦原子第二电子电离,仪器必先付出能量e1=.(ev)先使第一电子电离,这好比代价,氦原子于是变成类氢氦离子,其基态能为e玻=.(ev)。要使它电离,仪器必须再付出与e玻相等的能量,才能使第2电子电离。那么仪器付出总能量必为e2=e1+e玻,这就是氦原子电离实验真实过程,由此不难结论:

..据电离实验本文结论

电离实验结论一:氢原子及类氢氦离子玻尔理论值正确。

电离实验结论二:目前电离能实验值≠原子真实能级。

电离实验结论三:所有元素最低能级皆为其类氢离子能级,不存在比这更低的能级。

然而量子力学(文献[]、[])却竞相用"微扰法"、"变分法"乃至用修正核电荷方法逼近计算这氦原子的"能级"e:

e2=.(Rhc)=.(ev)??????(9)

显然,量子力学这种下意识"符合"实验,拙劣以极,形同瞎子摸象!

这是由于量子力学对原子结构缺乏了解,又没有搞清电离实验真实物理过程所致。

对此,进一步证明如下,参见表(一):

表(一)几个元素的类氢离子能级

原子序    元素    e(ev)     e玻(ev)    e+e玻     e实(ev)    注

    al    .    .     .        

    Si    .    .     .        

    p    .    .     .        

    S    .    .     .        

    Cl    .    .     .